Inorganic Acid Containing Patents (Class 252/79.2)
  • Patent number: 11901436
    Abstract: A method comprises forming first and second fins each comprising alternately stacking first and second semiconductor layers; forming dummy gate structures over the first and second fins, and gate spacers on either side of the dummy gate structures; removing the dummy gate structures to form first and second gate trenches; removing the first semiconductor layers such that the second semiconductor layers are suspended in the first and second gate trenches; depositing a first dielectric layer around the second semiconductor layers and a second dielectric layer around the first dielectric layer; performing an ALD process to form a hard mask layer around the second dielectric layer, the ALD process comprising pulsing a first precursor for a first pulse time longer than about one second; patterning the hard mask layer; and etching a portion of the second gate dielectric layer in the second gate trench.
    Type: Grant
    Filed: June 6, 2021
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yen-Jui Chiu, Yao-Teng Chuang, Kuei-Lun Lin
  • Patent number: 11603595
    Abstract: The present invention refers to an electrolytic treatment device having an anodic compartment comprising a non-chromium (VI) etching solution to be treated and immersed therein an anode. The anodic compartment is separated by a membrane from a cathodic compartment comprising a cathodic solution comprising an inorganic acid, wherein the anode and the cathode are used comprising or consisting of a ternary or higher Pb alloy with Sn and at least one further metal selected from the group consisting of Sb, Ag, Co, Bi and combinations thereof. Moreover, a method for etching plastic parts is provided as well.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: March 14, 2023
    Assignee: Coventya S.P.A.
    Inventors: Giorgio Tesser, Sandrine Dalbin
  • Patent number: 11315900
    Abstract: A method includes patterning a cavity through a first passivation layer of a first package component, the first package component comprising a first semiconductor substrate and bonding the first package component to a second package component. The second package component comprises a second semiconductor substrate and a second passivation layer. Bonding the first package component to the second package component comprises directly bonding the first passivation layer to the second passivation layer; and reflowing a solder region of a conductive connector disposed in the cavity to electrically connect the first package component to the second package component.
    Type: Grant
    Filed: August 3, 2020
    Date of Patent: April 26, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Tung-Liang Shao, Chih-Hang Tung
  • Patent number: 11094549
    Abstract: A {100} indium phosphide (InP) wafer with pits distributed on the back side thereof, a method and an etching solution for manufacturing thereof are provided, wherein the pits on the back side have an elongated shape with a maximum dimension of the long axis of 65 ?m, and the pits have a maximum depth of 6.0 ?m. The {100} indium phosphide (InP) wafer has controllable pits distribution on the back side, thus provide a controllable emissivity of the wafer back side surface for better control of wafer back side heating during the epitaxial growth.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: August 17, 2021
    Assignee: BEIJING TONGMEI XTAL TECHNOLOGY CO., LTD.
    Inventors: Liugang Wang, Haimiao Li, Sung-Nee George Chu
  • Patent number: 10723946
    Abstract: An etchant includes: based on a total weight of the etchant, about 1 wt % to about 15 wt % of sulfurized peroxide, about 5 wt % to about 10 wt % of nitric acid, about 20 wt % to about 40 wt % of organic acid, about 0.05 wt % to about 5 wt % of ferric nitrate, about 0.1 wt % to about 5 wt % of ionic sequestrant, and 0.1 wt % to 5 wt % of corrosion inhibitor, wherein a remaining amount is deionized water.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: July 28, 2020
    Assignees: Samsung Display Co., Ltd.., Dongwoo Fine-Chem Co., Ltd.
    Inventors: Jonghee Park, Kitae Kim, Jinseock Kim, Beomsoo Kim, Sangtae Kim, Kyungbo Shim, Giyong Nam, Youngjin Yoon, Daesung Lim
  • Patent number: 10297475
    Abstract: A flattening method, by utilizing the advantages of the CARE method and making up for the disadvantages, can perform removal processing of a surface of a workpiece at a sufficient processing rate and can provide a processed surface having enhanced flatness without leaving damage in the processed surface. A flattening method comprises at least two surface removal steps and at least two cleaning steps, the final surface removal step being a catalyst-referred etching step comprising immersing a workpiece in a processing solution containing at least one of hydrohalic acid, hydrogen peroxide water and ozone water, and bringing a surface of a catalyst platen into contact with or close proximity to a surface to be processed of the workpiece to process the surface, said catalyst platen having in a surface a catalyst selected from the group consisting of platinum, gold, a ceramic solid catalyst, a transition metal, glass, and an acidic or basic solid catalyst.
    Type: Grant
    Filed: April 10, 2014
    Date of Patent: May 21, 2019
    Assignee: Ebara Corporation
    Inventors: Kazuto Yamauchi, Yasuhisa Sano, Hideyuki Hara, Junji Murata, Keita Yagi
  • Patent number: 10049883
    Abstract: An object is to provide an MRAM dry etching residue removal composition capable of removing dry etching residues while suppressing damage to a substrate containing a specific metal in a step of producing an MRAM, a method of producing a magnetoresistive random access memory using the same, and a cobalt removal composition having excellent cobalt removability. The MRAM dry etching residue removal composition of the present invention contains a strong oxidizing agent and water. In addition, the cobalt removal composition of the present invention contains orthoperiodic acid and water.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 14, 2018
    Assignee: FUJIFILM CORPORATION
    Inventors: Keeyoung Park, Atsushi Mizutani
  • Patent number: 9633898
    Abstract: An etching liquid which can selectively remove only a copper layer in an etching process of a multilayer structure including a cobalt layer and the copper layer is disclosed. The etching liquid is an etching liquid for etching the copper layer in the multilayer structure including the copper layer and the cobalt layer. This etching liquid includes at least one acid selected from a group consisting of citric acid, oxalic acid, malic acid, and malonic acid, and hydrogen peroxide, the etching liquid having pH in a range of 4.3 to 5.5.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: April 25, 2017
    Assignee: Ebara Corporation
    Inventors: Akira Susaki, Keiichi Kurashina
  • Patent number: 9550940
    Abstract: An etching material including at least one boron compound selected from a Lewis acid that includes, in its structure, boron and a halogen that is bonded to the boron, a salt of the Lewis acid and a compound that generates the Lewis acid.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: January 24, 2017
    Assignee: Hitachi Chemical Company, Ltd.
    Inventors: Hideo Nakako, Yasushi Kumashiro, Takaaki Noudou, Maki Inada, Kyoko Kuroda
  • Patent number: 9534306
    Abstract: An electrolytic cell and a method of electrochemical oxidation of manganese(II) ions to manganese(III) ions in the electrolytic cell are described. The electrolytic cell comprises (1) an electrolyte solution of manganese(II) ions in a solution of at least one acid; (2) a cathode immersed in the electrolyte solution; and (3) an anode immersed in the electrolyte solution and spaced apart from the cathode. Various anode materials are described including vitreous carbon, reticulated vitreous carbon, woven carbon fibers, lead and lead alloy. Once the electrolyte is oxidized to form a metastable complex of manganese(III) ions, a platable plastic may be contacted with the metastable complex to etch the platable plastic. In addition, a pretreatment step may also be performed on the platable plastic prior to contacting the platable plastic with the metastable complex to condition the plastic surface.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: January 3, 2017
    Inventors: Trevor Pearson, Terence Clarke, Roshan V. Chapaneri, Craig Robinson, Alison Hyslop, Amrik Singh
  • Patent number: 9133550
    Abstract: An etching composition, a method of forming a metal pattern using the etching composition, and a method of manufacturing a display substrate are disclosed. The etching composition includes about 0.1% by weight to about 25% by weight of ammonium persulfate, about 0.1% by weight to about 25% by weight of an organic acid, about 0.01% by weight to about 5% by weight of a chelating agent, about 0.01% by weight to about 5% by weight of a fluoride compound, about 0.01% by weight to about 5% by weight of a chloride compound, about 0.01% by weight to about 2% by weight of an azole-based compound and a remainder of water. Thus, a copper layer may be stably etched to improve a reliability of manufacturing the metal pattern and the display substrate.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: September 15, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: In-Bae Kim, Jong-Hyun Choung, Ji-Young Park, Seon-Il Kim, Jae-Woo Jeong, Sang Gab Kim, Sang-Woo Kim, Ki-Beom Lee, Dae-Woo Lee, Sam-Young Cho
  • Patent number: 9039925
    Abstract: Provided is a polishing slurry composition, including a non-ionic surfactant represented by the following formula (1) R—(OCH2CH2)x—OH??formula (1) wherein x is an integer from 1 to 50, and R is selected from a group consisting of a C3-C50 alkyl group, a C6-C55 benzylalkyl group and a C6-C55 phenylalkyl group.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: May 26, 2015
    Assignee: UWIZ Technology Co., Ltd.
    Inventors: Wei-Jung Chen, Wen-Tsai Tsai, Ho-Ying Wu, Song-Yuan Chang, Ming-Hui Lu
  • Patent number: 9023228
    Abstract: A pickling solution for the surface pre-treatment of plastic surfaces in preparation for metallization, the solution comprising a source of Mn(VII) ions; and an inorganic acid; wherein the pickling solution is substantially free of chromium (VI) ions, alkali ions, and alkaline-earth ions.
    Type: Grant
    Filed: August 11, 2008
    Date of Patent: May 5, 2015
    Assignee: Enthone Inc.
    Inventors: Mark Peter Schildmann, Ulrich Prinz, Christoph Werner
  • Patent number: 9017563
    Abstract: Provided is a plating method of a circuit substrate comprising a conductive pattern in which a metal layer containing at least silver and copper is exposed on an outer surface. The plating method comprises: step (A) of treating the circuit substrate with a first liquid agent containing an oxidizing agent; step (B) of treating the circuit substrate after the step (A) with a second liquid agent which dissolves copper oxide, and thereby removing copper oxide from the conductive pattern's surface; step (C) of treating the circuit substrate after the step (B) with a third liquid agent whose rate of dissolving silver oxide (I) at 25° C. is 1000 times or more faster than its rate of dissolving copper (0) at 25° C., and thereby removing silver oxide from the conductive pattern's surface; and step (D) of performing electroless plating on the conductive pattern of the circuit substrate after the step (C).
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: April 28, 2015
    Assignee: Tokuyama Corporation
    Inventors: Emi Ushioda, Tetsuo Imai
  • Patent number: 9017571
    Abstract: A dry etching agent according to the present invention preferably contains: (A) 1,3,3,3-tetrafluoropropene; (B) at least one kind of additive gas selected from the group consisting of H2, O2, O3, CO, CO2, COCl2, COF2, CF3OF, NO2, F2, NF3, Cl2, Br2, I2, CH4, C2H2, C2H4, C2H6, C3H4, C3H6, C3H8, HF, HI, HBr, HCl, NO, NH3 and YFn (where Y represents Cl, Br or I; and n represents an integer satisfying 1?n?7); and (C) an inert gas. This dry etching agent has less effect on the global environment and can obtain a significant improvement in process window and address processing requirements such as low side etching ratio and high aspect ratio even without any special substrate excitation operation.
    Type: Grant
    Filed: June 24, 2011
    Date of Patent: April 28, 2015
    Assignee: Central Glass Company, Limited
    Inventors: Tomonori Umezaki, Yasuo Hibino, Isamu Mori, Satoru Okamoto, Akiou Kikuchi
  • Patent number: 9005472
    Abstract: An aqueous polishing agent, comprising, as the abrasive, at least one kind of polymer particles (A) finely dispersed in the aqueous phase and having at their surface a plurality of at least one kind of functional groups (a1) capable of interacting with the metals and/or the metal oxides on top of the surfaces to be polished and forming complexes with the said metals and metal cations, the said polymer particles (A) being preparable by the emulsion or suspension polymerization of at least one monomer containing at least one radically polymerizable double bond in the presence of at least one oligomer or polymer containing a plurality of functional groups (a1); graft copolymers preparable by the emulsion or suspension polymerization of at least one monomer containing at least one radically polymerizable double bond in the presence of at least one oligomeric or polymeric aminotriazine-polyamine condensate; and a process for the chemical and mechanical polishing of patterned and unstructured metal surfaces making
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: April 14, 2015
    Assignee: BASF SE
    Inventors: Vijay Immanuel Raman, Ilshat Gubaydullin, Mario Brands, Yuzhuo Li, Maxim Peretolchin
  • Publication number: 20150099327
    Abstract: An etching solution includes: phosphoric acid having concentration of 30% by weight to 80% by weight; nitric acid having concentration of 10% by weight or less; and surfactant having concentration of 0.0005% by weight to 0.0050% by weight, wherein the etching solution is used for etching an aluminum oxide film having film density of 2.80 g/cm3 to 3.25 g/cm3.
    Type: Application
    Filed: March 7, 2014
    Publication date: April 9, 2015
    Applicant: PANASONIC CORPORATION
    Inventors: Hirofumi Higashi, Yoshiharu Hidaka
  • Patent number: 8999194
    Abstract: The present invention is to provide an etching solution capable of effectively reducing Galvanic effect, wherein the etching solution is obtained by way of dissolving an etchant and a nitrogen containing five-member heterocyclic compound in water. Thus, when at least one first metal (e.g., gold) and at least one second metal (e.g., copper) disposed on a substrate is treated with a wet etching process by using this etching solution, the nitrogen containing five-member heterocyclic compound would form an organic protecting film on the first metal having higher reduction potential, so as to effectively avoid the second metal from being over etched resulted from the Galvanic effect.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: April 7, 2015
    Assignee: E-Chem Enterprise Corp.
    Inventors: Cheng-Ying Tsai, Cheng-Kai Liao, Su-Fei Hsu
  • Patent number: 8986559
    Abstract: Compositions and methods for chemical texturing a surface of a polycrystalline silicon wafer to be used in the manufacture of solar cells provide increased efficiency in the manufacture and operation of solar cells. The compositions and methods disclosed herein include first and second components, wherein the first component is a UKON etch composition, including a hydrofluoric acid/nitric acid mixture and water, while the second component includes a silicon wafer texturing enhancer (SWTE).
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 24, 2015
    Assignee: Avantor Performance Materials, Inc.
    Inventors: Nicolas Hildenbrand, Joannes Theodorus Valentinus Hoogboom, Michiel Scheffer, Raymond Albertus Johannes Ten Broeke
  • Publication number: 20150075850
    Abstract: The object of the present invention is to provide an etching solution composition for etching a metal oxide containing In and a metal oxide containing Zn and In used as a transparent electrode or an oxide semiconductor of an electronic device such as a semiconductor element or a flat panel display (FPD), the etching solution composition being controllable to give a practical etching rate, having high dissolving power toward Zn, and enabling a long solution life due to suppressed variation of the formulation during use. The object is solved by an etching solution composition that enables microfabrication to be carried out for a metal oxide containing In and a metal oxide containing Zn and In used as a transparent electrode or an oxide semiconductor of an electronic device such as a semiconductor element or an FPD, the composition containing water and at least one type of acid, excluding hydrohalic acids, perhalic acids, etc., having an acid dissociation constant pKan at 25° C.
    Type: Application
    Filed: September 18, 2014
    Publication date: March 19, 2015
    Applicant: Kanto Kagaku Kabushiki Kaisha
    Inventors: Takuo Ohwada, Toshikazu Shimizu
  • Publication number: 20150072522
    Abstract: Provided are an abrasive particle including auxiliary particles formed on a surface of a mother particle, a polishing slurry prepared by mixing the abrasive particles with a polishing accelerating agent and a pH adjusting agent, and a method of manufacturing a semiconductor device in which an insulating layer is polished by the polishing slurry while using a conductive layer as a polishing stop layer.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventor: Seung Won JUNG
  • Publication number: 20150069291
    Abstract: Provided is a method of manufacturing an abrasive particle including a mother particle and a plurality of auxiliary particles formed on a surface of the mother particle, and a method of manufacturing a polishing slurry in which the abrasive particle is mixed with a polishing accelerating agent and a pH adjusting agent.
    Type: Application
    Filed: September 10, 2014
    Publication date: March 12, 2015
    Inventor: Seung Won JUNG
  • Patent number: 8974685
    Abstract: Provided is a fine-processing agent which, when fine-processing a laminated film stacked at least with a silicon dioxide film and a silicon nitride film, can selectively fine-process the silicon dioxide film. Also provided is a fine-processing method utilizing the fine-processing agent. The fine-processing agent is characterized by including: (a) 0.01-15.0 weight % hydrogen fluoride and/or 0.1-40.0 weight % ammonium fluoride, (b) water, and (c) 0.001-10.00 weight % water-soluble polymer selected from among a group consisting of acrylic acid, ammonium acrylate, acrylic acid ester, acrylamide, styrenesulfonic acid, ammonium styrenesulfonate, and styrenesulfonic acid ester.
    Type: Grant
    Filed: May 21, 2009
    Date of Patent: March 10, 2015
    Assignee: Stella Chemifa Corporation
    Inventors: Masayuki Miyashita, Takanobu Kujime, Keiichi Nii
  • Patent number: 8974692
    Abstract: Provided are novel chemical mechanical polishing (CMP) slurry compositions for polishing copper substrates and method of using the CMP compositions. The CMP slurry compositions deliver superior planarization with high and tunable removal rates and low defects when polishing bulk copper layers of the nanostructures of IC chips. The CMP slurry compositions also offer the high selectivity for polishing copper relative to the other materials (such as Ti, TiN, Ta, TaN, and Si), suitable for through-silicon via (TSV) CMP process which demands high copper film removal rates.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: March 10, 2015
    Assignee: Air Products and Chemicals, Inc.
    Inventors: Xiaobo Shi, Krishna Murella, James Allen Schlueter, Jae Ouk Choo
  • Patent number: 8969276
    Abstract: An aqueous acidic etching solution suitable for texturing the surface of single crystal and polycrystal silicon substrates and containing, based on the complete weight of the solution, 3 to 10% by weight of hydrofluoric acid; 10 to 35% by weight of nitric acid; 5 to 40% by weight of sulfuric acid; and 55 to 82% by weight of water; a method for texturing the surface of single crystal and polycrystal silicon substrates comprising the step of (1) contacting at least one major surface of a substrate with the said aqueous acidic etching solution; (2) etching the at least one major surface of the substrate for a time and at a temperature sufficient to obtain a surface texture consisting of recesses and protrusions; and (3) removing the at least one major surface of the substrate from the contact with the aqueous acidic etching solution; and a method for manufacturing photovoltaic cells and solar cells using the said solution and the said texturing method.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: March 3, 2015
    Assignee: BASF SE
    Inventors: Simon Braun, Julian Proelss, Ihor Melnyk, Michael Michel, Stefan Mathijssen
  • Publication number: 20150053887
    Abstract: The polishing composition of the present invention is a polishing composition for polishing a tungsten-containing metal layer formed on an insulating layer, the polishing composition comprising: abrasive grains; one or more halogen acids selected from the group consisting of iodic acid, iodous acid, and hypoiodous acid; a strong acid; a hydrogen-ion-supplying agent; and water.
    Type: Application
    Filed: March 28, 2013
    Publication date: February 26, 2015
    Applicant: NITTA HAAS INCORPORATED
    Inventors: Koichiro Hosokawa, Yoshiharu Ota, Shoichiro Yoshida
  • Patent number: 8961814
    Abstract: Methods and formulations for the selective etching of etch stop layers deposited above metal-based semiconductor layers used in the manufacture of TFT-based display devices are presented. The formulations are based on an alkaline solution. Methods and formulations for the selective etching of molybdenum-based and/or copper-based source/drain electrode layers deposited above metal-based semiconductor layers used in the manufacture of TFT-based display devices are presented. The formulations are based on an alkaline solution.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: February 24, 2015
    Assignee: Intermolecular, Inc.
    Inventors: Jeroen Van Duren, Zhi-Wen Wen Sun
  • Patent number: 8961815
    Abstract: The present disclosure is directed to a highly dilutable chemical mechanical polishing concentrate comprising an abrasive, an acid, a stabilizer, and water with a point-of-use pH ranging from 2.2-3.5 for planarizing current and next generation semiconductor integrated circuit FEOL/BEOL substrates.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: February 24, 2015
    Assignee: Planar Solutions, LLC
    Inventors: Bin Hu, Abhiskek Singh, Gert Moyaerts, Deepak Mahulikar, Richard Wen
  • Patent number: 8956977
    Abstract: The present invention provides a semiconductor device production method and a rinse used in the production method. The method includes: a sealing composition application process in which a semiconductor sealing layer is formed by applying, to at least a portion of a surface of a semiconductor substrate, a semiconductor sealing composition that includes a resin having a cationic functional group and a weight average molecular weight of from 2,000 to 600,000, wherein a content of sodium and a content of potassium are 10 mass ppb or less on an elemental basis, respectively; and, subsequently, a rinsing process in which the surface of the semiconductor substrate on which the semiconductor sealing layer has been formed is rinsed with a rinse having a pH at 25° C. of 6 or lower.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: February 17, 2015
    Assignee: Mitsu Chemicals, Inc.
    Inventors: Shoko Ono, Kazuo Kohmura, Hirofumi Tanaka
  • Publication number: 20150044872
    Abstract: A method is disclosed for polishing a wafer with a slurry. In the method, the wafer comprises at least one of silicon carbonitride (SiCN) and silicon nitride (SiN), and further comprises one or both of silicon dioxide (SiO2) and poly silicon, and a removal rate of SiCN is greater than a removal rate of poly silicon, and the removal rate of poly silicon is greater than a removal rate of SiO2, and where the slurry comprises up to about 15 wt % of surface-modified colloidal silica particles which have a primary particle size of less than about 35 nm, and the surface-modified colloidal silica particles comprise a plurality of acid moieties or salts thereof.
    Type: Application
    Filed: August 6, 2014
    Publication date: February 12, 2015
    Applicant: FUJIMI INCORPORATED
    Inventors: Fusayo SAEKI, Hooi-Sung KIM
  • Patent number: 8951433
    Abstract: An improved composition and method for cleaning a surface of a semiconductor wafer are provided. The composition can be used to selectively remove a low-k dielectric material such as silicon dioxide, a photoresist layer overlying a low-k dielectric layer, or both layers from the surface of the wafer. The composition is formulated according to the invention to provide a desired removal rate of the low-k dielectric and/or photoresist from the surface of the wafer. By varying a fluorine ion component, and the amounts of the fluorine ion component and an acid component, and controlling the pH, a composition can be formulated in order to achieve a desired low-k dielectric removal rate that ranges from slow and controlled at about 50 to about 1000 angstroms per minute, to a relatively rapid removal of low-k dielectric material at greater than about 1000 angstroms per minute.
    Type: Grant
    Filed: December 27, 2013
    Date of Patent: February 10, 2015
    Assignee: Micron Technology, Inc.
    Inventor: Donald L. Yates
  • Patent number: 8951434
    Abstract: A glass etching medium and a method for etching the surface of a glass sheet to modify surface flaw characteristics without degrading the optical quality of the sheet surface, wherein the etching medium is a thickened aqueous acidic fluoride-containing paste comprising at least one dissolved, water-soluble, high-molecular-weight poly (ethylene oxide) polymer thickener.
    Type: Grant
    Filed: May 8, 2013
    Date of Patent: February 10, 2015
    Assignee: Corning Incorporated
    Inventors: Timothy Edward Myers, Shyamala Shanmugam, Alan Thomas Stephens, II, Matthew John Towner, Kevin William Uhlig, Lu Zhang
  • Publication number: 20150037614
    Abstract: The present disclosure relates to a planarized bit-patterned magnetic medium that has a magnetic layer, including island regions and trench regions, a first carbon layer applied over the magnetic layer, and a second carbon layer applied over the first carbon layer, wherein the second carbon layer has been removed in the island regions. The first carbon layer may have a lower material removal rate when exposed to chemical-mechanical polishing than the second carbon layer. The present disclosure also relates to a method for planarizing a bit-patterned magnetic medium and a slurry composition for the chemical-mechanical polishing of carbon layers, the slurry composition including an oxidizer component, a catalyst component, a particulate component, and a reaction control component.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Applicant: HGST Netherlands B.V.
    Inventors: Kurt A. Rubin, Richard L. White, Xiaoping Bian
  • Patent number: 8940644
    Abstract: A method for manufacturing a semiconductor substrate product having: providing an etching liquid containing water, a hydrofluoric acid compound and an organic solvent, and applying the etching liquid to a semiconductor substrate, the semiconductor substrate having a silicon layer and a silicon oxide layer, the silicon layer containing an impurity, and thereby selectively etching the silicon oxide layer.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: January 27, 2015
    Assignee: FUJIFILM Corporation
    Inventors: Atsushi Mizutani, Tetsuya Kamimura, Akiko Yoshii, Tetsuya Shimizu
  • Patent number: 8940182
    Abstract: Etching compositions are provided. The etching composition includes a phosphoric acid, ammonium ions and a silicon compound. The silicon compound includes a silicon atom, an atomic group having an amino group combined with the silicon atom, and at least two oxygen atoms combined with the silicon atom. Methods utilizing the etching compositions are also provided.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: January 27, 2015
    Assignees: Samsung Electronics Co., Ltd., Soulbrain Co., Ltd.
    Inventors: Young-Taek Hong, Jinuk Lee, Junghun Lim, Jaewan Park, Chanjin Jeong, Hoon Han, Seonghwan Park, Yanghwa Lee, Sang Won Bae, Daehong Eom, Byoungmoon Yoon, Jihoon Jeong, Kyunghyun Kim, Kyounghwan Kim, ChangSup Mun, Se-Ho Cha, Yongsun Ko
  • Patent number: 8940178
    Abstract: A method of texturizing a silicon substrate comprising a) contacting the substrate with an etching solution comprising glycolic acid, b) etching a surface of the substrate thereby forming disruptions in said surface of the substrate, and c) removing the etching solution to yield a texturized substrate, said texturized substrate having a plurality of disruptions in at least one surface with a surface density of disruptions of a minimum of 60 disruptions in a 400 micron square area.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: January 27, 2015
    Assignee: E I du Pont de Nemours and Company
    Inventors: Seung Jin Lee, Hee Soo Yeo
  • Patent number: 8932719
    Abstract: The object of the present invention is to strongly join an aluminum alloy part with an FRP prepreg. An object obtained by subjecting an aluminum alloy to a suitable liquid treatment so as to form a surface having large, micron-order irregularities and also fine irregularities with a period of several tens of nanometers, eliminating the presence of sodium ions from the surface and additionally forming a surface film of aluminum oxide, which is thicker than a natural oxide layer, has been found to have a powerful adhesive strength with epoxy-based adhesives. By simultaneously curing an FRP prepreg which uses the same epoxy-based adhesive in the matrix, an integral composite or structure in which FRP and aluminum alloy have been united at a joining strength of unprecedented magnitude is produced.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: January 13, 2015
    Assignee: Taisei Plas Co., Ltd.
    Inventors: Masanori Naritomi, Naoki Andoh
  • Patent number: 8927429
    Abstract: A chemical mechanical polishing (CMP) composition comprising a specific heteropolyacid Abstract A chemical-mechanical polishing (CMP) composition comprising: (A) inorganic particles, organic particles, or a mixture thereof, (B) a heteropolyacid of the formula HaXbPsMOyVzOc wherein X=any cation other than H 8<y<18 8<z<14 56<c<105 a+b=2c?6y?5(3+z) b>0 and a>0 (formula I) or a salt thereof, and, (C) an aqueous medium.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: January 6, 2015
    Assignee: BASF SE
    Inventors: Christine Schmitt, Andrey Karpov, Frank Rosowski, Mario Brands, Yuzhuo Li
  • Patent number: 8921230
    Abstract: An etchant composition includes about 25 percent by weight to about 35 percent by weight of phosphoric acid, about 3 percent by weight to about 9 percent by weight of nitric acid, about 10 percent by weight to about 20 percent by weight of acetic acid, about 5 percent by weight to about 10 percent by weight of a nitrate, about 6 percent by weight to about 15 percent by weight of a sulfonic acid, about 1 percent by weight to about 5 percent by weight of an amine compound including a carboxyl group, about 0.1 percent by weight to about 1 percent by weight of a water-soluble amino acid, about 0.01 percent by weight to about 1 percent by weight of an azole compound, and water.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: December 30, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hong-Sick Park, Young-Jun Kim, Young-Woo Park, Wang-Woo Lee, Won-Guk Seo, Sam-Young Cho, Seung-Yeon Han, Gyu-Po Kim, Hyun-Cheol Shin, Ki-Beom Lee
  • Patent number: 8920667
    Abstract: The invention provides a chemical-mechanical polishing composition and a method of chemically-mechanically polishing a substrate with the chemical-mechanical polishing composition. The polishing composition comprises (a) abrasive particles, wherein the abrasive particles comprise zirconia, (b) at least one metal ion oxidizer, wherein the at least one metal ion oxidizer comprises metal ions of Co3+, Au+, Ag+, Pt2+, Hg2+, Cr3+, Fe3+, Ce4+, or Cu2+, and (c) an aqueous carrier, wherein the pH of the chemical-mechanical polishing composition is in the range of about 1 to about 7, and wherein the chemical-mechanical polishing composition does not contain a peroxy-type oxidizer.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: December 30, 2014
    Assignee: Cabot Microelectronics Corporation
    Inventors: Lin Fu, Steven Grumbine, Matthias Stender
  • Patent number: 8916479
    Abstract: Provided are methods for processing semiconductor substrates having titanium nitride (TiN) structures as well as aluminum (Al) structures and, in some embodiments, other structures, such as silicon germanium (SiGe), tantalum nitride (TaN), hafnium oxide (HfOx), silicon nitride (SiN), and/or silicon oxide (SiO2) structures. Etching solutions and processing conditions described herein provide high etching selectivity of titanium nitride relative to these other materials. As such, the titanium nitride structures can be removed (partially or completely) without significant damage to these other structures. In some embodiments, the etching rate of titanium nitride is at least about 200 Angstroms per minute and even at least about 350 Angstroms per minute, while the etching rate of aluminum and/or other materials is less than 15 Angstroms per minute. An etching solution may be kept at 40° C. to 65° C. and may include ammonium hydroxide and hydrogen peroxide (between 1:600 and 1:3,000 by weight).
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: December 23, 2014
    Assignee: Intermolecular, Inc.
    Inventor: Gregory Nowling
  • Patent number: 8911558
    Abstract: A post-W CMP cleaning solution consists of carboxylic acid and deionized water. The carboxylic acid may be selected from the group consisting of (1) monocarboxylic acids; (2) dicarboxylic acids; (3) tricarboxylic acids; (4) polycarboxylic acids; (5) hydroxycarboxylic acids; (6) salts of the above-described carboxylic acids; and (7) any combination thereof. The post-W CMP cleaning solution can work well without adding any other chemical additives such as surfactants, corrosion inhibitors, pH adjusting agents or chelating agents.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 16, 2014
    Assignee: Nanya Technology Corp.
    Inventors: Hongqi Li, Anurag Jindal, Jin Lu
  • Publication number: 20140360980
    Abstract: A method of preparing a solution capable of etching a platable plastic. The method comprises the steps of: (a) providing an electrolyte comprising a solution of manganese(II) in a solution of 9 to 15 molar sulfuric acid or phosphoric acid to an electrolytic cell; (b) applying a current to the electrolytic cell, wherein the electrolytic cell comprises an anode and a cathode; and (c) oxidizing the electrolyte to form manganese(III) ions, wherein the manganese(III) ions form a metastable sulfate complex. Thereafter, a platable plastic may be immersed in the metastable sulfate complex for a period of time to etch the platable substrate prior to subsequent plating steps.
    Type: Application
    Filed: August 25, 2014
    Publication date: December 11, 2014
    Inventors: Trevor Pearson, Craig Robinson
  • Patent number: 8906123
    Abstract: A method and associated composition for CMP processing of noble metal-containing substrates (such as ruthenium-containing substrates) afford both high removal rates of the noble metal and are tunable with respect to rate of noble metal removal in relation to removal of other films. Low levels of an oxidizing agent containing one or more peroxy-functional group(s) can be used along with a novel ligand to effectively polish noble metal substrates.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: December 9, 2014
    Assignee: Air Products and Chemicals Inc.
    Inventor: Xiaobo Shi
  • Patent number: 8900478
    Abstract: Disclosed are an etchant which is used for redistribution of a semiconductor substrate having an electrode and which is capable of selectively etching copper without etching nickel; and a method for manufacturing a semiconductor device using the same. Specifically disclosed are an etchant which is used for redistribution of a semiconductor substrate and which contains hydrogen peroxide and citric acid and has a content of hydrogen peroxide of from 0.75 to 12% by mass and a content of citric acid of from 1 to 20% by mass, with a molar ratio of hydrogen peroxide and citric acid being in the range of from 0.3 to 5; an etchant for selective etching of copper which is used for redistribution of a semiconductor substrate and which contains hydrogen peroxide and malic acid and has a content of hydrogen peroxide of from 0.75 to 12% by mass and a content of malic acid of from 1.5 to 25% by mass, with a molar ratio of hydrogen peroxide and malic acid being in the range of from 0.
    Type: Grant
    Filed: December 14, 2010
    Date of Patent: December 2, 2014
    Assignee: Mitsubishi Gas Chemical Company, Inc.
    Inventors: Akira Hosomi, Kensuke Ohmae
  • Publication number: 20140346138
    Abstract: A polishing composition for a magnetic disk substrate of the present invention includes water, silica particles, and at least one or more selected from an acid, a salt of the acid, and an oxidizing agent. The silica particles are observed with a transmission electron microscope to measure a maximum diameter and a projected area of each particle, and a value obtained by dividing the area of a circle whose diameter is the maximum diameter of a silica particle by the projected area of the silica particle and multiplying the result by 100, is in the range of 100 to 130.
    Type: Application
    Filed: August 12, 2014
    Publication date: November 27, 2014
    Inventors: Yoshiaki OSHIMA, Norihito YAMAGUCHI, Haruhiko DOI
  • Patent number: 8894877
    Abstract: A liquid composition for wet etching has improved selectivity for polysilicon over silicon dioxide, even when the polysilicon is heavily doped and/or the silicon dioxide is a low temperature oxide. The composition comprises 0.05-0.4 percent by weight hydrofluoric acid, 15-40 percent by weight nitric acid, 55-85 percent by weight sulfuric acid and 2-20 percent by weight water. A method and apparatus for wet etching using the composition are also disclosed.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: November 25, 2014
    Assignee: Lam Research AG
    Inventor: Stefan Detterbeck
  • Patent number: 8889555
    Abstract: A polishing agent for copper polishing, comprising (A) an inorganic acid with divalent or greater valence, (B) an amino acid, (C) a protective film-forming agent, (D) an abrasive, (E) an oxidizing agent and (F) water, wherein the content of the component (A) is at least 0.08 mol/kg, the content of the component (B) is at least 0.20 mol/kg, the content of the component (C) is at least 0.02 mol/kg, and either or both of the following conditions (i) and (ii) are satisfied. (i): The proportion of the content of the component (A) with respect to the content of the component (C) is 2.00 or greater. (ii): It further comprises (G) at least one kind selected from among organic acids and their acid anhydrides.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: November 18, 2014
    Assignee: Hitachi Chemical Co., Ltd.
    Inventors: Hiroshi Ono, Takashi Shinoda, Yuuhei Okada
  • Patent number: 8877082
    Abstract: Disclosed is a processing method which can achieve a high processing rate, and is capable of making a surface smooth. In order to achieve this an SiC substrate is arranged in a potassium hydroxide solution containing hydrogen peroxide, and ultraviolent radiation is irradiated on the surface of the SiC substrate. An SiO2 layer is formed on the surface of the SiC substrate due to the irradiation of ultraviolet radiation, and this SiO2 layer is chemically removed by means of the potassium hydroxide solution, and also removed by a synthetic quartz surface plate.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: November 4, 2014
    Assignee: National University Corporation Kumamoto University
    Inventors: Akihisa Kubota, Mutsumi Touge
  • Patent number: 8865013
    Abstract: A method for chemical mechanical polishing of a substrate comprising tungsten using a nonselective chemical mechanical polishing composition.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: October 21, 2014
    Assignee: Rohm and Haas Electronic Materials CMP Holdings, Inc.
    Inventors: Yi Guo, Jerry Lee, Raymond L. Lavoie, Jr., Guangyun Zhang