With Lattice Constant Mismatch (e.g., With Buffer Layer To Accommodate Mismatch) Patents (Class 257/190)
  • Patent number: 11670637
    Abstract: An integrated circuit die has a layer of first semiconductor material comprising a Group III element and nitrogen and having a first bandgap. A first transistor structure on a first region of the die has: a quantum well (QW) structure that includes at least a portion of the first semiconductor material and a second semiconductor material having a second bandgap smaller than the first bandgap, a first source and a first drain in contact with the QW structure, and a gate structure in contact with the QW structure between the first source and the first drain. A second transistor structure on a second region of the die has a second source and a second drain in contact with a semiconductor body, and a second gate structure in contact with the semiconductor body between the second source and the second drain. The semiconductor body comprises a Group III element and nitrogen.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: June 6, 2023
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then, Paul B. Fischer, Walid M. Hafez
  • Patent number: 11659722
    Abstract: Embodiments herein describe techniques for a semiconductor device including a semiconductor substrate, a first device of a first wafer, and a second device at back end of a second wafer, where the first device is bonded with the second device. A first metal electrode of the first device within a first dielectric layer is coupled to an n-type oxide TFT having a channel layer that includes an oxide semiconductor material. A second metal electrode of the second device within a second dielectric layer is coupled to p-type organic TFT having a channel layer that includes an organic material. The first dielectric layer is bonded to the second dielectric layer, and the first metal electrode is bonded to the second metal electrode. The n-type oxide TFT and the p-type organic TFT form a symmetrical pair of transistors of a CMOS circuit. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: May 23, 2023
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Prashant Majhi, Ravi Pillarisetty, Elijah Karpov, Brian Doyle, Anup Pancholi, Abhishek Sharma
  • Patent number: 11653579
    Abstract: Phase-change memory cells and methods of manufacturing and operating phase-change memory cells are provided. In at least one embodiment, a phase-change memory cell includes a heater and a stack. The stack includes at least one germanium layer or a nitrogen doped germanium layer, and at least one layer of a first alloy including germanium, antimony, and tellurium. A resistive layer is located between the heater and the stack.
    Type: Grant
    Filed: February 3, 2021
    Date of Patent: May 16, 2023
    Inventors: Paolo Giuseppe Cappelletti, Gabriele Navarro
  • Patent number: 11626401
    Abstract: An integrated circuit device includes: a fin-type active area protruding from a substrate, extending in a first direction parallel to an upper surface of the substrate, and including a first semiconductor material; an isolation layer arranged on the substrate and covering a lower portion of a sidewall of the fin-type active area, the isolation layer including an insulation liner conformally arranged on the lower portion of the sidewall of the fin-type active area, and an insulation filling layer on the insulation liner; a capping layer surrounding an upper surface and the sidewall of the fin-type active area, including a second semiconductor material different from the first semiconductor material, and with the capping layer having an upper surface, a sidewall, and a facet surface between the upper surface and the sidewall; and a gate structure arranged on the capping layer and extending in a second direction perpendicular to the first direction.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: April 11, 2023
    Inventors: Jaemun Kim, Gyeom Kim, Dahye Kim, Jinbum Kim, Kyungin Choi, Ilgyou Shin, Seunghun Lee
  • Patent number: 11621371
    Abstract: An epitaxial structure, a preparation method thereof, and a light-emitting diode (LED) are provided. The epitaxial structure includes a sapphire substrate, a GaN layer, a defect exposure layer, and a defect termination layer stacked in sequence.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: April 4, 2023
    Assignee: CHONGQING KONKA PHOTOELECTRIC TECHNOLOGY RESEARCH INSTITUTE CO., LTD.
    Inventor: Shungui Yang
  • Patent number: 11610971
    Abstract: An integrated circuit structure comprises a base layer that includes a channel region, wherein the base layer and the channel region include group III-V semiconductor material. A polarization layer stack is over the base layer, wherein the polarization layer stack comprises a buffer stack, an interlayer over the buffer stack, a polarization layer over the interlayer. A cap layer stack is over the polarization layer to reduce transistor access resistance.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: March 21, 2023
    Assignee: Intel Corporation
    Inventors: Sansaptak Dasgupta, Marko Radosavljevic, Han Wui Then, Nidhi Nidhi, Rahul Ramaswamy, Johann Rode, Paul Fischer, Walid Hafez
  • Patent number: 11605633
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate and a semiconductor layer formed over a substrate. The semiconductor device further includes an isolation region covering the semiconductor layer and nanostructures formed over the semiconductor layer. The semiconductor layer further includes a gate stack wrapping around the nanostructures. In addition, the isolation region is interposed between the semiconductor layer and the gate stack.
    Type: Grant
    Filed: January 4, 2021
    Date of Patent: March 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Winnie Victoria Wei-Ning Chen, Meng-Hsuan Hsiao, Tung-Ying Lee, Pang-Yen Tsai, Yasutoshi Okuno
  • Patent number: 11594413
    Abstract: A semiconductor structure includes a substrate. The semiconductor structure further includes a buffer layer over the substrate, wherein the buffer layer comprises a plurality of III-V layers, and a dopant type of each III-V layer of the plurality of III-V layers is opposite to a dopant of adjacent III-V layers of the plurality of III-V layers. The semiconductor structure further includes an active layer over the buffer layer. The semiconductor structure further includes a dielectric layer over the active layer.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: February 28, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chi-Ming Chen, Po-Chun Liu, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 11581435
    Abstract: A semiconductor device includes a substrate including a first active region, a second active region and a field region between the first and second active regions, and a gate structure formed on the substrate to cross the first active region, the second active region and the field region. The gate structure includes a p type metal gate electrode and an n-type metal gate electrode directly contacting each other, the p-type metal gate electrode extends from the first active region less than half way toward the second active region.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: February 14, 2023
    Inventors: Ju-Youn Kim, Hyung-Soon Jang, Jong-Mil Youn, Tae-Won Ha
  • Patent number: 11581406
    Abstract: Techniques and methods related to strained NMOS and PMOS devices without relaxed substrates, systems incorporating such semiconductor devices, and methods therefor may include a semiconductor device that may have both n-type and p-type semiconductor bodies. Both types of semiconductor bodies may be formed from an initially strained semiconductor material such as silicon germanium. A silicon cladding layer may then be provided at least over or on the n-type semiconductor body. In one example, a lower portion of the semiconductor bodies is formed by a Si extension of the wafer or substrate. By one approach, an upper portion of the semiconductor bodies, formed of the strained SiGe, may be formed by blanket depositing the strained SiGe layer on the Si wafer, and then etching through the SiGe layer and into the Si wafer to form the semiconductor bodies or fins with the lower and upper portions.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: February 14, 2023
    Assignee: Daedalus Prime LLC
    Inventors: Stephen M. Cea, Roza Kotlyar, Harold W. Kennel, Anand S. Murthy, Glenn A. Glass, Kelin J. Kuhn, Tahir Ghani
  • Patent number: 11575021
    Abstract: A semiconductor device includes a compound semiconductor layer comprising a III-V material; a first layer on the compound semiconductor layer and comprising oxygen, nitrogen, and a material included in the compound semiconductor layer; a second layer over the first layer, wherein at least a portion of the second layer comprises a single crystalline structure or a polycrystalline structure; a dielectric layer over the second layer; and a source/drain electrode extending through the dielectric layer, the second layer, and the first layer and into the compound semiconductor layer.
    Type: Grant
    Filed: May 10, 2021
    Date of Patent: February 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Han-Chin Chiu, Cheng-Yuan Tsai
  • Patent number: 11569350
    Abstract: Disclosed is a semiconductor device including a first active pattern that extends in a first direction on an active region of a substrate, a first source/drain pattern in a recess on an upper portion of the first active pattern, a gate electrode that runs across a first channel pattern on the upper portion of the first active pattern and extends in a second direction intersecting the first direction, and an active contact electrically connected to the first source/drain pattern.
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: January 31, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sanggil Lee, Namkyu Cho, Seokhoon Kim, Kang Hun Moon, Hyun-Kwan Yu, Sihyung Lee
  • Patent number: 11549177
    Abstract: Methods are disclosed herein for depositing a passivation layer comprising fluorine over a dielectric material that is sensitive to chlorine, bromine, and iodine. The passivation layer can protect the sensitive dielectric layer thereby enabling deposition using precursors comprising chlorine, bromine, and iodine over the passivation layer.
    Type: Grant
    Filed: December 10, 2019
    Date of Patent: January 10, 2023
    Assignee: ASM INTERNATIONAL, N.V.
    Inventors: Tom E. Blomberg, Eva E. Tois, Robert Huggare, Jan Willem Maes, Vladimir Machkaoutsan, Dieter Pierreux
  • Patent number: 11552204
    Abstract: An apparatus for light detection includes a light, or photon, detector assembly and a dielectric resonator layer coupled to the detector assembly. The dielectric resonator layer is configured to receive transmission of incident light that is directed into the detector assembly by the dielectric resonator layer. The dielectric resonator layer resonates with a range of wavelengths of the incident light.
    Type: Grant
    Filed: February 3, 2020
    Date of Patent: January 10, 2023
    Assignees: Ohio State Innovation Foundation, THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Sanjay Krishna, Anthony Grbic, Christopher Ball, Theodore Ronningen, Alireza Kazemi, Mohammadamin Ranjbaraskari, Qingyuan Shu
  • Patent number: 11545560
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a gate structure on a substrate; forming a first spacer and a second spacer around the gate structure; forming a recess adjacent to two sides of the second spacer; performing a cleaning process to trim the second spacer for forming a void between the first spacer and the substrate; and forming an epitaxial layer in the recess.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: January 3, 2023
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Chih Chuang, Chia-Jong Liu, Kuang-Hsiu Chen, Chung-Ting Huang, Chi-Hsuan Tang, Kai-Hsiang Wang, Bing-Yang Jiang, Yu-Lin Cheng, Chun-Jen Chen, Yu-Shu Lin, Jhong-Yi Huang, Chao-Nan Chen, Guan-Ying Wu
  • Patent number: 11545566
    Abstract: A High Electron Mobility Transistor structure having: a GaN buffer layer disposed on the substrate; a doped GaN layer disposed on, and in direct contact with, the buffer layer, such doped GaN layer being doped with more than one different dopants; an unintentionally doped (UID) GaN channel layer on, and in direct contact with, the doped GaN layer, such UID GaN channel layer having a 2DEG channel therein; a barrier layer on, and in direct contact with, the UID GaN channel layer. One of the dopants is beryllium and another one of the dopants is carbon.
    Type: Grant
    Filed: December 26, 2019
    Date of Patent: January 3, 2023
    Assignee: Raytheon Company
    Inventors: Abbas Torabi, Brian D. Schultz, John Logan
  • Patent number: 11538806
    Abstract: Gate-all-around integrated circuit structures having high mobility, and methods of fabricating gate-all-around integrated circuit structures having high mobility, are described. For example, an integrated circuit structure includes a silicon nanowire or nanoribbon. An N-type gate stack is around the silicon nanowire or nanoribbon, the N-type gate stack including a compressively stressing gate electrode. A first N-type epitaxial source or drain structure is at a first end of the silicon nanowire or nanoribbon. A second N-type epitaxial source or drain structure is at a second end of the silicon nanowire or nanoribbon. The silicon nanowire or nanoribbon has a <110> plane between the first N-type epitaxial source or drain structure and the second N-type epitaxial source or drain structure.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: December 27, 2022
    Assignee: Intel Corporation
    Inventors: Roza Kotlyar, Rishabh Mehandru, Stephen Cea, Biswajeet Guha, Dax Crum, Tahir Ghani
  • Patent number: 11532601
    Abstract: System on Chip (SoC) solutions integrating an RFIC with a PMIC using a transistor technology based on group III-nitrides (III-N) that is capable of achieving high Ft and also sufficiently high breakdown voltage (BV) to implement high voltage and/or high power circuits. In embodiments, the III-N transistor architecture is amenable to scaling to sustain a trajectory of performance improvements over many successive device generations. In embodiments, the III-N transistor architecture is amenable to monolithic integration with group IV transistor architectures, such as planar and non-planar silicon CMOS transistor technologies. Planar and non-planar HEMT embodiments having one or more of recessed gates, symmetrical source and drain, regrown source/drains are formed with a replacement gate technique permitting enhancement mode operation and good gate passivation.
    Type: Grant
    Filed: April 16, 2019
    Date of Patent: December 20, 2022
    Assignee: Intel Corporation
    Inventors: Han Wui Then, Robert Chau, Valluri Rao, Niloy Mukherjee, Marko Radosavljevic, Ravi Pillarisetty, Gilbert Dewey, Jack Kavalieros
  • Patent number: 11527711
    Abstract: A layered thin film device, such as a MTJ (Magnetic Tunnel Junction) device can be customized in shape by sequentially forming its successive layers over a symmetrically curved electrode. By initially shaping the electrode to have a concave or convex surface, the sequentially formed layers conform to that shape and acquire it and are subject to stresses that cause various crystal defects to migrate away from the axis of symmetry, leaving the region immediately surrounding the axis of symmetry relatively defect free. The resulting stack can then be patterned to leave only the region that is relatively defect free.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: December 13, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Jesmin Haq, Tom Zhong, Zhongjian Teng, Vinh Lam, Yi Yang
  • Patent number: 11508837
    Abstract: An epitaxial structure for a high-electron-mobility transistor includes a substrate, a nucleation layer, a buffer layered unit, a channel layer, and a barrier layer sequentially stacked on one another in such order. The buffer layered unit includes at least one multiple quantum well structure containing a plurality of p-i-n heterojunction stacks. Each of the p-i-n heterojunction stacks includes p-type, i-type, and n-type layers which are alternately stacked along a direction away from the nucleation layer, and which are made of materials respectively represented by chemical formulas of AlxGa(1-x)N, AlyGa(1-y)N, and AlzGa(1-z)N. For each of the p-i-n heterojunction stacks, x gradually decreases and z gradually increases along the direction away from the nucleation layer, and y is consistent and ranges from 0 to 0.7.
    Type: Grant
    Filed: July 22, 2020
    Date of Patent: November 22, 2022
    Assignee: Xiamen Sanan Integrated Circuit Co., Ltd.
    Inventors: Yutao Fang, Boting Liu, Nien-Tze Yeh, Kaixuan Zhang
  • Patent number: 11495736
    Abstract: A semiconductor device includes a plurality of magnetic tunnel junction (MTJ) structures in an interlayer insulating layer on a substrate. A blocking layer is on the interlayer insulating layer and the plurality of MTJ structures. An upper insulating layer is on the blocking layer. An upper interconnection is on the upper insulating layer. An upper plug is connected to the upper interconnection and a corresponding one of the plurality of MTJ structures and extends into the upper insulating layer and the blocking layer. The blocking layer includes a material having a higher absorbance constant than the upper insulating layer.
    Type: Grant
    Filed: February 18, 2020
    Date of Patent: November 8, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyungil Hong, Younghyun Kim, Junghwan Park, Sechung Oh, Jungmin Lee
  • Patent number: 11488960
    Abstract: The present application discloses a semiconductor device with a tapering impurity region and the method for fabricating the semiconductor device with the tapering impurity region. The semiconductor device includes a substrate, a word line structure positioned in the substrate, an impurity region including an upper portion positioned adjacent to the word line structure and a lower portion positioned below the upper portion. The upper portion has a tapering cross-sectional profile.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: November 1, 2022
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Tse-Yao Huang
  • Patent number: 11489044
    Abstract: Semiconductor devices and methods of forming the same include forming slanted dielectric structures from a first dielectric material on a substrate, with gaps between adjacent slanted dielectric structures. A first semiconductor layer is grown from the substrate, using a first semiconductor material, including a lower portion that fills the gaps and an upper portion above the first dielectric material. The lower portion of the first semiconductor layer is replaced with additional dielectric material.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: November 1, 2022
    Assignee: International Business Machines Corporation
    Inventors: Zhenxing Bi, Kangguo Cheng, Yi Song, Lijuan Zou
  • Patent number: 11482421
    Abstract: A method of forming a semiconductor device includes: forming a fin protruding above a substrate; forming isolation regions on opposing sides of the fin; forming a dummy gate over the fin; reducing a thickness of a lower portion of the dummy gate proximate to the isolation regions, where after reducing the thickness, a distance between opposing sidewalls of the lower portion of the dummy gate decreases as the dummy gate extends toward the isolation regions; after reducing the thickness, forming a gate fill material along at least the opposing sidewalls of the lower portion of the dummy gate; forming gate spacers along sidewalls of the dummy gate and along sidewalls of the gate fill material; and replacing the dummy gate with a metal gate.
    Type: Grant
    Filed: March 6, 2020
    Date of Patent: October 25, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Yao Lin, Kuei-Yu Kao, Chih-Han Lin, Ming-Ching Chang, Chao-Cheng Chen
  • Patent number: 11476382
    Abstract: A semiconductor light-receiving element, includes: a semiconductor substrate; a high-concentration layer of a first conductivity type formed on the semiconductor substrate; a low-concentration layer of the first conductivity type formed on the high-concentration layer of the first conductivity type and in contact with the high-concentration layer of the first conductivity type; a low-concentration layer of a second conductivity type configured to form a PN junction interface together with the low-concentration layer of the first conductivity type; and a high-concentration layer of the second conductivity type formed on the low-concentration layer of the second conductivity type and in contact with the low-concentration layer of the second conductivity type. The low-concentration layers have a carrier concentration of less than 1×1016/cm3. The high-concentration layers have a carrier concentration of 1×1017/cm3 or more.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: October 18, 2022
    Assignee: Lumentum Japan, Inc.
    Inventors: Takashi Toyonaka, Hiroshi Hamada, Shigehisa Tanaka
  • Patent number: 11476331
    Abstract: An embodiment is a semiconductor structure. The semiconductor structure includes a fin on a substrate. A gate structure is over the fin. A source/drain is in the fin proximate the gate structure. The source/drain includes a bottom layer, a supportive layer over the bottom layer, and a top layer over the supportive layer. The supportive layer has a different property than the bottom layer and the top layer, such as a different material, a different natural lattice constant, a different dopant concentration, and/or a different alloy percent content.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: October 18, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jung-Chi Tai, Chii-Horng Li, Pei-Ren Jeng, Yen-Ru Lee, Yan-Ting Lin, Chih-Yun Chin
  • Patent number: 11437517
    Abstract: An embodiment is a structure comprising a substrate, a high energy bandgap material, and a high carrier mobility material. The substrate comprises a first isolation region and a second isolation region. Each of first and second isolation regions extends below a first surface of the substrate between the first and second isolation regions. The high energy bandgap material is over the first surface of the substrate and is disposed between the first and second isolation regions. The high carrier mobility material is over the high energy bandgap material. The high carrier mobility material extends higher than respective top surfaces of the first and second isolation regions to form a fin.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: September 6, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Cheng-Hsien Wu, Chih-Hsin Ko, Clement Hsingjen Wann
  • Patent number: 11411103
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: August 9, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Patent number: 11387362
    Abstract: A semiconductor device includes a gate-all-around field effect transistor (GAA FET). The GAA FET includes channel regions made of a first semiconductor material disposed over a bottom fin layer made of a second semiconductor material, and a source/drain region made of a third semiconductor material. The first semiconductor material is Si1-xGex, where 0.9?x?1.0, and the second semiconductor material is Si1-yGey, where y<x and 0.3?y?0.7.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: July 12, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Georgios Vellianitis, Gerben Doornbos, Marcus Van Dal
  • Patent number: 11361963
    Abstract: A semiconductor structure includes a substrate; a nucleation layer located above the substrate; and a metal nitride thin film located between the nucleation layer and the substrate. A diffusion of atoms in a material of the substrate is suppressed by depositing the metal nitride thin film between the substrate and the nucleation layer, so that a thickness of the nucleation layer is significantly reduced, and a total thermal resistance of the semiconductor structure is reduced.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: June 14, 2022
    Assignee: ENKRIS SEMICONDUCTOR, INC.
    Inventor: Kai Cheng
  • Patent number: 11362177
    Abstract: One illustrative transistor of a first dopant type disclosed herein includes a gate structure positioned above a semiconductor substrate and first and second overall epitaxial cavities formed in the semiconductor substrate on opposite sides of the gate structure. The device also includes a counter-doped epitaxial semiconductor material positioned proximate a bottom of each of the first and second overall epitaxial cavities, wherein the counter-doped epitaxial semiconductor material is doped with a second dopant type that is opposite to the first dopant type, and a same-doped epitaxial semiconductor material positioned in each of the first and second overall epitaxial cavities above the counter-doped epitaxial semiconductor material, wherein the same-doped epitaxial semiconductor material is doped with a dopant of the first dopant type.
    Type: Grant
    Filed: January 28, 2020
    Date of Patent: June 14, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Arkadiusz Malinowski, Baofu Zhu, Frank W. Mont, Ali Razavieh, Julien Frougier
  • Patent number: 11349022
    Abstract: The current disclosure describes a tunnel FET device including a P-I-N heterojunction structure. A high-K dielectric layer and a metal gate wrap around the intrinsic channel layer with an interlayer positioned between high-K dielectric layer and the intrinsic channel layer of the P-I-N heterojunction. The interlayer prevents charge carriers from reaching the interface with high-K dielectric layer under the trap-assisted tunneling effect and reduces OFF state leakage.
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: May 31, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Timothy Vasen, Gerben Doornbos, Matthias Passlack
  • Patent number: 11342179
    Abstract: A semiconductor structure having a Si substrate heterointegrated with GaN and a method for fabricating the same is disclosed. The method uses a (100) silicon substrate to fabricate a hundred nanometer scale hole and uses wet etching to etch the silicon substrate, thereby exposing the (111) crystal surface of the silicon substrate. The (111) crystal surface is used as a nucleating crystal surface of an AlN buffer layer and GaN. When GaN is grown, silane is reacted with GaN to adjust the concentration of doping silicon atoms into GaN, thereby forming a semiconductor structure having a Si substrate heterointegrated with GaN.
    Type: Grant
    Filed: December 9, 2020
    Date of Patent: May 24, 2022
    Assignee: National Chiao Tung University
    Inventors: Edward Yi Chang, Chieh-Hsi Chuang, Jessie Lin
  • Patent number: 11335793
    Abstract: Tunneling Field Effect Transistors (TFETs) are promising devices in that they promise significant performance increase and energy consumption decrease due to a steeper subthreshold slope (for example, smaller sub-threshold swing). In various embodiments, vertical fin-based TFETs can be fabricated in trenches, for example, silicon trenches. In another embodiment, vertical TFETs can be used on different material systems acting as a substrate and/or trenches (for example, Si, Ge, III-V semiconductors, GaN, and the like). In one embodiment, the tunneling direction in the channel of the vertical TFET can be perpendicular to the Si substrates. In one embodiment, this can be different than the tunneling direction in the channel of lateral TFETs.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: May 17, 2022
    Assignee: Intel Corporation
    Inventors: Cheng-Ying Huang, Jack Kavalieros, Ian Young, Matthew Metz, Willy Rachmady, Uygar Avci, Ashish Agrawal, Benjamin Chu-Kung
  • Patent number: 11335680
    Abstract: An integrated circuit (IC) device includes first and second fin-type semiconductor active regions on a substrate. A plurality of first semiconductor patterns are provided, which are stacked on the first fin-type active region as a first plurality of spaced-apart channel regions of a first FINFET. A plurality of second semiconductor patterns are provided, which are stacked on the second fin-type active region as a second plurality of spaced-apart channel regions of a second FINFET. A first gate structure is provided on the plurality of first semiconductor patterns. This first gate structure includes a first material region, which at least partially fills spaces between the first plurality of spaced-apart channel regions. A second gate structure is also provided on the plurality of second semiconductor patterns. The second gate structure includes second and third material regions, which at least partially fill spaces between the second plurality of spaced-apart channel regions.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: May 17, 2022
    Inventors: Jaeyeol Song, Seungha Oh, Rakhwan Kim, Minjung Park, Dongsoo Lee
  • Patent number: 11335808
    Abstract: A semiconductor device including a substrate, a gate structure, a source/drain region, an epitaxial layer, and a spacer wall is provided. The substrate has an upper surface. The gate structure is arranged on the upper surface. The source/drain region is arranged on two sides of the gate structure, is partially embedded in the substrate, and has a tip located in the substrate. A material of the source/drain region includes silicon germanium. The epitaxial layer is arranged between the gate structure and the source/drain region. The spacer wall is arranged on the epitaxial layer on the two sides of the gate structure. A manufacturing method of a semiconductor device is also provided.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: May 17, 2022
    Assignee: Powerchip Semiconductor Manufacturing Corporation
    Inventor: Yi-Chung Liang
  • Patent number: 11322399
    Abstract: Semiconductor structure and method for forming the semiconductor structure are provided. An exemplary method includes: providing a substrate, including a first region and a second region; forming a gate structure over the substrate; forming a first interlayer dielectric layer over the substrate; forming a plurality of metal plugs in the first interlayer dielectric layer; forming a second interlayer dielectric layer over the first interlayer dielectric layer; forming a first via in the first region exposing a metal plug, and a second via in the second region exposing the first interlayer dielectric layer by etching the second interlayer dielectric layer; fully filling the first via with a first tungsten layer; forming an adhesion layer over the first tungsten layer, the second interlayer dielectric layer, and a sidewall and bottom of the second via; and fully filling the second via with a second tungsten layer.
    Type: Grant
    Filed: August 7, 2020
    Date of Patent: May 3, 2022
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventor: Li Jiang
  • Patent number: 11322578
    Abstract: There is provided a semiconductor device capable of improving the performance and/or reliability of the element, by increasing the capacitance of the capacitor, using a capacitor dielectric film including a ferroelectric material and a paraelectric material. The semiconductor device includes first and second electrodes disposed to be spaced apart from each other, and a capacitor dielectric film disposed between the first electrode and the second electrode and including a first dielectric film and a second dielectric film. The first dielectric film includes one of a first monometal oxide film and a first bimetal oxide film, the first dielectric film has an orthorhombic crystal system, the second dielectric film includes a paraelectric material, and a dielectric constant of the capacitor dielectric film is greater than a dielectric constant of the second dielectric film.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: May 3, 2022
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Han Jin Lim, Ki Nam Kim, Hyung Suk Jung, Kyoo Ho Jung, Ki Hyun Hwang
  • Patent number: 11316035
    Abstract: A method making a fin device structure includes: forming a plurality of fin structures arranged spaced out from each other in a longitudinal direction and covered with a thin oxide layer; forming a plurality of gate structures in a transverse direction; depositing sidewalls covering the thin oxide layer of the gate structures and the fin structures; removing the sidewalls on the gate structures and the sidewalls of the fin structures; removing the thin oxide layer on the sidewalls of the trenches to expand the volume of each trench; forming an epitaxial layer structure at the trenches; the method further includes removing the oxides on the sidewalls to increase the volume of the subsequently grown epitaxial layer, such that it is conducive to increasing the stress and reducing the source and drain resistance, thus improving the performance of the device.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: April 26, 2022
    Assignee: SHANGHAI HUALI INTEGRATED CIRCUIT CORPORATION
    Inventor: Yong Li
  • Patent number: 11296479
    Abstract: A power sourcing equipment (PSE) device of an optical power supply system includes a semiconductor laser that oscillates with electric power, thereby outputting feed light. The semiconductor laser includes a semiconductor region exhibiting a light-electricity conversion effect. A semiconductor material of the semiconductor region is a laser medium having a laser wavelength of 500 nm or less. A powered device of the optical power supply system includes a photoelectric conversion element that converts feed light into electric power. The photoelectric conversion element includes a semiconductor region exhibiting a light-electricity conversion effect. A semiconductor material of the semiconductor region is a laser medium having a laser wavelength of 500 nm or less.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 5, 2022
    Assignee: KYOCERA CORPORATION
    Inventor: Tomonori Sugime
  • Patent number: 11296227
    Abstract: In a method of manufacturing a semiconductor device including a Fin FET, a fin structure, which has an upper fin structure made of SiGe and a bottom fin structure made of a different material than the upper fin structure, is formed, a cover layer is formed over the fin structure, a thermal operation is performed on the fin structure covered by the cover layer, and a source/drain epitaxial layer is formed in a source/drain region of the upper fin structure. The thermal operation changes a germanium distribution in the upper fin structure.
    Type: Grant
    Filed: October 16, 2019
    Date of Patent: April 5, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsiao-Chun Chang, Guan-Jie Shen
  • Patent number: 11271370
    Abstract: Tensile strained germanium is provided that can be sufficiently strained to provide a nearly direct band gap material or a direct band gap material. Compressively stressed or tensile stressed stressor materials in contact with germanium regions induce uniaxial or biaxial tensile strain in the germanium regions. Stressor materials may include silicon nitride or silicon germanium. The resulting strained germanium structure can be used to emit or detect photons including, for example, generating photons within a resonant cavity to provide a laser.
    Type: Grant
    Filed: July 6, 2020
    Date of Patent: March 8, 2022
    Assignee: Acorn Semi, LLC
    Inventors: Paul A. Clifton, Andreas Goebel, R. Stockton Gaines
  • Patent number: 11257934
    Abstract: A method of forming a semiconductor structure includes forming a substrate, the substrate having a first portion with a first height and second recessed portions with a second height less than the first height. The method also includes forming embedded source/drain regions disposed over top surfaces of the second recessed portions of the substrate, and forming one or more fins from a portion of the substrate disposed between the embedded source/drain regions, the one or more fins providing channels for fin field-effect transistors (FinFETs). The method further includes forming a gate stack disposed over the one or more fins, and forming inner oxide spacers disposed between the gate stack and the source/drain regions.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: February 22, 2022
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Juntao Li, ChoongHyun Lee, Shogo Mochizuki
  • Patent number: 11257915
    Abstract: A semiconductor element includes an enhancement-type transistor structure with a layer construction including a base substrate, a first semiconductor layer, and a second semiconductor layer, which are arranged one on top of the other along a first direction. The transistor structure further has a source electrode, a gate electrode, and a drain electrode, which are spaced apart from one another along a second direction that is transverse to the first direction. The first and second semiconductor layers are formed by different group III nitride materials, such that a 2D electron gas forms in a boundary region of the first and second semiconductor layers. The first and second semiconductor layers have holes in the region of the gate electrode, between which holes multiple fins including the group III nitride materials remain. The gate electrode has a plurality of gate fingers extending into the holes.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: February 22, 2022
    Assignee: Institut für Mikroelektronik Stuttgart
    Inventors: Joachim N. Burghartz, Mohammed Alomari, Muhammad Alshahed
  • Patent number: 11251195
    Abstract: Embodiments of structure and methods for forming a three-dimensional (3D) memory device are provided. In an example, the 3D memory device includes a stack structure. The stack structure includes a plurality of conductor layers and a plurality of insulating layers interleaved over a substrate. The plurality of conductor layers include a pair of top select conductor layers divided by a first top select structure and a pair of bottom select conductor layers divided by a bottom select structure. The first top select structure and the bottom select structure extend along a horizontal direction and are aligned along a vertical direction. A plurality of channel structures extend along a vertical direction and into the substrate and are distributed on both sides of the top select structure and the bottom select structure.
    Type: Grant
    Filed: October 31, 2019
    Date of Patent: February 15, 2022
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventors: Zongliang Huo, Haohao Yang, Wei Xu, Ping Yan, Pan Huang, Wenbin Zhou
  • Patent number: 11245012
    Abstract: A stacked high barrier III-V power semiconductor diode having an at least regionally formed first metallic terminal contact layer and a heavily doped semiconductor contact region of a first conductivity type with a first lattice constant, a drift layer of a second conductivity type, a heavily doped metamorphic buffer layer sequence of the second conductivity type is formed. The metamorphic buffer layer sequence has an upper side with the first lattice constant and a lower side with a second lattice constant. The first lattice constant is greater than the second lattice constant. The upper side of the metamorphic buffer layer sequence is arranged in the direction of the drift layer. A second metallic terminal contact layer is arranged below the lower side of the metamorphic buffer layer sequence. The second metallic terminal contact layer is integrally bonded with a semiconductor contact layer.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: February 8, 2022
    Assignee: AZUR SPACE Solar Power GmbH
    Inventors: Daniel Fuhrmann, Gregor Keller, Clemens Waechter
  • Patent number: 11239802
    Abstract: Gallium nitride based RF transistor amplifiers include a semiconductor structure having a gallium nitride based channel layer and a gallium nitride based barrier layer thereon, and are configured to operate at a specific direct current drain-to-source bias voltage. These amplifiers are configured to have a normalized drain-to-gate capacitance at the direct current drain-to-source bias voltage, and to have a second normalized drain-to-gate capacitance at two-thirds the direct current drain-to-source bias voltage, where the second normalized drain-to-gate capacitance is less than twice the first normalized drain-to-gate capacitance.
    Type: Grant
    Filed: October 2, 2019
    Date of Patent: February 1, 2022
    Assignee: Wolfspeed, Inc.
    Inventors: Qianli Mu, Zulhazmi Mokhti, Jia Guo, Scott Sheppard
  • Patent number: 11233143
    Abstract: A semiconductor device includes a III-nitride buffer layer and a III-nitride barrier layer. A boron nitride alloy interlayer interposed between the III-nitride buffer layer and the III-nitride barrier layer. A portion of the III-nitride buffer layer includes a two-dimensional electron gas (2DEG) channel that is on a side of the III-nitride buffer layer adjacent to the boron nitride alloy interlayer.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: January 25, 2022
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventor: Xiaohang Li
  • Patent number: 11227919
    Abstract: A field-effect-transistor includes forming a fin structure on a substrate, a gate structure formed across each fin structure and covering a portion of top and sidewall surfaces of the fin structure, a first doped layer, made of a first semiconductor material and doped with first doping ions, in each fin structure on one side of the corresponding gate structure, and a second doped layer, made of a second semiconductor material, doped with second doping ions, and having doping properties different from the first doped layer, in each fin structure on another side of the corresponding gate structure.
    Type: Grant
    Filed: January 2, 2019
    Date of Patent: January 18, 2022
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Xi Lin, Yi Hua Shen, Jian Pan
  • Patent number: 11227799
    Abstract: Wrap-around contact structures for semiconductor fins, and methods of fabricating wrap-around contact structures for semiconductor fins, are described. In an example, an integrated circuit structure includes a semiconductor fin having a first portion protruding through a trench isolation region. A gate structure is over a top and along sidewalls of the first portion of the semiconductor fin. A source or drain region is at a first side of the gate structure, the source or drain region including an epitaxial structure on a second portion of the semiconductor fin. The epitaxial structure has substantially vertical sidewalls in alignment with the second portion of the semiconductor fin. A conductive contact structure is along sidewalls of the second portion of the semiconductor fin and along the substantially vertical sidewalls of the epitaxial structure.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: January 18, 2022
    Assignee: Intel Corporation
    Inventor: Rishabh Mehandru