Chemical (e.g., Isfet, Chemfet) Patents (Class 257/253)
  • Patent number: 11141714
    Abstract: The present invention relates generally to catalysts and methods for use in olefin production. More particularly, the present invention relates to novel amorphously supported single-center, Lewis acid metal ions and use of the same as catalysts.
    Type: Grant
    Filed: November 19, 2015
    Date of Patent: October 12, 2021
    Assignee: UChicago Argonne, LLC
    Inventors: Adam S. Hock, Neil M. Schweitzer, Jeffrey T. Miller, Bo Hu
  • Patent number: 11127851
    Abstract: A semiconductor device (A1) includes a semiconductor layer having a first face with a trench (3) formed thereon and a second face opposite to the first face, a gate electrode (41), and a gate insulating layer (5). The semiconductor layer includes a first n-type semiconductor layer (11), a second n-type semiconductor layer (12), a p-type semiconductor layer (13), and an n-type semiconductor region (14). The trench (3) is formed so as to penetrate through the p-type semiconductor layer (13) and to reach the second n-type semiconductor layer (12). The p-type semiconductor layer (13) includes an extended portion extending to a position closer to the second face of the semiconductor layer than the trench (3) is. Such structure allows suppressing dielectric breakdown in the gate insulating layer (5).
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: September 21, 2021
    Assignee: ROHM CO., LTD.
    Inventor: Yuki Nakano
  • Patent number: 11063024
    Abstract: A method to form a 3D semiconductor device, the method including: providing a first level including first circuits, the first circuits including first transistors and first interconnection; preparing a second level including a silicon layer; forming second circuits over the second level, the second circuits including second transistors and second interconnection; transferring with bonding the second level on top of the first level; and then thinning the second level to a thickness of less than ten microns, where the bonding includes oxide to oxide bonds, and where the bonding includes metal to metal bonds.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: July 13, 2021
    Assignee: MONLITHIC 3D INC.
    Inventors: Zvi Or-Bach, Brian Cronquist
  • Patent number: 11058332
    Abstract: In-vivo systems and methods for the detection of early signs of post-surgery infection are described. The in-vivo systems include a drain system with a tube configured to drain fluids from a surgery site, at least one sensor unit for sensing the presence of at least one infection biomarker, a processor for processing a signal generated by the at least one sensor unit, a transmitter for transmitting the signal, and a notification system for receiving the signal, analyzing the signal by comparing it to a threshold, determining presence of infection, and generating an indication on the presence of infection.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: July 13, 2021
    Assignee: Sofradim Production
    Inventor: Yves Bayon
  • Patent number: 11054387
    Abstract: The present disclosure generally relates to semiconductor devices, and more particularly to semiconductor devices integrated with an ion-sensitive field-effect transistor (ISFET) and methods of forming the same. The semiconductor device may include a substrate, a reference gate structure disposed above the substrate, a floating gate structure disposed above the substrate and adjacent to the reference gate structure, where the reference gate structure is electrically coupled to the floating gate structure, and a dielectric layer disposed between the reference gate structure and the floating gate structure.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: July 6, 2021
    Assignee: GLOBALFOUNDRIES Singapore Pte. Ltd.
    Inventors: Xinshu Cai, Shyue Seng Tan, Eng Huat Toh
  • Patent number: 11054386
    Abstract: Aspects of the invention are directed to chemical and biological molecule sensing devices, methods of fabricating the chemical sensor devices, and methods of using those devices to detect chemical and biological molecules. The chemical sensor device may comprise a chemically-sensitive vertical slit field effect transistor (VeSFET) with a chemical recognition element attached to a gate structure and/or a channel of the VeSFET. The recognition element may be capable of binding to a chemical of interest such that the binding of the chemical to the recognition element results in a modification of current flow of the VeSFET, resulting in a detectable signal. The chemical sensor device may further comprise an amplifier configured to receive the detectable signal and produce an amplified signal, and an analog-to-digital converter (ADC) configured to receive the amplified signal and to produce a digital signal that represents the amplified signal.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: July 6, 2021
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Richard H. Morrison, Jr., Andrew P. Magyar
  • Patent number: 11004690
    Abstract: A method for forming a well providing access to a sensor pad includes patterning a first photoresist layer over a dielectric structure disposed over the sensor pad; etching a first access into the dielectric structure and over the sensor pad, the first access having a first characteristic diameter; patterning a second photoresist layer over the dielectric structure; and etching a second access over the dielectric structure and over the sensor pad. The second access has a second characteristic diameter. The first and second accesses overlapping. A diameter ratio of the first characteristic diameter to the second characteristic diameter is not greater than 0.7. The first access exposes the sensor pad. The second access has a bottom depth less than a bottom depth of the first access.
    Type: Grant
    Filed: November 18, 2019
    Date of Patent: May 11, 2021
    Assignee: Life Technologies Corporation
    Inventors: Phil Waggoner, Jordan Owens
  • Patent number: 10962497
    Abstract: Chemical sensors and methods of forming and making the same include a semiconductor substrate having an input terminal and an output terminal. A negative capacitance structure is positioned on the semiconductor substrate and is configured to control a current passing from the input terminal to the output terminal. A functionalized electrode is in electrical contact with the negative capacitance structure and is configured to change surface potential in the presence of an analyte, such that a phase change in the negative capacitance structure is triggered when the surface potential exceeds a threshold.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: March 30, 2021
    Assignee: International Business Machines Corporation
    Inventors: Qing Cao, Jianshi Tang, Ning Li, Ying He
  • Patent number: 10900952
    Abstract: A biosensor includes a bulk silicon substrate and a vertical bipolar junction transistor (BJT) formed on at least a portion of the substrate. The BJT includes an emitter region, a collector region and an epitaxially grown intrinsic base region between the emitter and collector regions. The biosensor further includes a sensing structure formed on at least a portion of two vertical surfaces of the intrinsic base region of the BJT. The sensing structure includes a channel/trench opening, exposing the intrinsic base region on at least first and second opposing sides thereof, and at least one dielectric layer formed in the channel/trench opening and contacting at least a portion of the intrinsic base region, the dielectric layer being configured to respond to charges in biological molecules.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: January 26, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alexander Reznicek, Jeng-Bang Yau, Bahman Hekmatshoartabari
  • Patent number: 10889857
    Abstract: Apparatus and methods relating to DNA sequencing are provided. In one embodiment, a DNA sequencing device includes a nanochannel having a width that is approximately 0.3 nm to approximately 20 nm. A pair of electrodes having portions exposed to the nanochannel may form a tunneling current electrode (TCE) with an electrode gap of approximately 0.1 nm to approximately 2 nm, and more particularly about 0.3 nm to about 1 nm. In one embodiment, at least one of the pair of electrodes is formed as a suspended electrode. An actuator may be associated with the suspended electrode to displace it relative to the other electrode. In various embodiments, the nanochannel and/or the electrodes may be formed using thermal reflow processes to reduce the size of such features.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: January 12, 2021
    Assignee: SEAGATE TECHNOLOGY LLC
    Inventors: Xiaomin Yang, ShuaiGang Xiao, David S. Kuo, Koichi Wago, Thomas Young Chang
  • Patent number: 10890555
    Abstract: A gas sensing device, that may include a suspended gas sensing element, a frame that supports the suspended gas sensing element, and one or more traps for trapping at least one out of Siloxane and silicon dioxide. The suspended gas sensing element may include a gas reactive element that has a gas dependent temperature parameter, and a semiconductor temperature sensing element that is thermally coupled to the gas reactive element, and is configured to generate detection signals that are responsive to a temperature of the gas reactive element. The gas reactive element and the semiconductor temperature sensing element are of microscopic scale.
    Type: Grant
    Filed: August 21, 2018
    Date of Patent: January 12, 2021
    Assignee: Technion Research and Development Foundation Ltd.
    Inventor: Yael Nemirovsky
  • Patent number: 10890554
    Abstract: Structures for a sensor and fabrication methods for a sensor. Features each having a top surface and a plurality of side surfaces are formed. A sensing layer is formed on the top surface and the side surfaces of each feature, and an interconnect structure having one or more interlayer dielectric layers is formed over the features. The one or more interlayer dielectric layers include a cavity arranged to expose the sensing layer, and the sensing layer is composed of a material that is sensitive to a property of an analyte solution provided in the cavity.
    Type: Grant
    Filed: June 20, 2019
    Date of Patent: January 12, 2021
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Lanxiang Wang, Eng Huat Toh, Shyue Seng Tan, Ping Zheng
  • Patent number: 10803966
    Abstract: A method of blowing an antifuse element is disclosed. An antifuse element including a first conductor, a second conductor, and a dielectric layer disposed between the first conductor and the second conductor is received, wherein the dielectric layer has a breakdown voltage. A first voltage is applied between the first conductor and the second conductor within a first time period, wherein the first voltage is less than the breakdown voltage. After applying the first voltage, a second voltage is applied between the first conductor and the second conductor to blow the antifuse element within a second time period, wherein the second voltage is greater than the breakdown voltage.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: October 13, 2020
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Hsih-Yang Chiu
  • Patent number: 10738218
    Abstract: Provided is a polysiloxane, containing at least one segment selected from molecular structures shown by formula 1 below, wherein in formula 1, Q is an alkyl containing an alcoholic hydroxyl and having less than 12 carbon atoms in the main chain, or an alkyl containing an alcoholic hydroxyl and having less than 12 non-hydrogen atoms in the main chain and containing a heteroatom; and T is a hydroxyl, an alkyl, an alkyl containing an alcoholic hydroxyl and having less than 12 carbon atoms in the main chain, or an alkyl containing an alcoholic hydroxyl and having less than 12 non-hydrogen atoms in the main chain and containing a heteroatom. A doped slurry and a mask material prepared by using the polysiloxane, on the basis of having a good diffusivity, also have a good barrier property and a small amount of diffusion in air.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: August 11, 2020
    Assignee: TORAY INDUSTRIES, INC.
    Inventors: Fangrong Xu, Ping Li, Takeshi Ikeda, Wei Song, Guangnan Jin, Masaaki Umehara, Tsuyoshi Kitada
  • Patent number: 10732161
    Abstract: Systems, methods, and other embodiments associated with gas detecting sensors. According to one embodiment, a gas sensor includes a metal layer, a barrier interlayer, a substrate layer, a first insulating layer, a conduction path, a contact pad, and a second insulating layer. The conduction path connects the metal layer to the contact pad. The second insulating layer prevents diffusion through the contact pad, the conduction path, or the metal layer. The sensor includes a wire bonded electrical connection to the contact pad such that voltage can be determined and/or applied.
    Type: Grant
    Filed: May 4, 2018
    Date of Patent: August 4, 2020
    Assignee: United States of America as Represented by the Administrator of National Aeronautics and Space Administration
    Inventors: Jennifer Xu, Gary W. Hunter
  • Patent number: 10724981
    Abstract: A microfluidic chip suitable for detecting a microdroplet includes a first component, a second component, a channel layer, and a semiconductor chip. The first component includes a first substrate, a first electrode layer, and a first dielectric layer, wherein the first electrode layer is located between the first substrate and the first dielectric layer. The second component is disposed opposite to the first component and includes a second substrate, a second electrode layer, and a second dielectric layer. The channel layer is located between the first component and the second component. The semiconductor chip is disposed at one side of the first substrate and is exposed to the channel layer to assist in treating or detecting a sample or microdroplet. The microdroplet in the sample entering the channel layer is reacted with the semiconductor chip, and thus the sample is detected.
    Type: Grant
    Filed: April 26, 2018
    Date of Patent: July 28, 2020
    Inventors: Shih-Kang Fan, Chih-Yuan Liang, Chia-Chann Shiue, Yuan-Sheng Lee, Yu-Kai Lai
  • Patent number: 10670559
    Abstract: An electrical detector is provided that comprises a nanofluidic channel with an integrated nanoscale charge sensor. The charge sensor can be an unfunctionalized nanowire, nanotube, transistor or capacitor and can be of carbon, silicon, carbon/silicon or other semiconducting material. The nanofluidic channel depth is on the order of the Debye screening length. Methods are also provided for detecting charged molecules or biological or chemical species with the electrical detector. Charged molecules or species in solution are driven through the nanofluidic channel of the electrical detector and contact the charge sensor, thereby producing a detectable signal. Methods are also provided for detecting a local solution potential of interest. A solution flowing through the nanofluidic channel of the electrical detector contacts the charge sensor, thereby producing a detectable local solution potential signal.
    Type: Grant
    Filed: July 9, 2009
    Date of Patent: June 2, 2020
    Assignee: Cornell University
    Inventors: John T. Mannion, Harold G. Craighead
  • Patent number: 10658391
    Abstract: A method for forming a hybrid complementary metal oxide semiconductor (CMOS) device includes orienting a semiconductor layer of a semiconductor-on-insulator (SOI) substrate with a base substrate of the SOI, exposing the base substrate in an N-well region by etching through a mask layer, a dielectric layer, the semiconductor layer and a buried dielectric to form a trench and forming spacers on sidewalls of the trench. The base substrate is epitaxially grown from a bottom of the trench to form an extended region. A fin material is epitaxially grown from the extended region within the trench. The mask layer and the dielectric layer are restored over the trench. P-type field-effect transistor (PFET) fins are etched on the base substrate, and N-type field-effect transistor (NFET) fins are etched in the semiconductor layer.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: May 19, 2020
    Assignee: International Business Machines Corporation
    Inventors: Chia-Yu Chen, Bruce B. Doris, Hong He, Rajasekhar Venigalla
  • Patent number: 10627358
    Abstract: Embodiments provide analyte detection methods, techniques and processes for detecting the presence of one or more analytes in one or more samples. In a detection method, a sample and a sensor compound is introduced into a channel. A first potential difference is applied across the length of the channel in a first direction, and a first electrical property value is detected. Subsequently, a second potential difference is applied across the length of the channel in a second opposite direction, and a second electrical property value is detected. Presence or absence of an analyte in the channel is determined based on a comparison between the first and second electrical property values.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: April 21, 2020
    Assignees: Alveo Technologies, Inc., The Regents of the University of California
    Inventors: Sumita Pennathur, Peter Joseph Crisalli, Ronald Phillip Chiarello
  • Patent number: 10620158
    Abstract: A sensor includes a semiconductor substrate having first pointed nodes extending into a channel from a first side of the channel. Second pointed nodes extend into the channel from a second side of the channel, which is opposite the first side. The second pointed nodes being self-aligned to the first pointed nodes on the opposite side of the channel. The first pointed nodes and the second pointed nodes are connected to a circuit to detect particles in the channel.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: April 14, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qing Cao, Kangguo Cheng, Zhengwen Li, Fei Liu, Zhen Zhang
  • Patent number: 10584289
    Abstract: The present development is a metal particle coated nanowire catalyst for use in the hydrodesulfurization of fuels and a process for the production of the catalyst. The catalyst comprises titanium(IV) oxide nanowires wherein the nanowires are produced by exposure of a TiO2—KOH paste to microwave radiation. Metal particles selected from the group consisting of molybdenum, nickel, cobalt, tungsten, or a combination thereof, are impregnated on the metal oxide nanowire surface. The metal impregnated nanowires are sulfided to produce catalytically-active metal particles on the surface of the nanowires The catalysts of the present invention are intended for use in the removal of thiophenic sulfur from liquid fuels through a hydrodesulfurization (HDS) process in a fixed bed reactor. The presence of nanowires improves the HDS activity and reduces the sintering effect, therefore, the sulfur removal efficiency increases.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: March 10, 2020
    Assignee: Advanced Energy Materials
    Inventors: Mahendra K. Sunkara, Sivakumar Vasireddy, Juan He, Vivekanand Kumar
  • Patent number: 10557812
    Abstract: The present disclosure is directed to a gas sensor that includes an active sensor area that is exposed to an environment for detection of elements. The gas sensor may be an air quality sensor that can be fixed in position or carried by a user. The gas sensor includes a heater formed above chamber. The gas sensor includes an active sensor layer above the heater that forms the active sensor area. The gas sensor can include a passive conductive layer, such as a hotplate that further conducts and distributes heat from the heater to the active sensor area. The heater can include a plurality of extensions. The heater can also include a first conductive layer and a second conductive layer on the first conductive layer where the second conductive layer includes a plurality of openings to increase an amount of heat and to more evenly distribute heat from the heater to the active sensor area.
    Type: Grant
    Filed: December 1, 2016
    Date of Patent: February 11, 2020
    Assignee: STMICROELECTRONICS PTE LTD
    Inventors: Olivier Le Neel, Alexandre Le Roch, Ayoub Lahlalia, Ravi Shankar
  • Patent number: 10551342
    Abstract: Apparatus and methods are disclosed for single molecule field effect sensors having conductive channels functionalized with a single active moiety. A region of a nanostructure (e.g., such as a silicon nanowire or a carbon nanotube) provide the conductive channel. Trapped state density of the nanostructure is modified for a portion of the nanostructure in proximity with a location where the active moiety is linked to the nanostructure. In one example, the semiconductor device includes a source, a drain, a channel including a nanostructure having a modified portion with an increased trap state density, the modified portion being further functionalized with an active moiety. A gate terminal is in electrical communication with the nanostructure. As a varying electrical signal is applied to an ionic solution in contact with the nanostructure channel, changes in current observed from the semiconductor device can be used to identify composition of the analyte.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: February 4, 2020
    Assignee: ILLUMINA, INC.
    Inventor: Boyan Boyanov
  • Patent number: 10539523
    Abstract: Devices, systems and methods for monitoring excitable cells, such as cardiomyocytes, on microelectrode arrays that couple the electro-stimulation of excitable cells to induce or regulate cardiomyocyte beating and the simultaneous measurement of impedance and extracellular recording to assess changes in cardiomyocyte beating, viability, morphology or electrophysical properties in response to a plurality of treatments.
    Type: Grant
    Filed: November 28, 2013
    Date of Patent: January 21, 2020
    Assignee: ACEA Biosciences, Inc.
    Inventors: Xiaobo Wang, Wei Ouyang, Nan Li, Tianxing Wang, Xiaoyu Zhang, Xiao Xu, Yama A. Abassi
  • Patent number: 10535977
    Abstract: The present disclosure relates to systems and circuits that may facilitate sub-5 nanosecond laser diode operation. An example system includes a trigger source, a laser diode, a first field effect transistor and a second field effect transistor. The laser diode is coupled to a supply voltage and a drain terminal of the first field effect transistor. A source terminal of the first field effect transistor is coupled to ground and a gate terminal of the first field effect transistor is coupled to the trigger source. A drain terminal of the second field effect transistor is coupled to the supply voltage. A source terminal of the second field effect transistor and a gate terminal of the second field effect transistor are coupled to ground. In an example embodiment, the first field effect transistor and the second field effect transistor comprise gallium nitride (GaN).
    Type: Grant
    Filed: October 31, 2018
    Date of Patent: January 14, 2020
    Assignee: Waymo LLC
    Inventors: Blaise Gassend, Pierre-Yves Droz
  • Patent number: 10517507
    Abstract: The system of the present invention includes a conductive element, an electronic component, and a partial power source in the form of dissimilar materials. Upon contact with a conducting fluid, a voltage potential is created and the power source is completed, which activates the system. The electronic component controls the conductance between the dissimilar materials to produce a unique current signature. The system can also measure the conditions of the environment surrounding the system.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: December 31, 2019
    Assignee: Proteus Digital Health, Inc.
    Inventors: Jeremy Frank, Peter Bjeletich, Hooman Hafezi, Robert Azevedo, Robert Duck, Iliya Pesic, Benedict Costello, Eric Snyder
  • Patent number: 10481125
    Abstract: To a biomolecule measuring apparatus, a semiconductor sensor for detecting ions generated by a reaction between a biomolecular sample and a reagent is set. The semiconductor sensor has a plurality of cells which are arranged on a semiconductor substrate, and each of which detects ions, and a plurality of readout wires. Each of the plurality of cells has an ISFET which has a floating gate and which detects ions, a first MOSFET M2 for amplifying an output from the ISFET, and a second MOSFET M3 which selectively transmits an output from the first MOSFET to a corresponding readout wire R1. Each of the plurality of cells is provided with a third MOSFET M1 which generates hot electrons in the ISFET and which injects a charge to the floating gate of the ISFET. Here, the second MOSFET and the third MOSFET are separately controlled.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: November 19, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Takayuki Kawahara, Yoshimitsu Yanagawa, Naoshi Itabashi, Riichiro Takemura
  • Patent number: 10483123
    Abstract: A method for forming a well providing access to a sensor pad includes patterning a first photoresist layer over a dielectric structure disposed over the sensor pad; etching a first access into the dielectric structure and over the sensor pad, the first access having a first characteristic diameter; patterning a second photoresist layer over the dielectric structure; and etching a second access over the dielectric structure and over the sensor pad. The second access has a second characteristic diameter. The first and second accesses overlapping. A diameter ratio of the first characteristic diameter to the second characteristic diameter is not greater than 0.7. The first access exposes the sensor pad. The second access has a bottom depth less than a bottom depth of the first access.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: November 19, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Phil Waggoner, Jordan Owens
  • Patent number: 10481124
    Abstract: In one implementation, a chemical device is described. The sensor includes a chemically-sensitive field effect transistor including a floating gate structure having a plurality of floating gate conductors electrically coupled to one another. A conductive element overlies and is in communication with an uppermost floating gate conductor in the plurality of floating gate conductors. The conductive element is wider and thinner than the uppermost floating gate conductor. A dielectric material defines an opening extending to an upper surface of the conductive element.
    Type: Grant
    Filed: November 20, 2017
    Date of Patent: November 19, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Keith G. Fife, Jordan Owens, Shifeng Li, James Bustillo
  • Patent number: 10483360
    Abstract: A method of manufacturing a semiconductor device is providing, which includes forming a trench in a semiconductor substrate, forming an oxide layer over sidewalls and over a bottom side of the trench, performing an ion implantation process, forming a cover layer, and patterning the covering layer, thereby forming an uncovered area and a covered area of the oxide layer, respectively. The method further includes performing an isotropic etching process thereby removing portions of the uncovered area of the oxide layer and removing a part of a surface portion of the covered area adjacent to the uncovered portions, and removing remaining portions of the covering layer.
    Type: Grant
    Filed: December 6, 2017
    Date of Patent: November 19, 2019
    Assignee: Infineon Technologies AG
    Inventors: Andreas Meiser, Oliver Haeberlen
  • Patent number: 10393697
    Abstract: An apparatus for analyzing ion kinetics in a dielectric probe structure includes an ion reservoir abutting the dielectric probe structure and configured to supply mobile ions to the dielectric probe structure, a capacitor structure configured to generate an electric field in the dielectric probe structure along a vertical direction, and an electrode structure configured to generate an electrophoretic force on mobile ions in the dielectric probe structure along a lateral direction. A method for analyzing ion kinetics in the dielectric probe structure of the apparatus is also provided.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: August 27, 2019
    Assignee: Infineon Technologies AG
    Inventors: Sabine Gruber, Thomas Aichinger, Stefan Krivec, Thomas Ostermann
  • Patent number: 10389960
    Abstract: A charge-coupled device (CCD) image sensor is provided. The CCD image sensor may include an array of photosensors that transfer charge to multiple vertical CCD shift registers, which then in turn transfer the charge to a horizontal CCD shift register. The horizontal CCD shift register then feeds an output buffer circuit. The output buffer circuit can include multiple output stages, each of which can include a source-follower transistor coupled in series with a current sink transistor and at least one cascode transistor. The current sink transistor may have its gate terminal shorted to ground. In one arrangement, the cascode transistor has a gate terminal that receives a non-zero bias voltage. In another arrangement, the cascode transistor has a gate terminal that is also shorted to ground and operates in depletion mode.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: August 20, 2019
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Gregory Oscar Moberg, Christopher Parks
  • Patent number: 10386328
    Abstract: In one embodiment, a chemical sensor is described. The chemical sensor includes a chemically-sensitive field effect transistor including a floating gate conductor having an upper surface, a first opening extending through a first material and through a portion of a second material located on the first material and a second opening extending from the bottom of the first opening to the top of a liner layer located on the upper surface of the floating gate conductor.
    Type: Grant
    Filed: September 11, 2017
    Date of Patent: August 20, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: James Li, Jordan Owens, James Bustillo
  • Patent number: 10365259
    Abstract: A hydrogen sensor includes: a first electrode; a second electrode; a metal oxide layer disposed between the first electrode and the second electrode and including a bulk area and a local area; a first insulation film covering the first electrode, the second electrode, and the metal oxide layer and having an opening reaching the second electrode; and a second insulation film being in contact with the second electrode in the opening.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: July 30, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kazunari Homma, Zhiqiang Wei
  • Patent number: 10324054
    Abstract: A method of manufacturing a sensor device is provided. In the method, sensing electrodes are formed on a substrate, a sensing material layer is formed on the sensing electrodes. The sensing material layer is etched to form a first nanowire sensing region, a second nanowire sensing region and a third nanowire sensing region respectively between every two sensing electrodes of the sensing electrodes. A dielectric layer is formed to cover the first nanowire sensing region, the second nanowire sensing region and the third nanowire sensing region, and the first nanowire sensing region and the third nanowire sensing region are exposed.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: June 18, 2019
    Assignee: Industrial Technology Research Institute
    Inventors: Sih-Han Li, Chih-Sheng Lin, Kuan-Wei Chen, Erh-Hao Chen, Shyh-Shyuan Sheu
  • Patent number: 10273148
    Abstract: Some embodiments of the present disclosure provide a microelectromechanical systems (MEMS). The MEMS includes a semiconductive block. The semiconductive block includes a protruding structure. The protruding structure includes a bottom surface. The semiconductive block includes a sensing structure. A semiconductive substrate includes a conductive region. The conductive region includes a first surface under the sensing structure. The first surface is substantially coplanar with the bottom surface. A dielectric region includes a second surface not disposed over the first surface.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: April 30, 2019
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Chun-Wen Cheng, Jung-Huei Peng, Chia-Hua Chu, Nien-Tsung Tsai, Yao-Te Huang, Li-Min Hung, Yu-Chia Liu
  • Patent number: 10254244
    Abstract: A vertical biosensor includes a substrate and a source disposed on the substrate. A bottom spacer is disposed on the source. A chamber is disposed on the bottom spacer. A sensing gate dielectric is disposed on side and bottom surfaces of the chamber. A fin channel is disposed on opposite sides of the chamber along a direction parallel to an upper surface of the substrate facing the chamber. A back gate dielectric is disposed on the fin channel. A drain is positioned above the fin channel along a direction orthogonal to an upper surface of the substrate. A thickness of the back gate dielectric is greater than a thickness of the sensing gate dielectric.
    Type: Grant
    Filed: October 11, 2017
    Date of Patent: April 9, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventor: Kangguo Cheng
  • Patent number: 10254225
    Abstract: Biosensor including a device base having a sensor array of light sensors and a guide array of light guides. The light guides have input regions that are configured to receive excitation light and light emissions generated by biological or chemical substances. The light guides extend into the device base toward corresponding light sensors and have a filter material. The device base includes device circuitry electrically coupled to the light sensors and configured to transmit data signals. The biosensor also includes a shield layer having apertures that are positioned relative to the input regions of corresponding light guides such that the light emissions propagate through the apertures into the corresponding input regions. The shield layer extends between adjacent apertures and is configured to block the excitation light and the light emissions incident on the shield layer between the adjacent apertures.
    Type: Grant
    Filed: December 9, 2014
    Date of Patent: April 9, 2019
    Assignee: ILLUMINA, INC.
    Inventors: Cheng Frank Zhong, Hod Finkelstein, Boyan Boyanov, Dietrich Dehlinger, Darren Segale
  • Patent number: 10246533
    Abstract: A method of forming a particle includes, in a disperse phase within an aqueous suspension, polymerizing a plurality of monomer units of a hydrophilic monomer having a hydrophobic protection group, thereby forming a polymeric particle including a plurality of the hydrophobic protection groups. The method further includes converting the polymeric particle to a hydrophilic particle.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: April 2, 2019
    Assignees: LIFE TECHNOLOGIES AS, LIFE TECHNOLOGIES Corporation
    Inventors: Geir Fonnum, Grete Irene Modahl, Nini Hofslokken Kjus, Astrid Evenroed Molteberg, Diem Tran, Jo Aaserud, M. Talha Gokmen, Steven M. Menchen, Carl Fuller, Luisa Andruzzi, Wolfgang Hinz
  • Patent number: 10224247
    Abstract: FinFET devices and processes to prevent fin or gate collapse (e.g., flopover) in finFET devices are provided. The method includes forming a first set of trenches in a semiconductor material and filling the first set of trenches with insulator material. The method further includes forming a second set of trenches in the semiconductor material, alternating with the first set of trenches that are filled. The second set of trenches form semiconductor structures which have a dimension of fin structures. The method further includes filling the second set of trenches with insulator material. The method further includes recessing the insulator material within the first set of trenches and the second set of trenches to form the fin structures.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: March 5, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 10184912
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a substrate, a transistor structure having a treated layer adjacent to the channel region, an isolation layer, and a dielectric layer in an opening of the isolation layer on the treated layer. The dielectric layer and the treated layer are disposed on opposite side of the transistor from a gate structure. The treated layer may be a lightly doped channel layer or a depleted layer.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: January 22, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Yi-Shao Liu, Fei-Lung Lai, Wei-Cheng Lin, Ta-Chuan Liao, Chien-Kuo Yang
  • Patent number: 10141402
    Abstract: FinFET devices and processes to prevent fin or gate collapse (e.g., flopover) in finFET devices are provided. The method includes forming a first set of trenches in a semiconductor material and filling the first set of trenches with insulator material. The method further includes forming a second set of trenches in the semiconductor material, alternating with the first set of trenches that are filled. The second set of trenches form semiconductor structures which have a dimension of fin structures. The method further includes filling the second set of trenches with insulator material. The method further includes recessing the insulator material within the first set of trenches and the second set of trenches to form the fin structures.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: November 27, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 10119955
    Abstract: A solid state molecular sensor having an aperture extending through a thickness of a sensing material is configured with a continuous electrically-conducting path extending in the sensing material around the aperture. A supply reservoir is connected to provide a molecular species, having a molecular length, from the supply reservoir to an input port of the aperture. A collection reservoir is connected to collect the molecular species from an output port of the aperture after translocation of the molecular species from the supply reservoir through the sensing aperture. The sensing aperture has a length between the input and output ports, in the sensing material, that is substantially no greater than the molecular length of the molecular species from the supply reservoir. An electrical connection to the sensing material measures a change in an electrical characteristic of the sensing material during the molecular species translocation through the aperture.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: November 6, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: Charles M. Lieber, Qihua Xiong, Ping Xie, Ying Fang
  • Patent number: 10067129
    Abstract: Embodiments of the present Invention provide antibody functionalized high electron mobility transistor (HEMT) devices for marine or freshwater pathogen sensing. In one embodiment, the marine pathogen can be Perkinsus marinus. A sensing unit can include a wireless transmitter fabricated on the HEMT. The sensing unit allows testing in areas without direct access to electrical outlets and can send the testing results to a central location using the wireless transmitter. According to embodiments, results of testing can be achieved within seconds.
    Type: Grant
    Filed: May 6, 2010
    Date of Patent: September 4, 2018
    Assignee: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: Barbara Jane Sheppard, Yu-Lin Wang, Fan Ren, Stephen John Pearton
  • Patent number: 10054563
    Abstract: In some embodiments, an electrical circuit element, defined as “optoelectronic pixel”, comprises at least one silicon nanowire decorated with optoelectronically active particles and open for contact with a medium for sensing; a metal electrode open for contact with said medium and used for feeding a high-frequency sinusoidal stimulation in impedance measurements and for sensing properties of said medium; implanted source and drain electrodes connected to said silicon nanowire and leaving the gate area and parts of said electrode open for contact with said medium; electrical metal contacts for connecting said pixel to an electrical circuit; and a reference electrode open for contact with said medium for creating a three-electrode-cell system and providing a constant gate potential in the circuit. In addition, some embodiments provide an optoelectronic sensor and wearable-patch sensor based on the array of the optoelectronic pixels, and the readout methods for these sensors.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 21, 2018
    Assignee: RGE SMART PTE. LTD.
    Inventors: Ayal Ram, Amir Lichtenstein, Xuan-Thang Vu, Jessica Ka-Yan Law, Duy Phu Tran, Jannick Wilhelm, Thanh Chien Nguyen, Miriam Schwartz
  • Patent number: 10048137
    Abstract: A semiconductor device includes: a semiconductor substrate; a plurality of conductive lines formed on the semiconductor substrate; and an electrode for temperature measurement. The electrode is connected to the plurality of conductive lines. An electronic device includes a semiconductor device and has a temperature sensing function. The semiconductor device includes: a semiconductor substrate; a plurality of conductive lines formed on the semiconductor substrate; and an electrode for temperature measurement.
    Type: Grant
    Filed: October 6, 2014
    Date of Patent: August 14, 2018
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyongtaek Lee, Sangwoo Pae, Junekyun Park
  • Patent number: 10030266
    Abstract: In the field of the next generation DNA sequencer, a method for integrating very high sensitive FET sensors having side gates and nanopores as devices used for identifying four kinds of base and for mapping the base sequence of DNA without using reagents, and a semiconductor device having selection transistors and amplifier transistors respectively corresponding to the FET sensors having side gates and nanopores respectively so as to be able to read the variation of a detection current based on the differences among the charges of the four kinds of base without deteriorating the detection sensitivity of the FET sensor, are presented.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 24, 2018
    Assignee: HITACHI, LTD.
    Inventors: Itaru Yanagi, Riichiro Takemura, Yoshimitsu Yanagawa, Takahide Yokoi, Takashi Anazawa
  • Patent number: 9970981
    Abstract: A semiconductor structure includes a semiconductor device that includes an active region having a semiconductor fin and a gate structure across the semiconductor fin. The gate structure includes a gate electrode. The semiconductor structure also includes a gate line extending from the gate electrode and a metal wiring that is positioned above the gate line and is electrically connected to the gate line through two or more nodes. The semiconductor structure also includes a first measuring electrode and a second measuring electrode coupled respectively to two ends of the metal wiring, the first measuring electrode disposed closer to the gate electrode than the second measuring electrode. The semiconductor structure is configured to measure the temperature of the semiconductor device. During temperature measurement, the first measurement electrode is coupled to a first potential and the second measurement electrode is coupled to a second potential that is lower than the first potential.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: May 15, 2018
    Assignees: Semiconductor Manufacturing International (Shanghai) Corporation, Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Junhong Feng, Zhenghao Gan
  • Patent number: 9964515
    Abstract: An apparatus comprising a chemical field effect transistor array in a circuit-supporting substrate is disclosed. The transistor array has disposed on its surface an array of sample-retaining regions capable of retaining a chemical or biological sample from a sample fluid. The transistor array has a pitch of 10 ?m or less and a sample-retaining region is positioned on at least one chemical field effect transistor which is configured to generate at least one output signal related to a characteristic of a chemical or biological sample in such sample-retaining region.
    Type: Grant
    Filed: September 23, 2015
    Date of Patent: May 8, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan M. Rothberg, James Bustillo, Mark James Milgrew, Jonathan Schultz, David Marran, Todd Rearick, Kim L. Johnson
  • Patent number: 9954079
    Abstract: Methods form an electronic semiconductor device that includes a body having a first side and a second side opposite to one another and including a first structural region facing the second side, and a second structural region extending over the first structural region and facing the first side. A body region extends in the second structural region at the first side. A source region extends inside the body region and a lightly-doped drain region faces the first side of the body. A gate electrode is formed over the body region. A trench dielectric region extends through the second structural region in a first trench conductive region immediately adjacent to the trench dielectric region. A second trench conductive region is in electrical contact with the body region and source region. An electrical contact on the body is in electrical contact with the drain region through the first structural region.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: April 24, 2018
    Assignee: STMicroelectronics S.r.l.
    Inventors: Salvatore Cascino, Leonardo Gervasi, Antonello Santangelo