Pn Junction Gate In Compound Semiconductor Material (e.g., Gaas) Patents (Class 257/279)
  • Patent number: 11296086
    Abstract: A feedback 1T DRAM device that has a partial insulating film structure is provided. A body region may be divided into two or more in a channel direction by pn junctions and/or partial insulating layers, and gates may be formed on each of the divided body regions. The present invention can be operated by filling and subtracting electrons in the energy well of the conduction band and holes in the energy well of the valence band, respectively. In addition, it is possible to maximize retention time and improve operation reliability by reducing carrier loss by energy barriers of pn junctions and/or partial insulating layers.
    Type: Grant
    Filed: December 24, 2019
    Date of Patent: April 5, 2022
    Assignee: Gachon Univ. of Industry-Academic Co-op Foundation
    Inventor: Seongjae Cho
  • Patent number: 11049966
    Abstract: When a film thickness of a second epitaxial film is measured, an infrared light is irradiated from a surface side of the second epitaxial film onto a base layer on which a first epitaxial film and the second epitaxial film are formed. A reflected light from an interface between the first epitaxial film and the base layer and a reflected light from a surface of the second epitaxial film are measured to obtain a two-layer film thickness, which is a total film thickness of the first epitaxial film and the second epitaxial film. The film thickness of the second epitaxial film is calculated by subtracting a one-layer film thickness, which is a film thickness of the first epitaxial film, from the two-layer film thickness.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: June 29, 2021
    Assignees: DENSO CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Akira Amano, Takayuki Satomura, Yuichi Takeuchi, Katsumi Suzuki, Sachiko Aoi
  • Patent number: 10658487
    Abstract: Embodiments of the present disclosure describe semiconductor devices with ruthenium phosphorus thin films and further describe the processes to deposit the thin films. The thin films may be deposited in a gate stack of a transistor device or in an interconnect structure. The processes to deposit the films may include chemical vapor deposition and may include ruthenium precursors. The precursors may contain phosphorus. A co-reactant may be used during deposition. A co-reactant may include a phosphorus based compound. A gate material may be deposited on the film in a gate stack. The ruthenium phosphorus film may be a metal diffusion barrier and an adhesion layer, and the film may be a work function metal for some embodiments. Other embodiments may be described and/or claimed.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: May 19, 2020
    Assignee: Intel Corporation
    Inventors: Scott B. Clendenning, Han Wui Then, John J. Plombon, Michael L. McSwiney
  • Patent number: 10586703
    Abstract: In a vertical MOSFET of a trench gate structure, a high-concentration implantation region is provided in a p-type base region formed from a p-type silicon carbide layer formed by epitaxial growth, so as to include a portion in which a channel is formed. The high-concentration implantation region is formed by ion implantation of a p-type impurity into the p-type silicon carbide layer. The high-concentration implantation region is formed by p-type ion implantation and has an impurity concentration profile in which concentration differences in a depth direction form a bell-shaped curve at a peak of impurity concentration that is higher than that of the p-type silicon carbide layer. In the p-type base region, disorder occurs partially in the crystal structure consequent to the ion implantation for forming the high-concentration implantation region.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: March 10, 2020
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventors: Setsuko Wakimoto, Masanobu Iwaya
  • Patent number: 10566192
    Abstract: A semiconductor device such as a transistor includes a source region, a drain region, a semiconductor region, at least one island region and at least one gate region. The semiconductor region is located between the source region and the drain region. The island region is located in the semiconductor region. Each of the island regions differs from the semiconductor region in one or more characteristics selected from the group including resistivity, doping type, doping concentration, strain and material composition. The gate region is located between the source region and the drain region covering at least a portion of the island regions.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: February 18, 2020
    Assignee: CAMBRIDGE ELECTRONICS, INC.
    Inventors: Bin Lu, Tomas Palacios, Ling Xia, Mohamed Azize
  • Patent number: 10014444
    Abstract: An optoelectronic semi-conductor chip is disclosed in which an encapsulation layer, which is an ALD layer, completely covers a first mirror layer on the side thereof facing away from a p-conductive region, and is arranged to be in direct contact with said first mirror layer in some sections.
    Type: Grant
    Filed: June 25, 2014
    Date of Patent: July 3, 2018
    Assignee: OSRAM OPTO SEMICONDUCTORS GMBH
    Inventors: Karl Engl, Georg Hartung, Johann Eibl, Michael Huber, Markus Maute
  • Patent number: 9905658
    Abstract: An embodiment of a transistor includes a semiconductor substrate, spaced-apart source and drain electrodes coupled to the semiconductor substrate, a gate electrode coupled to the semiconductor substrate between the source and drain electrodes, a dielectric layer over the gate electrode and at least a portion of the semiconductor substrate, and a field plate structure over the dielectric layer, wherein the field plate structure includes a gold-containing material and one or more migration inhibiting materials.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: February 27, 2018
    Assignee: NXP USA, INC.
    Inventors: Darrell G. Hill, Stephen H. Kilgore, Craig A. Gaw
  • Patent number: 9853108
    Abstract: The semiconductor device includes: a channel layer, a barrier layer, a first insulating film, and a second insulating film, each of which is formed above a substrate; a trench that penetrates the second insulating film, the first insulating film, and the barrier layer to reach the middle of the channel layer; and a gate electrode arranged in the trench and over the second insulating film via a gate insulating film. The bandgap of the second insulating film is smaller than that of the first insulating film, and the bandgap of the second insulating film is smaller than that of the gate insulating film GI. Accordingly, a charge (electron) can be accumulated in the second (upper) insulating film, thereby allowing the electric field strength at a corner of the trench to be improved. As a result, a channel is fully formed even at a corner of the trench, thereby allowing an ON-resistance to be reduced and an ON-current to be increased.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: December 26, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroshi Kawaguchi
  • Patent number: 9786776
    Abstract: The present invention discloses a vertical semiconductor device and a manufacturing method thereof. The vertical semiconductor device includes: a substrate having a first surface and a second surface, the substrate including a conductive array formed by multiple conductive plugs through the substrate; a semiconductor layer formed on the first surface, the semiconductor layer having a third surface and a fourth surface, wherein the fourth surface faces the first surface; a first electrode formed on the third surface; and a second electrode formed on the second surface for electrically connecting to the conductive array.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: October 10, 2017
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu
  • Patent number: 9570600
    Abstract: A semiconductor structure has a first layer that includes a first semiconductor material and a second layer that includes a second semiconductor material. The first semiconductor material is selectively etchable over the second semiconductor material using a first etching process. The first layer is disposed over the second layer. A recess is disposed at least in the first layer. Also described is a method of forming a semiconductor structure that includes a recess. The method includes etching a region in a first layer using a first etching process. The first layer includes a first semiconductor material. The first etching process stops at a second layer beneath the first layer. The second layer includes a second semiconductor material.
    Type: Grant
    Filed: November 15, 2013
    Date of Patent: February 14, 2017
    Assignee: Massachusetts Institute of Technology
    Inventors: Bin Lu, Min Sun, Tomas Apostol Palacios
  • Patent number: 9559183
    Abstract: To provide a semiconductor device having improved characteristics. The semiconductor device has a substrate and thereon a buffer layer, a channel layer, a barrier layer, a trench penetrating therethrough and reaching the inside of the channel layer, a gate electrode placed in the trench via a gate insulating film, and drain and source electrodes on the barrier layer on both sides of the gate electrode. The gate insulating film has a first portion made of a first insulating film and extending from the end portion of the trench to the side of the drain electrode and a second portion made of first and second insulating films and placed on the side of the drain electrode relative to the first portion. The on resistance can be reduced by decreasing the thickness of the first portion at the end portion of the trench on the side of the drain electrode.
    Type: Grant
    Filed: May 6, 2014
    Date of Patent: January 31, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Takashi Inoue, Tatsuo Nakayama, Yasuhiro Okamoto, Hiroshi Kawaguchi, Toshiyuki Takewaki, Nobuhiro Nagura, Takayuki Nagai, Yoshinao Miura, Hironobu Miyamoto
  • Patent number: 9466552
    Abstract: The present invention discloses a vertical semiconductor device and a manufacturing method thereof. The vertical semiconductor device includes: a substrate having a first surface and a second surface, the substrate including a conductive array formed by multiple conductive plugs through the substrate; a semiconductor layer formed on the first surface, the semiconductor layer having a third surface and a fourth surface, wherein the fourth surface faces the first surface; a first electrode formed on the third surface; and a second electrode formed on the second surface for electrically connecting to the conductive array.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: October 11, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Wei Chiu, Tsung-Yi Huang
  • Patent number: 9450112
    Abstract: A Schottky diode and method of fabricating the Schottky diode using gallium nitride (GaN) materials is disclosed. The method includes providing an n-type GaN substrate having first and second opposing surfaces. The method also includes forming an ohmic metal contact electrically coupled to the first surface, forming an n-type GaN epitaxial layer coupled to the second surface, and forming an n-type aluminum gallium nitride (AlGaN) surface layer coupled to the n-type GaN epitaxial layer. The AlGaN surface layer has a thickness which is less than a critical thickness, and the critical thickness is determined based on an aluminum mole fraction of the AlGaN surface layer. The method also includes forming a Schottky contact electrically coupled to the n-type AlGaN surface layer, where, during operation, an interface between the n-type GaN epitaxial layer and the n-type AlGaN surface layer is substantially free from a two-dimensional electron gas.
    Type: Grant
    Filed: September 8, 2014
    Date of Patent: September 20, 2016
    Assignee: Avogy, Inc.
    Inventors: Richard J. Brown, Thomas R. Prunty, David P. Bour, Isik C. Kizilyalli, Hui Nie, Andrew P. Edwards, Linda Romano, Madhan Raj
  • Patent number: 9431301
    Abstract: A semiconductor structure includes a plurality of semiconductor fins located on a semiconductor substrate, in which each of the semiconductor fins comprises a sequential stack of a buffered layer including a III-V semiconductor material and a channel layer including a III-V semiconductor material. The semiconductor structure further includes a gap filler material surrounding the semiconductor fins and including a plurality of trenches therein. The released portions of the channel layers of the semiconductor fins located in the trenches constitute nanowire channels of the semiconductor structure, and opposing end portions of the channel layers of the semiconductor fins located outside of the trenches constitute a source region and a drain region of the semiconductor structure, respectively. In addition, the semiconductor structure further includes a plurality of gates structures located within the trenches that surround the nanowire channels in a gate all around configuration.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: August 30, 2016
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Szu Lin Cheng, Isaac Lauer, Kuen-Ting Shiu, Jeng-Bang Yau
  • Patent number: 9362396
    Abstract: A method for manufacturing a semiconductor device, includes forming a recess over a surface of an n-type semiconductor substrate, forming a gate insulation film over an inner wall and a bottom face of the recess, embedding a gate electrode into the recess, forming a p-type base layer in a surface layer of the semiconductor substrate so as to be shallower than the recess, and forming an n-type source layer in the p-type base layer so as to be shallower than the p-type base layer. An impurity profile of the p-type base layer in a thickness direction includes a first peak, a second peak being located closer to a bottom face side of the semiconductor substrate than the first peak and being higher than the first peak, and a third peak located between the first peak and the second peak by implanting impurity ions three times or more at ion implantation energies different from each other in the forming of the p-type base layer.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: June 7, 2016
    Assignee: Renesas Electronics Corporation
    Inventors: Yuki Fukui, Hiroaki Katou
  • Patent number: 9299783
    Abstract: A transistor includes a channel forming layer on a substrate, a gate on the channel forming layer and including an electrochemically indifferent metal, a solid electrolyte layer between the channel forming layer and the gate, the solid electrolyte layer is formed as a stack structure with the gate on the channel forming layer, an active metal layer including an electrochemically active metal capable of enabling channel switching by using an oxidation-reduction reaction of the electrochemically active metal so that the active metal layer forms a metal channel in a channel region between the channel forming layer and the solid electrolyte layer, and a source and a drain electrically connected to the active metal layer.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: March 29, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Woo-young Yang, Ki-hong Kim, Sang-jun Choi, Young-eal Kim, Seong-yong Park
  • Patent number: 9142657
    Abstract: An improved gated thyristor that utilizes less silicon area than IGBT, BIPOLARs or MOSFETs sized for the same application is provided. Embodiments of the inventive thyristor have a lower gate charge, and a lower forward drop for a given current density. Embodiments of the thyristor once triggered have a latch structure that does not have the same Cgd or Ccb capacitor that must be charged from the gate, and therefore the gated thyristor is cheaper to produce, and requires a smaller gate driver, and takes up less space than standard solutions. Embodiments of the inventive thyristor provide a faster turn off speed than the typical >600 ns using a modified MCT structure which results in the improved tail current turn off profile (<250 ns). Additionally, series resistance of the device is reduced without comprising voltage blocking ability is achieved. Finally, a positive only gate drive means is taught as is a method to module the saturation current using the gate terminal.
    Type: Grant
    Filed: March 15, 2014
    Date of Patent: September 22, 2015
    Inventor: David Schie
  • Patent number: 9136384
    Abstract: A semiconductor material is patterned to define elongated fins insulated from an underlying substrate. A polysilicon semiconductor material is deposited over and in between the elongated fins, and is patterned to define elongated gates extending to perpendicularly cross over the elongated fins at a transistor channel. Sidewall spacers are formed on side walls of the elongated gates. Portions of the elongated fins located between the elongated gates are removed, along with the underlying insulation, to expose the underlying substrate. One or more semiconductor material layers are then epitaxially grown from the underlying substrate at locations between the elongated gates. The one or more semiconductor material layers may include an undoped epi-layer and an overlying doped epi-layer. The epitaxial material defines a source or drain of the transistor.
    Type: Grant
    Filed: December 5, 2013
    Date of Patent: September 15, 2015
    Assignee: STMicroelectronics, Inc.
    Inventors: Nicolas Loubet, Ronald Kevin Sampson
  • Patent number: 9082835
    Abstract: A method for manufacturing a semiconductor device includes forming a recess over a surface of an n-type semiconductor substrate, forming a gate insulation film over an inner wall and a bottom face of the recess, embedding a gate electrode into the recess, forming a p-type base layer in the surface layer of the substrate so as to be shallower than the recess; and forming an n-type source layer in the p-type base layer so as to be shallower than the p-type base layer. The impurity profile of the p-type base layer in a thickness direction includes a second peak being located closer to a bottom face side of the substrate than the first peak and being higher than the first peak, and a third peak located between the first peak and the second peak by implanting impurity ions three times or more at ion implantation energies different from each other.
    Type: Grant
    Filed: March 4, 2014
    Date of Patent: July 14, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Yuki Fukui, Hiroaki Katou
  • Patent number: 9041120
    Abstract: A transistor device comprises: at least one individual transistor cell arranged in a transistor cell field on a semiconductor body, each individual transistor cell comprising a gate electrode; a gate contact, electrically coupled to the gate electrodes of the transistor cells and configured to switch on the at least one transistor cell by providing a gate current in a first direction and configured to switch off the at least one transistor cell by providing a gate current in a second direction, the second direction being opposite to the first direction; at least one gate-resistor structure monolithically integrated in the transistor device, the gate-resistor structure providing a first resistance for the gate current when the gate current flows in the first direction, and providing a second resistance for the gate current, which is different from the first resistance, when the gate current flows in the second direction.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: May 26, 2015
    Assignee: Infineon Technologies AG
    Inventors: Stephan Voss, Peter Tuerkes, Holger Huesken
  • Patent number: 9006799
    Abstract: Radio frequency and microwave devices and methods of use are provided herein. According to some embodiments, the present technology may comprise an ohmic layer for use in a field effect transistor that includes a plurality of strips disposed on a substrate, the plurality of strips comprising alternating source strips and drain strips, with adjacent strips being spaced apart from one another to form a series of channels, a gate finger segment disposed in each of the series of channels, and a plurality of gate finger pads disposed in an alternating pattern around a periphery of the plurality of strips such that each gate finger segment is associated with two gate finger pads.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: April 14, 2015
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Publication number: 20150060957
    Abstract: A three-dimensional Gate-Wrap-Around Field-Effect Transistor (GWAFET). The GWAFET includes a substrate of III-V semiconductor material. The GWAFET further includes one or more channel layers with a gate wrapped around these one or more channel layers. Additionally, the GWAFET includes a barrier layer residing on the top channel layer with a layer of doped III-V semiconductor material residing on each end of the barrier layer. A source and drain contact are connected to the layer of doped III-V semiconductor material as well as to the multiple channels in the embodiment with the GWAFET including multiple channel layers. By having such a structure, integration density is improved. Furthermore, electrostatic control is improved due to gate coupling, which helps reduce standby power consumption. Furthermore, by using III-V semiconductor material as opposed to silicon, the current drive capacity is improved.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 5, 2015
    Applicant: Board of Regents, The University of Texas System
    Inventors: Jack C. Lee, Fei Xue
  • Patent number: 8900969
    Abstract: Systems, apparatuses, and methods related to the design, fabrication, and manufacture of gallium arsenide (GaAs) integrated circuits are disclosed. Copper can be used as the contact material for a GaAs integrated circuit. Metallization of the wafer and through-wafer vias can be achieved through copper plating processes disclosed herein. To avoid warpage, the tensile stress of a conductive layer deposited onto a GaAs substrate can be offset by depositing a compensating layer having negative stress over the GaAs substrate. GaAs integrated circuits can be singulated, packaged, and incorporated into various electronic devices.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 2, 2014
    Assignee: Skyworks Solutions, Inc.
    Inventor: Hong Shen
  • Patent number: 8896034
    Abstract: Radio frequency and microwave devices and methods of use are provided herein. According to some embodiments, the present technology may comprise an ohmic layer for use in a field effect transistor that includes a plurality of strips disposed on a substrate, the plurality of strips comprising alternating source strips and drain strips, with adjacent strips being spaced apart from one another to form a series of channels, a gate finger segment disposed in each of the series of channels, and a plurality of gate finger pads disposed in an alternating pattern around a periphery of the plurality of strips such that each gate finger segment is associated with two gate finger pads.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: November 25, 2014
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8878251
    Abstract: The present invention provides a silicon-compatible compound junctionless field effect transistor enabled to be compatible to a bulk silicon substrate for substituting an expensive SOI substrate, to form a blocking semiconductor layer between a silicon substrate and an active layer by a semiconductor material having a specific difference of energy bandgap from that of the active layer to substitute a prior buried oxide for blocking a leakage current at an off-operation time and to form the active layer by a semiconductor layer having electron or hole mobility higher than that of silicon, and to operate perfectly as a junctionless device though the dopant concentration of the active layer is much lower than the prior junctionless device.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: November 4, 2014
    Assignees: Seoul National University R&DB Foundation, Kyungpook National University Industry-academic Cooperation Foundation, The Board of Trustees of the Leland Stanford Junior University
    Inventors: Byung-Gook Park, Seongjae Cho, In Man Kang
  • Patent number: 8816321
    Abstract: A nitride semiconductor light-emitting device includes an n-type nitride semiconductor layer, a V pit generation layer, an intermediate layer, a multiple quantum well light-emitting layer, and a p-type nitride semiconductor layer provided in this order. The multiple quantum well light-emitting layer is a layer formed by alternately stacking a barrier layer and a well layer having a bandgap energy smaller than that of the barrier layer. A V pit is partly formed in the multiple quantum well light-emitting layer, and an average position of starting point of the V pit is located in the intermediate layer.
    Type: Grant
    Filed: August 13, 2012
    Date of Patent: August 26, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Tadashi Takeoka, Yoshihiko Tani, Kazuya Araki, Yoshihiro Ueta
  • Patent number: 8742480
    Abstract: It is an object to provide a wireless chip which can increase a mechanical strength, and a wireless chip with a high durability. A wireless chip includes a transistor including a field-effect transistor, an antenna including a dielectric layer sandwiched between conductive layers, and a conductive layer connecting the chip and the antenna. Further, a wireless chip includes a transistor including a field-effect transistor, an antenna including a dielectric layer sandwiched between conductive layers, a sensor device, a conductive layer connecting the chip and the antenna, and a conductive layer connecting the chip and the sensor device. Moreover, a wireless chip includes a transistor including a field-effect transistor, an antenna including a dielectric layer sandwiched between conductive layers, a battery, a conductive layer connecting the chip and the antenna, and a conductive layer connecting the chip and the battery.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: June 3, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yukie Suzuki, Yasuyuki Arai, Shunpei Yamazaki
  • Patent number: 8703611
    Abstract: A method for manufacturing a semiconductor structure is disclosed. The method comprises following steps. A substrate is provided. A sacrificial layer is formed on the substrate. The sacrificial layer is patterned to develop a first opening and a second opening. The first opening corresponds to an exposed portion of the substrate and the second opening corresponds to an unexposed portion of the substrate. A heat procedure is performed. A target material is formed on the exposed portion of the substrate and a rest part of the sacrificial layer. The rest part of the sacrificial layer and parts of the target material on the rest part of the sacrificial layer are removed. A predetermined patterned target material is obtained.
    Type: Grant
    Filed: April 12, 2013
    Date of Patent: April 22, 2014
    Assignee: United Microelectronics Corp.
    Inventor: Ming-Kuan Chen
  • Patent number: 8685812
    Abstract: A logic switch intentionally utilizes GIDL current as its primary mechanism of operation. Voltages may be applied to a doped gate overlying and insulated from a pn junction. A first voltage initiates GIDL current, and the logic switch is bidirectionally conductive. A second voltage terminates GIDL current, but the logic switch is unidirectionally conductive. A third voltage renders the logic switch bidirectionally non-conductive. Circuits containing the logic switch are also described. These circuits include inverters, SRAM cells, voltage reference sources, and neuron logic switches. The logic switch is primarily implemented according to SOI protocols, but embodiments according to bulk protocols are described.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: April 1, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Min-Hwa Chi
  • Patent number: 8674416
    Abstract: Generally, the subject matter disclosed herein is directed to semiconductor devices with reduced threshold variability having a threshold adjusting semiconductor material in the device active region. One illustrative semiconductor device disclosed herein includes an active region in a semiconductor layer of a semiconductor device substrate, the active region having a region length and a region width that are laterally delineated by an isolation structure. The semiconductor device further includes a threshold adjusting semiconductor alloy material layer that is positioned on the active region substantially without overlapping the isolation structure, the threshold adjusting semiconductor alloy material layer having a layer length that is less than the region length.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: March 18, 2014
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Carsten Reichel, Thorsten Kammler, Annekathrin Zeun, Stephan Kronholz
  • Patent number: 8575621
    Abstract: Circuits and systems comprising one or more switches are provided. A circuit includes a first switch formed on a substrate; and a second switch formed on the substrate, the second switch including a first terminal coupled to a third terminal of the first switch. A system includes a supply; a first switch formed on a substrate, the first switch coupled to the supply; a second switch formed on the substrate, the second switch coupled to the first switch; a third switch formed on the substrate, the third switch coupled to the supply; a fourth switch formed on the substrate, the fourth switch coupled to the third switch; and a driver coupled to respective second terminals of the first, second, third, and fourth switches.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: November 5, 2013
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8519916
    Abstract: Circuits and systems comprising one or more switches are provided. A circuit includes a first switch formed on a substrate; and a second switch formed on the substrate, the second switch including a first terminal coupled to a third terminal of the first switch. A system includes a supply; a first switch formed on a substrate, the first switch coupled to the supply; a second switch formed on the substrate, the second switch coupled to the first switch; a third switch formed on the substrate, the third switch coupled to the supply; a fourth switch formed on the substrate, the fourth switch coupled to the third switch; and a driver coupled to respective second terminals of the first, second, third, and fourth switches.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 27, 2013
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8474725
    Abstract: A wireless IC device includes a wireless IC chip arranged to process a transmission/received signal, a matching inductance element and a planar electrode which are provided on the surface of a feeder circuit board formed by a flexible dielectric, and a loop-shaped radiation plate provided on the undersurface of the feeder circuit board. Both ends of the radiation plate are coupled to a resonance circuit including an inductance element by electromagnetic field coupling. The wireless IC chip is operated using a signal received by the radiation plate. A response signal transmitted from the wireless IC chip is externally transmitted from the radiation plate.
    Type: Grant
    Filed: July 28, 2009
    Date of Patent: July 2, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Noboru Kato, Yuya Dokai
  • Publication number: 20130082307
    Abstract: A compound semiconductor device includes a compound semiconductor laminated structure, a passivation film formed on the compound semiconductor laminated structure and having a through-hole, and a gate electrode formed on the passivation film so as to plug the through-hole. A grain boundary between different crystalline orientations is formed in the gate electrode, and a starting point of the grain boundary is located apart from the through-hole on a flat surface of the passivation film.
    Type: Application
    Filed: July 16, 2012
    Publication date: April 4, 2013
    Applicant: FUJITSU LIMITED
    Inventors: Naoya OKAMOTO, Kozo Makiyama, Toshihiro Ohki, Yuichi Minoura, Shirou Ozaki, Toyoo Miyajima
  • Patent number: 8384137
    Abstract: A semiconductor device includes: a gate electrode, a source electrode and a drain electrode, all of which are provided on top of a first surface of a substrate, and each of which includes multiple fingers; and an ohmic electrode layer. The semiconductor device includes: a gate terminal electrode connecting the fingers of the gate electrode together; a source terminal electrode connecting the fingers of the source electrode together; a drain terminal electrode connecting the fingers of the drain electrode together; and a gate pad placed on top of the ohmic electrode layer, and connecting the ohmic electrode layer to the gate terminal electrode. The semiconductor device further includes: an n type semiconductor layer formed in the substrate; a p type semiconductor layer formed in the n type semiconductor layer; and a reaction layer formed in the interface between the p type semiconductor layer substrate and the ohmic electrode layer.
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: February 26, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideki Kimura
  • Patent number: 8362528
    Abstract: A logic switch intentionally utilizes GIDL current as its primary mechanism of operation. Voltages may be applied to a doped gate overlying and insulated from a pn junction. A first voltage initiates GIDL current, and the logic switch is bidirectionally conductive. A second voltage terminates GIDL current, but the logic switch is unidirectionally conductive. A third voltage renders the logic switch bidirectionally non-conductive. Circuits containing the logic switch are also described. These circuits include inverters, SRAM cells, voltage reference sources, and neuron logic switches. The logic switch is primarily implemented according to SOI protocols, but embodiments according to bulk protocols are described.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: January 29, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Min-Hwa Chi
  • Patent number: 8278691
    Abstract: There is provided a low power memory device with JFET device structures. Specifically, a low power memory device is provided that includes a plurality memory cells having a memory element and a JFET access device electrically coupled to the memory element. The memory cells may be isolated using diffusion based isolation.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: October 2, 2012
    Assignee: Micron Technology, Inc.
    Inventor: Chandra Mouli
  • Patent number: 8274121
    Abstract: Aspects provide for reducing the size and cost of a compound semiconductor power FET device while increasing yield and maintaining current handling capabilities of the FET by distributing portions of the current in parallel to sections the source and drain fingers to maintain a low current density, and applying the gate signal to both ends of the gate fingers to increase yield. The current to be handled by the FET may be divided among a set of electrodes arrayed along the width of the source or drain fingers and oriented to cross the fingers along the length of the source and drain fingers. The current may be conducted from the electrodes to the source and drain fingers through vias disposed along the surface of the fingers. Heat developed in the source, drain, and gate fingers may be conducted through the vias to the electrodes and out of the device.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: September 25, 2012
    Assignee: Sarda Technologies, Inc.
    Inventor: James L. Vorhaus
  • Patent number: 8253218
    Abstract: A semiconductor device includes at least one semiconductor element having a semiconductor stack containing a channel layer and a cap layer and a lower electrode and an upper electrode formed over a semiconductor stack, and at least one protective element having the semiconductor stack in common with the semiconductor element for protecting the semiconductor element. The protective element includes a recessed portion that penetrates the cap layer in the direction of the thickness, an insulation region formed in the semiconductor stack from the bottom of the recessed portion 221 in the direction of the thickness, and a pair of ohmic electrodes and formed on both sides of the recessed portion and connected to the cap layer.
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: August 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yasunori Bito
  • Patent number: 8253168
    Abstract: Junction field effect transistors (JFETs) are shown to be a viable replacement for metal oxide semiconductor field effect transistors (MOSFETs) for gate lengths of less than about 40 nm, providing an alternative to the gate leakage problems presented by scaled down MOSFETs. Integrated circuit designs can have complementary JFET (CJFET) logic cells substituted for existing MOSFET-based logic cells to produce revised integrated circuit designs. Integrated circuits can include JFETS where the channel comprises a wide bandgap semiconductor material and the gate comprises a narrow bandgap semiconductor material. Mixtures of JFET and MOSFET transistors can be included on an integrated circuit design.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 28, 2012
    Assignee: University of Utah Research Foundation
    Inventors: Mark S. Miller, Justin B. Jackson, Divesh Kapoor, Justin Millis
  • Publication number: 20120199847
    Abstract: A semiconductor device according to one embodiment includes: a unit FET cell(s) having multi-fingers composed of parallel connection of a unit finger; a designated gate bus line(s) configured to connect gate fingers of the unit FET cell having multi-fingers in parallel; and a gate extracting line(s) configured to be connected to the designated gate bus line, wherein a connecting point between the gate extracting line and the designated gate bus line is shifted from a center in the unit FET cell having multi-fingers, and thereby the numbers of the gate fingers connected to one side of the connecting point is more than the number of the gate fingers connected to another side of the connecting point.
    Type: Application
    Filed: January 18, 2012
    Publication date: August 9, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Kazutaka Takagi
  • Patent number: 8212260
    Abstract: To provide a p-type semiconductor material having a band matching with a hole injection layer and suitable for an anode electrode that can be formed on a glass substrate or a polymer substrate, and to provide a semiconductor device. In the p-type semiconductor material, 1×1018 to 5×1020 cm?3 of Ag is contained in a compound containing Zn and Se, and the semiconductor device includes a substrate and a p-type electrode layer arranged on this substrate and having the aforementioned p-type semiconductor material.
    Type: Grant
    Filed: September 28, 2007
    Date of Patent: July 3, 2012
    Assignee: Hoya Corporation
    Inventors: Masahiro Orita, Takashi Narushima, Hiroaki Yanagida
  • Patent number: 8183605
    Abstract: By recessing portions of the drain and source areas on the basis of a spacer structure, the subsequent implantation process for forming the deep drain and source regions may result in a moderately high dopant concentration extending down to the buried insulating layer of an SOI transistor. Furthermore, the spacer structure maintains a significant amount of a strained semiconductor alloy with its original thickness, thereby providing an efficient strain-inducing mechanism. By using sophisticated anneal techniques, undue lateral diffusion may be avoided, thereby allowing a reduction of the lateral width of the respective spacers and thus a reduction of the length of the transistor devices. Hence, enhanced charge carrier mobility in combination with reduced junction capacitance may be accomplished on the basis of reduced lateral dimensions.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: May 22, 2012
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Thomas Feudel, Markus Lenski, Andreas Gehring
  • Publication number: 20120091514
    Abstract: A semiconductor junction diode device structure and a method for manufacturing the same are provided, where a gate of the diode device structure is directly formed on the substrate, a P-N junction is formed in the semiconductor substrate, a first contact is formed on the gate, and a second contact is formed on the doped region at both sides of the gate, the first contact and the second contact acting as cathode/anode of the diode device, respectively. The diode device of this structure occupies a small area, and its forming process may be integrated in a gate-last integration process of MOSFET devices, which needs no additional mask and costs and has a high integration level.
    Type: Application
    Filed: February 27, 2011
    Publication date: April 19, 2012
    Inventors: Qingqing Liang, Huicai Zhong, Huilong Zhu
  • Patent number: 8134180
    Abstract: A nitride semiconductor device includes: a semiconductor base layer made of a conductive group III nitride semiconductor having a principal plane defined by a nonpolar plane or a semipolar plane; an insulating layer formed on the principal plane of the semiconductor base layer with an aperture partially exposing the principal plane; a nitride semiconductor multilayer structure portion, formed on a region extending onto the insulating layer from the aperture, having a parallel surface parallel to the principal plane of the semiconductor base layer as well as a +c-axis side first inclined surface and a ?c-axis side second inclined surface inclined with respect to the principal plane of the semiconductor base layer and including two types of group III nitride semiconductor layers at least having different lattice constants; a gate electrode formed to be opposed to the second inclined surface; a source electrode arranged to be electrically connected with the group III nitride semiconductor layers; and a drain ele
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 13, 2012
    Assignee: Rohm Co., Ltd.
    Inventors: Hirotaka Otake, Shigefusa Chichibu
  • Publication number: 20110272748
    Abstract: A semiconductor device includes: a gate electrode, a source electrode and a drain electrode, all of which are provided on top of a first surface of a substrate, and each of which includes multiple fingers; and an ohmic electrode layer. The semiconductor device includes: a gate terminal electrode connecting the fingers of the gate electrode together; a source terminal electrode connecting the fingers of the source electrode together; a drain terminal electrode connecting the fingers of the drain electrode together; and a gate pad placed on top of the ohmic electrode layer, and connecting the ohmic electrode layer to the gate terminal electrode. The semiconductor device further includes: an n type semiconductor layer formed in the substrate; a p type semiconductor layer formed in the n type semiconductor layer; and a reaction layer formed in the interface between the p type semiconductor layer substrate and the ohmic electrode layer.
    Type: Application
    Filed: July 21, 2011
    Publication date: November 10, 2011
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Hideki KIMURA
  • Publication number: 20110198669
    Abstract: The invention provides a transistor having a leak current between a source and drain in a nitride compound semiconductor formed on a substrate that is reduced. A gate electrode, a source electrode and a drain electrode are formed respectively on the surface of the nitride compound semiconductor formed on the silicon substrate in the transistor. At least one of the source electrode and the drain electrode is surrounded by an auxiliary electrode connected with the gate electrode. Because a depletion layer is formed in the nitride compound semiconductor under the auxiliary electrode, a route of the leak current is shut off and the leak current between the source and drain may be effectively reduced.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 18, 2011
    Applicant: Furukawa Electric Co., Ltd.
    Inventors: Shusuke Kaya, Nariaki Ikeda, Jiang Li
  • Patent number: 7829919
    Abstract: A semiconductor device which can prevent peeling off of a gate electrode is provided. The semiconductor device has GaN buffer layer 12 formed on substrate 11, undoped AlGaN layer 13 formed on this buffer layer 12, drain electrode 16 and source electrode 17 formed separately on undoped AlGaN layer 13, which form ohmic junctions with undoped AlGaN layer 13. Between drain electrode 16 and source electrode 17, insulating layer 20 which has opening 19 is formed, and metal film 21 is formed on a surface of insulating layer 2. Gate electrode 18 which forms a Schottky barrier junction with undoped AlGaN layer 13 is formed in opening 19, and gate electrode 18 adheres to metal film 21.
    Type: Grant
    Filed: February 10, 2009
    Date of Patent: November 9, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hisao Kawasaki
  • Publication number: 20100244104
    Abstract: A compound semiconductor device includes a compound semiconductor laminated structure; a source electrode, a drain electrode, and a gate electrode formed over the compound semiconductor laminated structure; a first protective film formed over the compound semiconductor laminated structure between the source electrode and the gate electrode and including silicon; and a second protective film formed over the compound semiconductor laminated structure between the drain electrode and the gate electrode and including more silicon than the first protective film.
    Type: Application
    Filed: March 10, 2010
    Publication date: September 30, 2010
    Applicant: FUJITSU LIMITED
    Inventors: Kozo Makiyama, Toshihide Kikkawa
  • Patent number: 7759700
    Abstract: A semiconductor device includes: a first group-III nitride semiconductor layer formed on a substrate; a second group-III nitride semiconductor layer made of a single layer or two or more layers, formed on the first group-III nitride semiconductor layer, and acting as a barrier layer; a source electrode, a drain electrode, and a gate electrode formed on the second group-III nitride semiconductor layer, the gate electrode controlling a current flowing between the source and drain electrodes; and a heat radiation film with high thermal conductivity which covers, as a surface passivation film, the entire surface other than a bonding pad.
    Type: Grant
    Filed: November 6, 2006
    Date of Patent: July 20, 2010
    Assignee: Panasonic Corporation
    Inventors: Hiroaki Ueno, Manabu Yanagihara, Yasuhiro Uemoto, Tsuyoshi Tanaka