With Doping Profile To Adjust Barrier Height Patents (Class 257/475)
  • Patent number: 8368166
    Abstract: A junction barrier Schottky diode has N-type well having a surface and first peak impurity concentration; P-type anode region in surface of the well having second peak impurity concentration; N-type cathode contact region in surface of the well and laterally spaced from a first wall of the anode region having third peak impurity concentration; and first N-type region in surface of the well and laterally spaced from second wall of the anode region having fourth impurity concentration. Center of the spaced region between the first N-type region and the second wall of the anode region has fifth peak impurity concentration. Ohmic contact is made to the anode region and cathode contact region. Schottky contact is made to the first N-type region. First and fifth peak impurity concentrations are less than the fourth peak impurity concentration. The fourth peak impurity concentration is less than the second and third peak impurity concentrations.
    Type: Grant
    Filed: August 25, 2010
    Date of Patent: February 5, 2013
    Assignee: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church
  • Publication number: 20130026598
    Abstract: A Schottky barrier diode includes a first metal layer, a second metal layer separated form the first metal layer, and a semiconductor layer. The semiconductor layer is in Schottky contact with the first metal layer and in ohmic contact with the second metal layer. The semiconductor layer includes an insulated polymer material and a number of carbon nanotubes dispersed in the insulated polymer material.
    Type: Application
    Filed: December 13, 2011
    Publication date: January 31, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: CHUN-HUA HU, CHANG-HONG LIU, SHOU-SHAN FAN
  • Patent number: 8334579
    Abstract: An integrated circuit device and method for fabricating the integrated circuit device is disclosed. The integrated circuit device includes a substrate, a diffusion source, and a lightly doped diffusion region in contact with a conductive layer. A junction of the lightly doped diffusion region with the conductive layer forms a Schottky region. An annealing process is performed to form the lightly doped diffusion region. The annealing process causes dopants from the diffusion source (for example, an n-well disposed in the substrate) of the integrated circuit device to diffuse into a region of the substrate, thereby forming the lightly doped diffusion region.
    Type: Grant
    Filed: October 7, 2010
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ping Chun Yeh, Der-Chyang Yeh, Chih-Ping Chao
  • Patent number: 8278198
    Abstract: A method of producing a Schottky diode includes the steps of: forming a resist layer on the semiconductor substrate; performing a first exposure process on the resist layer; performing a first developing process for developing the resist layer to form a first Schottky diode having an excess region; performing a first cleaning process; performing a second exposure process on the first Schottky diode; performing a second developing process on the first Schottky diode to remove the excess region from the first Schottky diode so that a second Schottky diode corresponding to the specific Schottky diode is formed; and performing a second cleaning process.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: October 2, 2012
    Assignee: Oki Semiconductor Co., Ltd.
    Inventors: Yuuki Doi, Hirokazu Fujimaki
  • Publication number: 20120241898
    Abstract: According to one embodiment, a semiconductor device includes a first semiconductor region of a first conductivity type, a first electrode, a second semiconductor region of the first conductivity type and a second electrode. The first semiconductor region includes a first portion including a first major surface and a second portion extending in a first direction perpendicular to the first major surface on the first major surface. The first electrode includes a third portion provided to face the second portion and is provided to be separated from the first semiconductor region. The second semiconductor region is provided between the second and third portions, includes a first concentration region having a lower impurity concentration than the first semiconductor region and forms a Schottky junction with the third portion. The second electrode is provided on an opposite side of the first major surface and in conduction with the first portion.
    Type: Application
    Filed: March 13, 2012
    Publication date: September 27, 2012
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tsuyoshi Ohta, Masatoshi Arai, Miwako Suzuki, Tadashi Matsuda
  • Publication number: 20120241897
    Abstract: A semiconductor system is described, which includes a trench junction barrier Schottky diode having an integrated p-n type diode as a clamping element, which is suitable for use in motor vehicle generator system, in particular as a Zener diode having a breakdown voltage of approximately 20V. In this case, the TJBS is a combination of a Schottky diode and a p-n type diode. Where the breakdown voltages are concerned, the breakdown voltage of the p-n type diode is lower than the breakdown voltage of Schottky diode. The semiconductor system may therefore be operated using high currents at breakdown.
    Type: Application
    Filed: June 9, 2010
    Publication date: September 27, 2012
    Inventors: Ning Qu, Alfred Goerlach
  • Patent number: 8274128
    Abstract: A semiconductor device in one embodiment includes a depletion junction, a peripheral region adjacent the depletion junction, and a buffer layer. The buffer layer is adapted to reduce localization of avalanche breakdown proximate the interface between the depletion junction and the peripheral region.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: September 25, 2012
    Assignee: Siliconix Technology C. V. IR
    Inventors: Andrea Irace, Giovanni Breglio, Paolo Spirito, Andrea Bricconi, Diego Raffo, Luigi Merlin
  • Publication number: 20120205773
    Abstract: A Schottky diode with a lowered forward voltage drop has an N? type doped drift layer formed on an N+ type doped layer. The N? type doped drift layer has a surface formed with a protection ring inside which is a P-type doped layer. The surface of the N? type doped drift layer is further formed with an oxide layer and a metal layer. The contact region between the metal layer and the N? type doped drift layer within the P-type doped layer forms a Schottky barrier. An upward extending N type doped layer is formed on the N+ type doped layer and under the Schottky barrier to reduce the thickness of the N? type doped drift layer under the Schottky barrier. This lowers the forward voltage drop of the Schottky diode.
    Type: Application
    Filed: July 20, 2011
    Publication date: August 16, 2012
    Applicant: PYNMAX TECHNOLOGY CO., LTD.
    Inventors: Chiun-Yen TUNG, Po-Chang HUANG, Wei-Sheng CHAO, Kun-Hsien CHEN
  • Publication number: 20120187520
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Application
    Filed: April 3, 2012
    Publication date: July 26, 2012
    Inventors: Kunihiko KATO, Hideki YASUOKA, Masatoshi TAYA, Masami KOKETSU
  • Patent number: 8227855
    Abstract: Disclosed are semiconductor devices with breakdown voltages that are more controlled and stable after repeated exposure to breakdown conditions than prior art devices. The disclosed devices can be used to provide secondary circuit functions not previously contemplated by the prior art.
    Type: Grant
    Filed: February 9, 2009
    Date of Patent: July 24, 2012
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Joseph Yedinak, Mark Rinehimer, Thomas E. Grebs, John Benjamin
  • Patent number: 8169047
    Abstract: The present invention aims to enhance the reliability of a semiconductor device equipped with a Schottky barrier diode within the same chip, and its manufacturing technology. The semiconductor device includes an n-type n-well region formed over a p-type semiconductor substrate, an n-type cathode region formed in part thereof and higher in impurity concentration than the n-well region, a p-type guard ring region formed so as to surround the n-type cathode region, an anode conductor film formed so as to integrally cover the n-type cathode region and the p-type guard ring region and to be electrically coupled thereto, n-type cathode conduction regions formed outside the p-type guard ring region with each separation portion left therebetween, and a cathode conductor film formed so as to cover the n-type cathode conduction regions and to be electrically coupled thereto. The anode conductor film and the n-type cathode region are Schottky-coupled to each other.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 1, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Kunihiko Kato, Hideki Yasuoka, Masatoshi Taya, Masami Koketsu
  • Patent number: 8159003
    Abstract: A III-nitride device having a support substrate that may include a first silicon body, a second silicon body, an insulation body interposed between the first and second silicon bodies, and a III-nitride body formed over the second silicon body.
    Type: Grant
    Filed: November 26, 2008
    Date of Patent: April 17, 2012
    Assignee: International Rectifier Corporation
    Inventor: Michael A. Briere
  • Publication number: 20120086099
    Abstract: An integrated circuit device and method for fabricating the integrated circuit device is disclosed. The integrated circuit device includes a substrate, a diffusion source, and a lightly doped diffusion region in contact with a conductive layer. A junction of the lightly doped diffusion region with the conductive layer forms a Schottky region. An annealing process is performed to form the lightly doped diffusion region. The annealing process causes dopants from the diffusion source (for example, an n-well disposed in the substrate) of the integrated circuit device to diffuse into a region of the substrate, thereby forming the lightly doped diffusion region.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ping Chun Yeh, Der-Chyang Yeh, Chih-Ping Chao
  • Patent number: 8125008
    Abstract: A Schottky device and a semiconductor process of making the same are provided. The Schottky device comprises a substrate, a deep well, a Schottky contact, and an Ohmic contact. The substrate is doped with a first type of ions. The deep well is doped with a second type of ions, and formed in the substrate. The Schottky contact contacts a first electrode with the deep well. The Ohmic contact contacts a second electrode with a heavily doped region with the second type of ions in the deep well. Wherein the deep well has a geometry gap with a width formed under the Schottky contact, the first type of ions and the second type of ions are complementary, and the width of the gap adjusts the breakdown voltage.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: February 28, 2012
    Assignee: System General Corporation
    Inventors: Chiu-Chih Chiang, Chih-Feng Huang, You-Kuo Wu, Long Shih Lin
  • Patent number: 8063406
    Abstract: Various illustrative embodiments of methods for manufacturing a semiconductor device are described. These methods may include, for example, forming a first polysilicon layer above a substrate, wherein the first polysilicon layer comprises a doped portion, and forming a second polysilicon layer over a surface of the first polysilicon layer. Also, various illustrative embodiments of semiconductor devices are described that may be manufactured such as by the various methods described herein.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: November 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Haoren Zhuang, Matthias Lipinski, Jingyu Lian, Chandrasekhar Sarma
  • Publication number: 20110227187
    Abstract: The present invention provides a Schottky barrier semiconductor device having a semiconductor substrate 101, a low-concentration semiconductor layer 102, trenches 103 formed in the low-concentration semiconductor layer 102 and extending to the semiconductor substrate 101, and a mesa portion 102a formed between the trenches 103. This provides a high durability against a surge or transient voltage.
    Type: Application
    Filed: May 24, 2011
    Publication date: September 22, 2011
    Applicant: Panasonic Corporation
    Inventor: Kazuhiro Oonishi
  • Patent number: 8017977
    Abstract: A GaN heterojunction FET has an AlxGa1-xN first graded layer and an AlyGa1-yN second graded layer, which are formed sequentially on a channel layer. The Al mole fraction x of the first graded layer decreases linearly from, for example, 0.2 at an interface of the first graded layer with the channel layer to 0.1 at an interface thereof with the second graded layer. The Al mole fraction y of the second graded layer increases from, for example, 0.1 at an interface of the second graded layer with the first graded layer to 0.35 at a surface located on the opposite side from the first graded layer. Because the intrinsic polarization of AlGaN depends on the Al mole fraction, fixed negative charge is generated in the AlxGa1-xN first graded layer, and fixed positive charge is generated in the AlyGa1-yN second graded layer.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: September 13, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventor: John Twynam
  • Patent number: 8018020
    Abstract: The invention provides a Schottky barrier diode in which a forward voltage is low, a backward leakage current is small, and a withstanding voltage of an element is high, by improving both the forward voltage VF and the backward leakage current IR. A Schottky barrier diode of the invention includes a semiconductor substrate whose surface is provided with a semiconductor layer of first conduction type, a plurality of semiconductor layers of second conduction type provided as junction barriers at a predetermined depth from the surface of the semiconductor layer of first conduction type, an annular shape guard ring comprised of a semiconductor layer of second conduction type to surround the semiconductor layer of second conduction type on the surface of the semiconductor layer of first conduction type, and a metal layer disposed so as to contact the semiconductor layer of first conduction type and the semiconductor layer of second conduction type.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: September 13, 2011
    Assignee: Panasonic Corporation
    Inventor: Kazuhiro Oonishi
  • Patent number: 7982239
    Abstract: In an embodiment, a integrated semiconductor device includes a first Vertical Junction Field Effect Transistor (VJFET) having a source, and a gate disposed on each side of the first VJFET source, and a second VJFET transistor having a source, and a gate disposed on each side of the second VJFET source. At least one gate of the first VJFET is separated from at least one gate of the second VJFET by a channel. The integrated semiconductor device also includes a Junction Barrier Schottky (JBS) diode positioned between the first and second VJFETs. The JBS diode comprises a metal contact that forms a rectifying contact to the channel and a non-rectifying contact to at least one gate of the first and second VJFETs, and the metal contact is an anode of the JBS diode.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: July 19, 2011
    Assignee: Northrop Grumman Corporation
    Inventors: Ty R. McNutt, Eric J. Stewart, Rowland C. Clarke, Ranbir Singh, Stephen Van Campen, Marc E. Sherwin
  • Patent number: 7968953
    Abstract: A semiconductor device includes a substrate, a plurality of first columns having a first conductivity type, a plurality of second columns having a second conductivity type, a first electrode, and a second electrode. The first columns and the second columns are alternately arranged on the substrate to provide a super junction structure. The first electrode is disposed on the super junction structure, forms schottky junctions with the first columns, and forms ohmic junctions with the second columns. The second electrode is disposed on the substrate on an opposite side of the super junction structure. At least a part of the substrate and the super junction structure has lattice defects to provide a lifetime control region at which a lifetime of a minority carrier is controlled to be short.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: June 28, 2011
    Assignee: DENSO CORPORATION
    Inventors: Jun Sakakibara, Hitoshi Yamaguchi
  • Patent number: 7964930
    Abstract: A semiconductor device includes a trench MOS barrier Schottky diode having an integrated PN diode and a method is for manufacturing same.
    Type: Grant
    Filed: September 13, 2005
    Date of Patent: June 21, 2011
    Assignee: Robert Bosch GmbH
    Inventors: Alfred Goerlach, Ning Qu
  • Publication number: 20110042775
    Abstract: A method of producing a Schottky diode includes the steps of: forming a resist layer on the semiconductor substrate; performing a first exposure process on the resist layer; performing a first developing process for developing the resist layer to form a first Schottky diode having an excess region; performing a first cleaning process; performing a second exposure process on the first Schottky diode; performing a second developing process on the first Schottky diode to remove the excess region from the first Schottky diode so that a second Schottky diode corresponding to the specific Schottky diode is formed; and performing a second cleaning process.
    Type: Application
    Filed: August 20, 2010
    Publication date: February 24, 2011
    Inventors: Yuuki DOI, Hirokazu Fujimaki
  • Patent number: 7875950
    Abstract: In one embodiment, a semiconductor structure comprises a multi-portioned guard ring that includes a first portion and a second portion formed in a region of semiconductor material. A conductive contact layer forms a first Schottky barrier with the region of semiconductor material. The conductive contact layer overlaps the second portion and forms a second Schottky barrier that has an opposite polarity to the first Schottky barrier. The conductive contact layer does not overlap the first portion, which forms a pn junction with the region of semiconductor material.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: January 25, 2011
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Shanghui L. Tu, Fumika Kuramae
  • Publication number: 20100314707
    Abstract: Disclosed are semiconductor devices and methods of making semiconductor devices. An exemplary embodiment comprises a semiconductor layer of a first conductivity type having a first surface, a second surface, and a graded net doping concentration of the first conductivity type within a portion of the semiconductor layer. The graded portion is located adjacent to the top surface of the semiconductor layer, and the graded net doping concentration therein decreasing in value with distance from the top surface of the semiconductor layer. The exemplary device also comprises an electrode disposed at the first surface of the semiconductor layer and adjacent to the graded portion.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Inventors: Joseph A. Yedinak, Mark L. Rinehimer, Thomas E. Grebs, John L. Benjamin
  • Patent number: 7829970
    Abstract: A junction barrier Schottky diode has an N-type well having surface and a first impurity concentration; a p-type anode region in the surface of the well, and having a second impurity concentration; and an N-type cathode region in the surface of the well and horizontally abutting the anode region, and having a third impurity concentration. A first N-type region vertically abuts the anode and cathode regions, and has a fourth impurity concentration. An ohmic contact is made to the anode and a Schottky contact is made to the cathode. The fourth impurity concentration is less than the first, second and third impurity concentrations.
    Type: Grant
    Filed: April 22, 2008
    Date of Patent: November 9, 2010
    Assignee: Intersil Americas Inc.
    Inventors: Dev Alok Girdhar, Michael David Church
  • Publication number: 20100155877
    Abstract: A semiconductor diode that is disclosed. An exemplary semiconductor diode includes a portion of a semiconductor substrate including a first dopant, a first well with a Schottky region, and a second well with a second dopant; and an isolation region replacement element positioned over the semiconductor substrate and adjacent to the first and second wells.
    Type: Application
    Filed: December 14, 2009
    Publication date: June 24, 2010
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD
    Inventor: Shou-Mao Chen
  • Patent number: 7696599
    Abstract: A trench MOSFET with drain (8), drift region (10) body (12) and source (14). In order to improve the figure of merit for use of the MOSFET as control and sync FETs, the trench (20) is partially filled with dielectric (24) adjacent to the drift region (10) and a graded doping profile is used in the drift region (10).
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: April 13, 2010
    Assignee: NXP B.V.
    Inventors: Raymond J. E. Hueting, Erwin A. Hijzen
  • Patent number: 7692262
    Abstract: A vertical rectifying and protection power diode, formed in a lightly-doped semiconductor layer of a first conductivity type, resting on a heavily-doped substrate of the first conductivity type, having a first ring-shaped region, of the first conductivity type more heavily-doped than the layer and more lightly doped than the substrate, surrounding an area of the layer and extending to the substrate; and a second ring-shaped region, doped of the second conductivity type, extending at the surface of the first region and on either side thereof; a first electrode having a thin layer of a material capable of forming a Schottky diode with the layer, resting on the area of the layer and on at least a portion of the second ring-shaped region with which it forms an ohmic contact.
    Type: Grant
    Filed: July 7, 2004
    Date of Patent: April 6, 2010
    Assignee: STMicroelectronics S.A.
    Inventors: Jean-Luc Morand, Emmanuel Collard, André Lhorte
  • Publication number: 20100032790
    Abstract: A structure that includes a rectifier is formed as follows. A trench is formed in a semiconductor region of a first conductivity type. A dielectric layer is formed along opposing sidewalls of the trench but is discontinuous along the bottom of the trench. A doped liner is formed over the dielectric layer and along the bottom of the trench. The doped liner includes dopants of a second conductivity type and is in direct contact with the semiconductor region along the bottom of the trench. A portion of the dopants are diffused from the doped liner into the semiconductor region along the bottom of the trench to form a doped region. The doped region forms a PN junction with the surrounding semiconductor region.
    Type: Application
    Filed: August 6, 2008
    Publication date: February 11, 2010
    Inventor: Mark Rinehimer
  • Publication number: 20090283851
    Abstract: A semiconductor diode that eliminates leakage current and reduces parasitic resistance is disclosed. The semiconductor diode comprises a semiconductor substrate; a semiconductor layer disposed on the semiconductor substrate, wherein the semiconductor layer includes a first dopant and a first well with a Schottky region; and a polysilicon device positioned above the semiconductor layer and adjacent to the first well with the Schottky region.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Shou-Mao Chen
  • Patent number: 7612426
    Abstract: A Schottky barrier diode includes a first semiconductor layer and a second semiconductor layer successively formed above a semiconductor substrate with a buffer layer formed between the first and second semiconductor layers and the semiconductor substrate. A Schottky electrode and an ohmic electrode spaced from each other are formed on the second semiconductor layer, and a back face electrode is formed on the back face of the semiconductor substrate. The Schottky electrode or the ohmic electrode is electrically connected to the back face electrode through a via penetrating through at least the buffer layer.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: November 3, 2009
    Assignee: Panasonic Corporation
    Inventors: Manabu Yanagihara, Yasuhiro Uemoto, Tsuyoshi Tanaka, Daisuke Ueda
  • Publication number: 20090224354
    Abstract: A junction barrier Schottky diode is provided as having submicron channel width between implant regions by way of a process including the use of spacer technology. On-state resistance is lowered by providing the implant regions in a channel layer having increased dopant concentration.
    Type: Application
    Filed: March 5, 2008
    Publication date: September 10, 2009
    Applicant: CREE, INC.
    Inventors: Andrei Konstantinov, Christopher Harris, Jan-Olov Svederg
  • Patent number: 7569905
    Abstract: Systems and methods may provide electrical contacts to an array of substantially vertically aligned nanorods. The nanorod array may be fabricated on top of a conducting layer that serves as a bottom contact to the nanorods. A top metal contact may be applied to a plurality of nanorods of the nanorod array. The contacts may allow I/V (current/voltage) characteristics of the nanorods to be measured.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: August 4, 2009
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Thomas Hantschel, Noble M. Johnson, Peter Kiesel, Christian G. Van De Walle, William S. Wong
  • Publication number: 20090179264
    Abstract: A semiconductor device includes a substrate having a first conductivity type and a semiconductor layer formed over the substrate and having lower and upper surfaces. A laterally diffused metal-oxide-semiconductor (LDMOS) transistor device is formed over the substrate and includes a source region of the first conductivity type and a drain extension region of the first conductivity type formed in the semiconductor layer proximate the upper surface of the semiconductor layer, and a drain contact electrically connecting the drain extension region to the substrate. A Schottky diode is formed over the substrate and includes at least one doped region of the first conductivity type formed in the semiconductor layer proximate to the upper surface, an anode contact forming a Schottky barrier with the at least one doped region, and a cathode contact laterally spaced from the anode contact and electrically connecting at least one doped region to the substrate.
    Type: Application
    Filed: January 15, 2008
    Publication date: July 16, 2009
    Applicant: CICLON SEMICONDUCTOR DEVICE CORP.
    Inventors: Jacek Korec, Shuming Xu, Christopher Boguslaw Kocon
  • Publication number: 20090179297
    Abstract: A junction barrier Schottky device includes a semiconductor substrate with basal, drift, and channel regions doped to a first conductivity type. The channel region is more highly doped than the drift region, and a blocking region doped to a second conductivity type is disposed at least partly around the channel region. A Schottky barrier is formed on and in contact with the channel and blocking regions.
    Type: Application
    Filed: January 16, 2008
    Publication date: July 16, 2009
    Applicant: NORTHROP GRUMMAN SYSTEMS CORPORATION
    Inventors: Eric J. STEWART, Ty R. McNUTT, Rowland C. CLARKE
  • Patent number: 7525186
    Abstract: A stack package comprises a substrate having a circuit pattern; at least two semiconductor chips stacked on the substrate, having a plurality of through-via interconnection plugs and a plurality of guard rings which surround the respective through-via interconnection plugs, and connected with each other by the medium of the through-via interconnection plugs; a molding material for molding an upper surface of the substrate including the stacked semiconductor chips; and solder balls mounted to a lower surface of the substrate.
    Type: Grant
    Filed: December 29, 2006
    Date of Patent: April 28, 2009
    Assignee: Hynix Semiconductor Inc.
    Inventors: Sung Min Kim, Min Suk Suh
  • Patent number: 7524777
    Abstract: The invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, among others, may include forming one or more layers of material within an opening in a substrate, the opening and the one or more layers forming at least a portion of an isolation structure, and subjecting at least one of the one or more layers to an energy beam treatment, the energy beam treatment configured to change a stress of the one or more layers subjected thereto, and thus change a stress in the substrate.
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: April 28, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Puneet Kohli, Manoj Mehrotra, Jin Zhao, Sameer Ajmera
  • Publication number: 20090057807
    Abstract: The invention provides a Schottky barrier diode in which a forward voltage is low, a backward leakage current is small, and a withstanding voltage of an element is high, by improving both the forward voltage VF and the backward leakage current IR. A Schottky barrier diode of the invention includes a semiconductor substrate whose surface is provided with a semiconductor layer of first conduction type, a plurality of semiconductor layers of second conduction type provided as junction barriers at a predetermined depth from the surface of the semiconductor layer of first conduction type, an annular shape guard ring comprised of a semiconductor layer of second conduction type to surround the semiconductor layer of second conduction type on the surface of the semiconductor layer of first conduction type, and a metal layer disposed so as to contact the semiconductor layer of first conduction type and the semiconductor layer of second conduction type.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Inventor: Kazuhiro Oonishi
  • Publication number: 20090020843
    Abstract: This invention discloses a bottom-anode Schottky (BAS) diode that includes an anode electrode disposed on a bottom surface of a semiconductor substrate. The bottom-anode Schottky diode further includes a sinker dopant region disposed at a depth in the semiconductor substrate extending substantially to the anode electrode disposed on the bottom surface of the semiconductor and the sinker dopant region covered by a buried Schottky barrier metal functioning as an Schottky anode.
    Type: Application
    Filed: July 22, 2007
    Publication date: January 22, 2009
    Inventor: Francois Hebert
  • Patent number: 7476967
    Abstract: Embodiments of a composite carbon nanotube structure comprising a number of carbon nanotubes disposed in a matrix comprised of a metal or a metal oxide. The composite carbon nanotube structures may be used as a thermal interface device in a packaged integrated circuit device.
    Type: Grant
    Filed: February 22, 2006
    Date of Patent: January 13, 2009
    Assignee: Intel Corporation
    Inventor: Valery M. Dubin
  • Publication number: 20080203517
    Abstract: A semiconductor component is proposed which has a semiconductor body having a first semiconductor zone of the first conduction type, at least one first rectifying junction with respect to the first semiconductor zone, at least one second rectifying junction with respect to the first semiconductor zone, wherein the three rectifying junctions each have a barrier height of different magnitude.
    Type: Application
    Filed: February 26, 2008
    Publication date: August 28, 2008
    Applicant: Infineon Technologies AG
    Inventors: MICHAEL RUEB, Roland Rupp, Michael Treu
  • Patent number: 7397102
    Abstract: This invention discloses a junction barrier Schottky device supported on a substrate that has a first conductivity type. The Schottky device includes a first diffusion region of a first conductivity type for functioning as a forward barrier height reduction region. The Schottky device further includes a second diffusion region of a second conductivity type disposed immediately adjacent to the first diffusion region for functioning as a backward blocking enhancement region to reduce the backward leakage current.
    Type: Grant
    Filed: April 20, 2005
    Date of Patent: July 8, 2008
    Assignee: Taurus Micropower, Inc.
    Inventors: Fuw-Iuan Hshieh, Brian Pratt
  • Patent number: 7391058
    Abstract: A composite structure having a silicon carbide epitaxial layer is provided. The epitaxial layer includes at least four regions arranged vertically and defining respective interfaces, where each of the regions is characterized by a respective impurity concentration, where the impurity concentrations vary across each of the interfaces, and where each of the impurity concentrations exceeds 1×1017 cm?3 for at least one single impurity in all of the regions.
    Type: Grant
    Filed: June 27, 2005
    Date of Patent: June 24, 2008
    Assignee: General Electric Company
    Inventors: Larry Burton Rowland, Ahmed Elasser
  • Patent number: 7388271
    Abstract: A method of forming a rectifying diode. The method comprises providing a first semiconductor region of a first conductivity type and having a first dopant concentration and forming a second semiconductor region in the first semiconductor region. The second semiconductor region has the first conductivity type and having a second dopant concentration greater than the first dopant concentration. The method also comprises forming a conductive contact to the first semiconductor region and forming a conductive contact to the second semiconductor region. The rectifying diode comprises a current path, and the path comprises: (i) the conductive contact to the first semiconductor region; (ii) the first semiconductor region; (iii) the second semiconductor region; and (iv) the conductive contact to the second semiconductor region. The second semiconductor region does not extend to a layer buried relative to the first semiconductor region.
    Type: Grant
    Filed: July 1, 2005
    Date of Patent: June 17, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Vladimir Drobny, Derek Robinson
  • Publication number: 20080029838
    Abstract: A semiconductor device includes a semiconductor layer having a first conductivity type, a metal contact on the semiconductor layer and forming a Schottky junction with the semiconductor layer, and a semiconductor region in the semiconductor layer. The semiconductor region and the semiconductor layer form a first p-n junction in parallel with the Schottky junction. The first p-n junction is configured to generate a depletion region in the semiconductor layer adjacent the Schottky junction when the Schottky junction is reversed biased to thereby limit reverse leakage current through the Schottky junction. The first p-n junction is further configured such that punch-through of the first p-n junction occurs at a lower voltage than a breakdown voltage of the Schottky junction when the Schottky junction is reverse biased.
    Type: Application
    Filed: August 1, 2006
    Publication date: February 7, 2008
    Inventors: Qingchun Zhang, Sei-Hyung Ryu, Anant Agarwal
  • Patent number: 7078783
    Abstract: A vertical unipolar component formed in a semiconductor substrate. An upper portion of the substrate includes insulated trenches filled with a vertical multiple-layer of at least two conductive elements separated by an insulating layer, the multiple-layer depth being at most equal to the thickness of the upper portion.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: July 18, 2006
    Assignee: STMicroelectronics S.A.
    Inventor: Frédéric Lanois
  • Patent number: 7064408
    Abstract: A power Schottky rectifier device having pluralities of trenches are disclosed. The Schottky barrier rectifier device includes field oxide region having p-doped region formed thereunder to avoid premature of breakdown voltage and having a plurality of trenches formed in between field oxide regions to increase the anode area thereto increase forward current capacity or to shrinkage the planar area for driving the same current capacity. Furthermore, the trenches have rounded corners to alleviate current leakage and LOCOS region in the active region to relief stress during the bonding process. The processes for power Schottky barrier rectifier device including termination region formation need only three masks and thus can gain the benefits of cost down.
    Type: Grant
    Filed: December 10, 2003
    Date of Patent: June 20, 2006
    Assignees: Chip Integration Tech Co., Ltd.
    Inventor: Shye-Lin Wu
  • Patent number: 6979874
    Abstract: A plurality of p anode regions are formed at one surface of an n? substrate. A trench is formed in each p anode region. An ohmic junction region is formed between an anode metallic electrode and the p anode region. The p anode region has a minimum impurity concentration at a portion near the ohmic junction region which enables ohmic contact. A cathode metallic electrode is formed at the other surface of the n? substrate with an n+ cathode region interposed. Accordingly, a semiconductor device which has an improved withstand voltage and in which the reverse recovery current is reduced can be obtained.
    Type: Grant
    Filed: October 30, 2002
    Date of Patent: December 27, 2005
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Masana Harada
  • Patent number: 6949401
    Abstract: A method for producing a semiconductor component with adjacent Schottky (5) and pn (9) junctions positions in a drift area (2, 10) of a semiconductor material. According to the method, a silicon carbide substrate doped with a first doping material of at least 1018 cm?3 is provided, and a silicon carbide layer with a second doping material of the same charge carrier type in the range of 1014 and 1017 cm?3 is homo-epitaxially deposited on the substrate. A third doping material with a complimentary charge carrier is inserted, and structured with the aid of a diffusion and/or ion implantation, on the silicon carbide layer surface that is arranged far from the substrate to form pn junctions. Subsequently the component is subjected to a first temperature treatment between 1400° C. and 1700° C. Following this temperature treatment, a first metal coating is deposited on the implanted surface in order to form a Schottky contact and then a second metal coating is deposited in order to form an ohmic contact.
    Type: Grant
    Filed: September 9, 2002
    Date of Patent: September 27, 2005
    Assignee: Daimler Chrysler AG
    Inventors: Nando Kaminski, Raban Held
  • Patent number: 6936905
    Abstract: A power Schottky rectifier device and method of making the same are disclosed. The Schottky rectifier device including a LOCOS structure and two p-type doping regions, which are positioned one above another therein to isolate cells so as to avoid premature of breakdown voltage. The Schottky rectifier device comprises: an n? drift layer formed on an n+ substrate; a cathode metal layer formed on a surface of the n+ substrate opposite the n? drift layer; a pair of field oxide regions and termination region formed into the n? drift layer and each spaced from each other by the mesas, where the mesas have metal silicide layer formed thereon. A top metal layer formed on the field oxide regions and termination region and contact with the silicide layer.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: August 30, 2005
    Assignees: Chip Integration Tech Co., Ltd.
    Inventor: Shye-Lin Wu