Full Dielectric Isolation With Polycrystalline Semiconductor Substrate Patents (Class 257/524)
  • Patent number: 7291894
    Abstract: In accordance with an embodiment of the present invention, a MOSFET includes at least two insulation-filled trench regions laterally spaced in a first semiconductor region to form a drift region therebetween, and at least one resistive element located along an outer periphery of each of the two insulation-filled trench regions. A ratio of a width of each of the insulation-filled trench regions to a width of the drift region is adjusted so that an output capacitance of the MOSFET is minimized.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: November 6, 2007
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Steven Sapp, Peter H. Wilson
  • Patent number: 7279769
    Abstract: To suppress occurrence of dislocation in a substrate of a semiconductor device at an end portion of a gate electrode. Provided is a semiconductor device having a plurality of element formation regions formed over the main surface of a semiconductor substrate, an element isolation trench located between the element formation regions and having an element isolation insulating film embedded therein, and a gate insulating film, a gate electrode and a plurality of interconnect layers formed thereabove, each formed in the element formation region, wherein the element isolation trench has a thermal oxide film formed between the semiconductor substrate and the element isolation insulating film, and the element isolation film has a great number of micro-pores formed inside thereof and is more porous than the thermal oxide film.
    Type: Grant
    Filed: May 25, 2005
    Date of Patent: October 9, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Norio Ishitsuka, Jun Tanaka, Tomio Iwasaki, Hiroyuki Ohta
  • Patent number: 7271464
    Abstract: A method of depositing dielectric material into sub-micron spaces and resultant structures is provided. After a trench is etched in the surface of a wafer, a silicon nitride barrier is deposited into the trench. The silicon nitride layer has a high nitrogen content near the trench walls to protect the walls. The silicon nitride layer further from the trench walls has a low nitrogen content and a high silicon content, to allow improved adhesion. The trench is then filled with a spin-on precursor. A densification or reaction process is then applied to convert the spin-on material into an insulator. The resulting trench has a well-adhered insulator which helps the insulating properties of the trench.
    Type: Grant
    Filed: August 24, 2004
    Date of Patent: September 18, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Jigish D. Trivedi, Robert D. Patraw, Kevin L. Beaman, John A. Smythe, III
  • Patent number: 7262486
    Abstract: The SOI substrate 1 has a supporting substrate 10, an insulating layer 20 formed on the supporting substrate 10 and a silicon layer 30 formed on the insulating layer 20. A through electrode 40 is provided in a device formation region A1 of the SOI substrate 1. The through electrode 40 reaches the insulating layer 20 from the silicon layer 30. Specifically, the through electrode 40 extends to an inner part of the insulating layer 20 originating from a surface of the silicon layer 30 while penetrating the silicon layer 30. Here, an end face 40a of the through electrode 40 at the insulating layer 20 side stops inside the insulating layer 20.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: August 28, 2007
    Assignee: NEC Electronics Corporation
    Inventors: Masaya Kawano, Tsutomu Tashiro, Yoichiro Kurita
  • Patent number: 7247569
    Abstract: The present invention comprises a method for forming an ultra-thin channel MOSFET and the ultra-thin channel MOSFET produced therefrom. Specifically, the method comprises providing an SOI substrate having a buried insulating layer underlying an SOI layer; forming a pad stack atop the SOI layer; forming a block mask having a channel via atop the pad stack; providing a localized oxide region in the SOI layer on top of the buried insulating layer thereby thinning a portion of the SOI layer, the localized oxide region being self-aligned with the channel via; forming a gate in the channel via; removing at least the block mask; and forming source/drain extensions in the SOI layer abutting the thinned portion of the SOI layer. Providing the localized oxide region further comprises implanting oxygen dopant through the channel via into a portion of the SOI layer; and annealing the dopant to create the localized oxide region.
    Type: Grant
    Filed: December 2, 2003
    Date of Patent: July 24, 2007
    Assignee: International Business Machines Corporation
    Inventors: Diane C. Boyd, Bruce B. Doris, Meikei Ieong, Devendra K. Sadana
  • Patent number: 7224038
    Abstract: A semiconductor device capable of preventing defective embedding of an insulator and improving the withstand voltage (dielectric strength) of an element isolation region is obtained. This semiconductor device comprises a semiconductor substrate having a main surface and an element isolation trench formed on the main surface of the semiconductor device, while the trench width of an upper end of the element isolation trench is larger than the trench width of a bottom surface and the length of a side surface located between the upper end and an end of the bottom surface is larger than the length of a straight line connecting the upper end and the end of the bottom surface. Thus, the element isolation trench is so formed that the trench width of the upper end is larger than the trench width of the bottom surface, whereby an insulator can be readily embedded in the element isolation trench. Thus, the insulator can be prevented from defective embedding.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: May 29, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Ryosuke Usui, Tatsuya Fujishima
  • Patent number: 7192887
    Abstract: A method of manufacturing a MOS transistor is provided that achieves high-speed devices by reducing nitrogen diffusion to a silicon substrate interface due to redistribution of nitrogen and further suppressing its diffusion to a polysilicon interface, which prevents realization of faster transistors. An oxide film is exposed to a nitriding atmosphere to introduce nitrogen into the oxide film, and a thermal treatment process is performed in an oxidizing atmosphere. The thermal treatment process temperature in the oxidizing atmosphere is made equal to or higher than the maximum temperature in all the thermal treatment processes that are performed later than that thermal treatment process step.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: March 20, 2007
    Assignee: NEC Electronics Corporation
    Inventor: Eiji Hasegawa
  • Patent number: 7183615
    Abstract: A semiconductor memory has a memory cell matrix encompassing (a) device isolation films running along the column-direction, arranged alternately between the memory cell transistors aligned along the row-direction, (b) first conductive layers arranged along the row and column-directions, top surfaces of the first conductive layers lie at a lower level than top surfaces of the device isolation films, (c) an inter-electrode dielectric arranged both on the device isolation films and the first conductive layers so that the inter-electrode dielectric can be shared by the memory cell transistors belonging to different cell columns' relative dielectric constant of the inter-electrode dielectric is higher than relative dielectric constant of the device isolation films, and (d) a second conductive layer running along the row-direction, arranged on the inter-electrode dielectric. Here, upper corners of the device isolation films are chamfered.
    Type: Grant
    Filed: June 17, 2004
    Date of Patent: February 27, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hiroki Yamashita, Yoshio Ozawa, Atsuhiro Sato
  • Patent number: 7170109
    Abstract: A technique enabling to improve element isolation characteristic of a semiconductor device is provided. An element isolation structure is provided in a semiconductor substrate in which a silicon layer, a compound semiconductor layer and a semiconductor layer are laminated in this order. The element isolation structure is composed of a trench, a semiconductor film, and first and second insulating films. The trench extends through the semiconductor layer and extends to the inside of the compound semiconductor layer. The semiconductor film is provided on the surface of the trench, and the first insulating film is provided on the semiconductor film. The second insulting film is provided on the first insulating film and fills the trench.
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: January 30, 2007
    Assignee: Renesas Technology Corp.
    Inventors: Kohei Sugihara, Kazunobu Ota, Hidekazu Oda, Takahashi Hayashi
  • Patent number: 7170146
    Abstract: A thin film transistor (TFT) structure includes a substrate, a polysilicon structure including a plurality of channel regions, at least one lightly doped region and at least one heavily doped source/drain region, a plurality of gate structures, and an insulating layer formed between the gate structures and the polysilicon structure. The thickness of a first portion of the insulating layer under and between the gate structures is greater than the thickness of a second portion of the insulating layer adjacent to the first portion. At least one lightly doped region is formed under the first portion of the insulating layer and at least one heavily doped source/drain region is formed under the second portion of the insulating layer via the same doping procedure.
    Type: Grant
    Filed: April 28, 2004
    Date of Patent: January 30, 2007
    Assignee: Toppoly Optoelectronics Corp.
    Inventors: Shih-Chang Chang, De-Hua Deng, Yaw-Ming Tsai
  • Patent number: 7138319
    Abstract: A protective structure for blocking the propagation of defects generated in a semiconductor device is disclosed. In an exemplary embodiment, the structure includes a deep trench isolation formed between a memory storage region of the semiconductor device and a logic circuit region of the semiconductor device, the deep trench isolation being filled with an insulative material. The deep trench isolation thereby prevents the propagation of crystal defects generated in the logic circuit region from propagating into the memory storage region.
    Type: Grant
    Filed: January 10, 2005
    Date of Patent: November 21, 2006
    Assignee: International Business Machines Corporation
    Inventors: Tze-Chiang Chen, Kiang-Kai Han
  • Patent number: 7122876
    Abstract: A transistor of an integrated circuit is provided. A first doped well region is formed in a well layer at a first active region. At least part of the first doped well region is adjacent to a gate electrode of the transistor. A recess is formed in the first doped well region, and the recess preferably has a depth of at least about 500 angstroms. A first isolation portion is formed on an upper surface of the well layer at least partially over an isolation region. A second isolation portion is formed at least partially in the recess of the first doped well region. At least part of the second isolation portion is lower than the first isolation portion. A drain doped region is formed in the recess of the first doped well region. The second isolation portion is located between the gate electrode and the drain doped region.
    Type: Grant
    Filed: August 11, 2004
    Date of Patent: October 17, 2006
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: You-Kuo Wu, Edward Chiang, Shun-Liang Hsu
  • Patent number: 7112866
    Abstract: The invention provides a new multilevel interconnect structure of air gaps in a layer of IMD. A first layer of dielectric is provided over a surface; the surface contains metal points of contact. Trenches are provided in this first layer of dielectric. The trenches are filled with a first layer of nitride or disposable solid and polished. A second layer of dielectric is deposited over the first layer of dielectric. Trenches are formed in the second layer of dielectric, a second layer of nitride or disposable solid is deposited over the second layer of dielectric. The layer of nitride or disposable solid is polished. A thin layer of oxide is deposited over the surface of the second layer of dielectric. The thin layer of oxide is masked and etched thereby creating openings in this thin layer of oxide, these openings align with the points of intersect of the trenches in the first layer of dielectric and in the second layer of dielectric. The nitride or removable solid is removed from the trenches.
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: September 26, 2006
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Lap Chan, Cher Liang Cha, Kheng Chok Tee
  • Patent number: 7112850
    Abstract: This invention concerns a non-volatile memory device with a polarizable layer. The apparatus concerns a substrate, a buried oxide layer within the substrate, and a polarizable layer within the substrate. The polarizable layer is formed in a buried oxide layer of a silicon-on-insulator substrate for the fabrication of non-volatile memory. The process of creating the polarizable layer comprises implanting, through the active silicon layer, Si ions into the buried oxide layer at an ion implantation energy selected so that the implanted ion has its peak concentration between 5–50 nm from the silicon/buried oxide interface. The implantation step can occur while externally heating the silicon-on-insulator substrate at a temperature between 25–300 degrees Celsius. An annealing step may be completed to repair any damage the implantation may have created in the silicon-on-insulator substrate.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: September 26, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Harold L. Hughes, Patrick J. McMarr, Reed K. Lawrence
  • Patent number: 7019379
    Abstract: A semiconductor device includes a heavily doped layer 25 of p-type formed in the surface of an n-type well 21, an intermediately doped layer 26 of p-type formed to adjoin and surround the heavily p-doped layer 25, and an isolation region 22 formed to surround the heavily p-doped layer 25 and the intermediately p-doped layer 26. The heavily p-doped layer 25 has a higher dopant concentration than the well 21. The intermediately p-doped layer 26 has a higher dopant concentration than the well 21 and a lower dopant concentration than the heavily p-doped layer 25.
    Type: Grant
    Filed: November 12, 2003
    Date of Patent: March 28, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventor: Hirotsugu Honda
  • Patent number: 7002210
    Abstract: On a semiconductor substrate, a well is formed. In the well, one MOS transistor including a gate electrode, a source region, a source field limiting layer and a source/drain region, and another MOS transistor including a gate electrode, a drain electrode, a drain field limiting layer and a source/drain region are formed. The one and another MOS transistors are connected in series through the source/drain region common to the two transistors. Accordingly, a semiconductor device can be provided in which increase in pattern layout area is suppressed when elements including a high-breakdown voltage MOS transistor are to be connected in series.
    Type: Grant
    Filed: July 3, 2003
    Date of Patent: February 21, 2006
    Assignee: Renesas Technology Corp.
    Inventor: Masatoshi Taya
  • Patent number: 6964907
    Abstract: In a BJT, the extrinsic base to collector capacitance is reduced by forming a lateral trench between the extrinsic base region and collector. This is typically done by using an anisotropic wet etch process in a <110> direction of a <100> orientation wafer.
    Type: Grant
    Filed: November 17, 2003
    Date of Patent: November 15, 2005
    Assignee: National Semiconductor Corporation
    Inventors: Peter J. Hopper, Alexei Sadovnikov, Vladislav Vashchenko, Peter Johnson
  • Patent number: 6949007
    Abstract: A fabricating system. A processing tool executes a film removal process on a wafer using a chemical mechanism. A metrology tool monitors surface characteristics of the wafer to obtain a measured film thickness thereof before and after a first removal process, wherein the first removal process lasts a first processing duration. The controller, coupled to the processing and metrology tools, determines whether the difference between the measured film thickness and a preset film thickness exceeds a preset value, and determines a second processing duration of a second removal process according to the measured and preset film thickness and the first processing duration.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: September 27, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Hwa Wang, Chii-Ping Chen
  • Patent number: 6933586
    Abstract: An electrical interconnect structure on a substrate, includes a first porous dielectric layer with surface region from which a porogen has been removed; and an etch stop layer disposed upon the first porous dielectric layer so that the etch stop layer extends to partially fill pores in the surface region of the first porous dielectric layer from which the porogen has been removed, thus improving adhesion during subsequent processing. The porogen may be removed from the surface region by heating, and in particular by hot plate baking. A second porous dielectric layer, which may have the same composition as the first porous dielectric layer, may be formed over the etch stop layer. Electrical vias and lines may be formed in the first and second porous dielectric layer, respectively. The layers may be part of a multilayer stack, wherein all of the layers are cured simultaneously in a spin application tool porous dielectric layer.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: August 23, 2005
    Assignee: International Business Machines Corporation
    Inventors: Ann R Fornof, Jeffrey C Hedrick, Kang-Wook Lee, Christy S Tyberg
  • Patent number: 6921946
    Abstract: There is a test structure on a semiconductor substrate for testing misalignment between adjacent implanted regions of opposite conductivity in a semiconductor device. In an example embodiment, the test structure includes a first and a second triple well structure; the second triple well structure is adjacent to the first triple well-structure in a first direction. Each structure includes a lower buried n-well region, a p-well region, a p+-region, an n-well region and a base n+-region, wherein a central base portion and a central n-well region portion are common to the first and the second structure, with the central base portion as a symmetry line with a width. Between the central base portion and the p-well region in the first triple well-structure a first overlay, and between the central base portion and the p-well region in the second triple well-structure a second overlay is provided.
    Type: Grant
    Filed: December 16, 2002
    Date of Patent: July 26, 2005
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Guoqiao Tao, Roy Arthur Colclaser
  • Patent number: 6917092
    Abstract: A wiring structure includes wiring embedded in an insulating layer. A plurality of slit dummies each of that spaced each other are formed in the wiring. The wiring has a first portion that has a width wider than a reference width, and has a second portion that has a width shallower than the reference width. A distance of each slit dummy is less than a width of the reference width. The slit dummies are not formed in the second portion of the wiring.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: July 12, 2005
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Toru Yoshie
  • Patent number: 6914317
    Abstract: A microelectronic substrate and method for manufacture. In one embodiment, the microelectronic substrate includes a body having a first surface, a second surface facing a direction opposite from the first surface, and a plurality of voids in the body between the first and second surfaces. The voids can extend from the first surface to a separation region beneath the first surface. At least one operable microelectronic device is formed at and/or proximate to the first surface of the substrate material, and then a first stratum of the microelectronic substrate above the separation region is separated from a second stratum of the microelectronic substrate below the separation region. The first stratum of the microelectronic substrate can be further separated into discrete microelectronic dies before the first stratum is separated from the second stratum. In one aspect of this embodiment, the substrate can support a film and microelectronic devices can be formed in the film and/or in the substrate.
    Type: Grant
    Filed: August 21, 2003
    Date of Patent: July 5, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Charles E. Larson, Timothy E. Murphy, Bryan L. Taylor, Jon M. Long, Mark W. Ellis, Vincent L. Riley
  • Patent number: 6914316
    Abstract: A trench structure of a semiconductor device includes first and second regions of a substrate having first and second trenches, respectively, the first trench having an aspect ratio larger than that of the second trench, a first insulation material on a bottom and sidewalls of the first trench forming a first sub-trench in the first trench, a second insulation material completely filling the first sub-trench, a third insulation material formed on a bottom and sidewalls of the second trench forming a second sub-trench in the second trench, a fourth insulation material formed on a bottom and sidewalls of the second sub-trench, and a fifth insulation material completely filling a third sub-trench formed in the second sub-trench by the fourth insulation material.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: July 5, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Eun-Jung Yun, Sung-Eui Kim
  • Patent number: 6888214
    Abstract: Isolation methods and devices for isolating regions of a semiconductor device. The isolation method and structure include forming an isolating trench in an active area and filling the trench with a doped conductive material containing silicon. Suitable conductive materials containing silicon include polysilicon and silicon-germanium. There is also provided a method and structure for isolating the regions by providing a trench in an active area of a substrate, growing an epitaxial layer in the trench to fill the trench or to partially fill the trench and depositing an insulating material over the epitaxial layer and within the trench to completely fill the trench.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: May 3, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Chandra Mouli, Howard Rhodes
  • Patent number: 6888213
    Abstract: A dielectric insulation structure is formed in a silicon layer by integrating a dielectric trench structure therein. The dielectric trench structure defines an insulation well where semiconductor devices are to be integrated therein. The dielectric trench structure is on a hollow region that is completely surrounded by a dielectric area. The dielectric area also forms the side insulation of the dielectric trench structure. The dielectric trench structure is interrupted by a plurality of points to define a plurality of side support regions for the insulation well.
    Type: Grant
    Filed: May 22, 2003
    Date of Patent: May 3, 2005
    Assignee: STMicroelectronics S.r.l.
    Inventors: Salvatore Leonardi, Roberto Modica, Giuseppe Arena
  • Patent number: 6879000
    Abstract: A semiconductor-on-insulator chip is provided which includes a substrate that is formed of an electrically insulating material; a semiconducting layer overlying the substrate; a first region in the semiconducting layer that has a first thickness, the first region includes silicon regions defined by a shallow trench isolation; and a second region in the semiconducting layer that has a second thickness, the second region includes active regions defined by mesa isolation.
    Type: Grant
    Filed: March 8, 2003
    Date of Patent: April 12, 2005
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Yee-Chia Yeo
  • Patent number: 6847093
    Abstract: A semiconductor integrated circuit device is formed by a semiconductor substrate having an SiGe layer and a first Si layer epitaxially grown thereover, and on which there are element formation regions each partitioned by element isolation regions; a shallow groove isolation, which has a groove formed in each of the element isolation regions and an insulating film inside of the groove, said groove penetrating through the first Si layer and having a bottom in the SiGe layer; a second Si layer formed between the shallow groove isolation and the SiGe layer; and a semiconductor element formed over the main surface of the semiconductor substrate in the element formation regions. This construction enables a reduction in leakage current via the walls of the shallow groove isolation of the strained substrate, thereby improving the element isolation properties.
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: January 25, 2005
    Assignee: Renesas Tehnology Corp.
    Inventors: Katsuhiko Ichinose, Fumio Ootsuka
  • Patent number: 6812540
    Abstract: A semiconductor integrated circuit device is provided, in which variation in the threshold voltage of a MISFET, for example, a MISFET pair that constitute a sense amplifier, can be reduced. In a logic circuit area over which a logic circuit such as a sense amplifier circuit required to drive a memory cell is formed, n-type active areas having no gate electrode are arranged at both edges of active areas over which a p-channel MISFET pair for constituting a sense amplifier are formed. Assuming that the width between active areas nwp1 and nw1 is L4, the width between active areas nwp2 and nw2 is L6, and the width between active areas nwp1 and nwp2 is L5, (L4−L5), (L6−L5), and (L4−L6) are set equal to almost zero or smaller than twice the minimum processing dimension, so that the variation in shape of the device isolation trenches with the widths L4, L5, and L6 can be reduced, and the threshold voltage difference in the MISFET pair can be reduced.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: November 2, 2004
    Assignees: Hitachi, Ltd., Elpida Memory, Inc.
    Inventors: Norikatsu Takaura, Riichiro Takemura, Hideyuki Matsuoka, Shinichiro Kimura, Hisao Asakura, Ryo Nagai, Satoru Yamada
  • Patent number: 6800917
    Abstract: A semiconductor device includes an elongated, blade-shaped semiconductor element isolated from a surrounding region of a semiconductor substrate by buried and side oxide layers. A polysilicon post disposed at one end of the element has a bottom portion extending through the buried oxide to contact the substrate, providing for electrical and thermal coupling between the element and the substrate and for gettering impurities during processing. A device fabrication process employs a selective silicon-on-insulator (SOI) technique including forming trenches in the substrate; passivating the upper portion of the element; and performing a long oxidation to create the buried oxide layer. A second oxidation is used to create an insulating oxide layer on the sidewalls of the semiconductor element, and polysilicon material is used to fill the trenches and to create the post.
    Type: Grant
    Filed: December 17, 2002
    Date of Patent: October 5, 2004
    Assignee: Texas Instruments Incorporated
    Inventors: Sheldon D. Haynie, Steven L. Merchant, Sameer P. Pendharkar, Vladimir Bolkhovsky
  • Patent number: 6777783
    Abstract: An insulated gate bipolar transistor includes a first semiconductor layer of a first conductivity type, a second semiconductor layer of a second conductivity type formed on a top surface of the first semiconductor layer, a base layer of the first conductivity type formed on a top surface of the second semiconductor layer, a plurality of gate electrodes each of which is buried in a trench with a gate insulation film interposed therebetween, the trench being formed in the base layer to a depth reaching said second semiconductor layer from a surface of the base layer, each the gate electrode having an upper surface of a rectangular pattern with different widths in two orthogonal directions, the gate electrodes being disposed in a direction along a short side of the rectangular pattern, and emitter layers of the second conductivity type formed in the surface of the base layer to oppose both end portions of each the gate electrode in a direction along a long side of the rectangular pattern.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: August 17, 2004
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tadashi Matsuda
  • Publication number: 20040117977
    Abstract: An object of the present invention is to provide a ceramic substrate for a semiconductor-producing/examining device, in which it is possible to promptly raise its temperature, a heating face thereof has a small temperature variation, and no semiconductor wafer and the like is damaged or distorted by thermal impact. The present invention is a ceramic substrate for a semiconductor-producing/examining device having a resistance heating element formed on a surface thereof or inside thereof, wherein a projected portion for fitting a semiconductor wafer is formed along the periphery thereof and a large number of convex bodies, which make contact with the semiconductor wafer, are formed inside the projected portion.
    Type: Application
    Filed: January 21, 2004
    Publication date: June 24, 2004
    Inventors: Yasuji Hiramatsu, Yasutaka Ito
  • Patent number: 6717212
    Abstract: A device and method for making a semiconductor-on-insulator (SOI) structure having a leaky, thermally conductive material (LTCIM) layer disposed between a semiconductor substrate and a semiconductor layer.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: April 6, 2004
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Dong-Hyuk Ju, William George En, Srinath Krishnan, Concetta E. Riccobene, Zoran Krivokapic, Judy Xilin An, Bin Yu
  • Patent number: 6717217
    Abstract: A method of forming a silicon-on-insulator (SOI) substrate having a buried oxide region that has a greater content of thermally grown oxide as compared to oxide formed by implanted oxygen ions is provided. Specifically, the inventive SOI substrate is formed by utilizing a method wherein oxygen ions are implanted into a surface of a Si-containing substrate that includes a sufficient Si thickness to allow for subsequent formation of a buried oxide region in the Si-containing substrate which has a greater content of thermally grown oxide as compared to oxide formed by the implanted oxygen ions followed by an annealing step.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: April 6, 2004
    Assignee: International Business Machines Corporation
    Inventors: Keith E. Fogel, Maurice H. Norcott, Devendra K. Sadana
  • Publication number: 20040051160
    Abstract: A semiconductor device comprises an embedded insulation layer 101 formed on a semiconductor substrate 100, plural power semiconductor elements 2, 3 formed on a semiconductor substrate 100 on the embedded insulation layer, a trench 4 formed on the semiconductor substrate and isolating between the power semiconductor elements, and an isolator 5 insulating and driving control electrodes of the power semiconductor elements, and the power semiconductor elements 2, 3 such as transistors can be used, being connected each other in series.
    Type: Application
    Filed: August 19, 2003
    Publication date: March 18, 2004
    Applicant: Hitachi, Ltd.
    Inventors: Nobuyasu Kanekawa, Kohei Sakurai, Shoji Sasaki, Kenji Tabuchi, Mittsuru Watabe
  • Patent number: 6703679
    Abstract: A microfabricated device includes a substrate having a device layer and substantially filled, isolating trenches; a doped region of material formed by photolithographically defining a region for selective doping of said device layer, selectively doping said region, and thermally diffusing said dopant; circuits on said device layer formed using a substantially standard circuit technology; and at least one structure trench in the substrate which completes the definition of electrically isolated micromechanical structural elements.
    Type: Grant
    Filed: July 7, 2000
    Date of Patent: March 9, 2004
    Assignee: Analog Devices, IMI, Inc.
    Inventors: Mark A. Lemkin, William A. Clark, Thor Juneau, Allen W. Roessig
  • Patent number: 6693325
    Abstract: The present invention relates to a highly integrated SOI semiconductor device and a method for fabricating the SOI semiconductor device by reducing a distance between diodes or well resistors without any reduction in insulating characteristics. The device includes a first conductivity type semiconductor substrate and a surface silicon layer formed by inserting an insulating layer on the semiconductor substrate. A trench is formed by etching a predetermined portion of surface silicon layer, insulating layer and substrate to expose a part of the semiconductor substrate to be used for an element separating region, and a STI is formed in the trench. A transistor is constructed on the surface silicon layer surrounded by the insulating layer and STI with a gate electrode being positioned at the center thereof and with source/drain region being formed in the surface silicon layer of both edges of the gate electrode for enabling its bottom part to be in contact with the insulating layer.
    Type: Grant
    Filed: August 17, 2000
    Date of Patent: February 17, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Young-Gun Ko, Byung-Sun Kim
  • Publication number: 20040021195
    Abstract: A semiconductor device having grooves uniformly filled with semiconductor fillers is provided. Both ends of each of narrow active grooves are connected to an inner circumferential groove surrounding the active grooves. The growth speed of semiconductor fillers on both ends of the active grooves becomes equal to that at their central portions. As a result, a semiconductor device having the active grooves filled with the semiconductor fillers at a uniform height is obtained.
    Type: Application
    Filed: June 27, 2003
    Publication date: February 5, 2004
    Applicant: SHINDENGEN ELECTRIC MANUFACTURING CO., LTD.
    Inventors: Toru Kurosaki, Hiroaki Shishido, Mizue Kitada, Shinji Kunori, Kosuke Ohshima
  • Publication number: 20030230786
    Abstract: A semiconductor device and a method for fabricating the same are provided. The provided semiconductor device includes a field oxide layer formed in a semiconductor substrate to define an active region; gate structures formed on the active region; source/drain junctions formed on either side of the gate structures on the semiconductor substrate; a channel silicon layer arranged under the gate insulating layer to operate as a channel for connecting sources and drains; and buried junction isolation insulating layers under the channel silicon layer. The buried junction isolation insulating layers isolate source/drain junction regions of a MOS transistor, so that a short circuit in a bulk region under the channel of a transistor due to the high-integration of the device can be prevented.
    Type: Application
    Filed: May 30, 2003
    Publication date: December 18, 2003
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Ji-Young Kim, Ki-Nam Kim
  • Patent number: 6661076
    Abstract: A semiconductor device in which the potential of a conductive support substrate can be kept to be a predetermined potential, while an SOI substrate is used as a chip substrate, without adding a new step and providing a rear electrode, is provided. In a chip, on the main surface of a first Si substrate of a P-type, a SiO2 film and a second Si substrate of a P-type are laminated in this order. The chip has, in the second Si substrate, isolation trenches, an outermost isolation trench, a plurality of element forming regions isolated by these trenches, second element forming regions, a peripheral region, and a peripheral region connection wiring which connects a contact region of the peripheral region with a contact region connected with a predetermined potential, for example, a ground potential in the second element forming region surrounded by, for example, the isolation trench.
    Type: Grant
    Filed: October 30, 2001
    Date of Patent: December 9, 2003
    Assignee: NEC Electronics Corporation
    Inventors: Masahiro Toeda, Kazunari Takasugi
  • Patent number: 6635945
    Abstract: A semiconductor device and process of forming the device are described. The process includes forming a pad oxide film on the circuit-forming side of a semiconductor substrate; forming an oxidation prevention film on the pad oxide film; removing the oxidation prevention film and the pad oxide film at a desired position, thereby exposing the surface of the semiconductor substrate; horizontally recessing the pad oxide film; etching the exposed surface of the semiconductor substrate by isotropic etching; forming a trench to a desired depth, using the oxidation prevention film as a mask; horizontally recessing the pad oxide film; and oxidizing the trench formed in the semiconductor substrate. The produced device has round upper trench edges obtained by conducting isotropic etching of the exposed surface of the semiconductor substrate and horizontally recessing of the pad oxide film before the oxidation of the trench, whereby only one oxidation step is required.
    Type: Grant
    Filed: May 30, 2000
    Date of Patent: October 21, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Norio Ishitsuka, Hideo Miura, Shuji Ikeda, Yasuko Yoshida, Norio Suzuki, Kozo Watanabe, Kenji Kanamitsu
  • Patent number: 6617666
    Abstract: A semiconductor device includes a first insulating film comprising an opening, a capacitor formed at a selected position in the opening, a second insulating film formed at least in the opening, and a third insulating film formed on the second insulating film.
    Type: Grant
    Filed: March 7, 2002
    Date of Patent: September 9, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yoshitomi, Yuichi Nakashima
  • Patent number: 6589854
    Abstract: A method of forming a shallow trench isolation structure. A pad oxide layer and a mask layer are sequentially formed over a substrate. A portion of the pad oxide layer, mask layer and substrate are removed to form a trench in the substrate. A first stage high-density plasma chemical vapor deposition having a high etching/deposition ratio is conducted to form a layer of insulation material over the substrate. A second stage high-density plasma chemical vapor deposition having a lower etching/deposition rate is conducted to form a second layer of insulation material over the substrate and completely fills the trench. Insulating material outside the trench region is removed. Finally, the mask layer and the pad oxide layer are sequentially removed to form a complete STI structure.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: July 8, 2003
    Assignee: Macronix International Co., Ltd.
    Inventors: Wan-Yi Liu, Ping-Yi Chang
  • Patent number: 6570235
    Abstract: A cells array of mask read only memory, at least includes numerous essentially parallel cells chains and numerous isolation dielectric layers which are located between any two adjacent cells chains. Each cells chain at least includes: numerous gates that located on a substrate, numerous doped regions, numerous polysilicon layers, numerous cover dielectric layers, a conductor layer and numerous isolation dielectric layers.
    Type: Grant
    Filed: March 20, 2001
    Date of Patent: May 27, 2003
    Assignee: Macronix International Co., Ltd.
    Inventor: Chun-Jung Lin
  • Patent number: 6552408
    Abstract: Methods, apparatuses and substrate assembly structures for mechanical and chemical-mechanical planarizing processes used in the manufacturing microelectronic-device substrate assemblies. One aspect of the invention is directed toward a method for planarizing a microelectronic-device substrate assembly by removing material from a surface of the substrate assembly, detecting a first change in drag force between the substrate assembly and a polishing pad indicating that the substrate surface is planar, and identifying a second change in drag force between the substrate assembly and the polishing pad indicating that the planar substrate surface is at the endpoint elevation. After the second change in drag force is identified, the planarization process is stopped.
    Type: Grant
    Filed: February 20, 2001
    Date of Patent: April 22, 2003
    Assignee: Micron Technology, Inc.
    Inventors: Karl M. Robinson, Pai Pan
  • Patent number: 6504216
    Abstract: An electrostatic discharge protective circuit. The electrostatic discharge protective circuit includes a gate electrode. A drain is formed at one side of the gate electrode. A source is formed at another side of the gate electrode, wherein the gate electrode, the drain and the source together form a transistor. A plurality of isolation structures penetrates through the gate electrode and respectively isolates the drain and the source into a plurality of drain regions and source regions. A plurality of contacts is respectively formed on the gate electrode, the drain regions and the source regions, wherein each drain region and each source region respectively have at least one contact.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: January 7, 2003
    Assignee: United Microelectronics Corp.
    Inventors: Tien-Hao Tang, Chen-Chung Hsu
  • Patent number: 6504229
    Abstract: A semiconductor device comprises a first insulating film, a wiring layer and a second insulating film formed in this order on a semiconductor substrate, the second insulating film being provided with one or more through holes formed onto the wiring layer, wherein the wiring layer is electrically isolated by the first insulating film and the second insulating film at a region other than a region where the through holes are formed, and a ratio between a total of a bottom area of the through holes formed onto the wiring layer and a top surface area of the wiring layer is 1:300 to 10,000.
    Type: Grant
    Filed: April 18, 2001
    Date of Patent: January 7, 2003
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Hiroshi Yamauchi, Masayuki Satoh
  • Patent number: 6486525
    Abstract: An integrated circuit having improved soft error protection and a method improving the soft error protection of an integrated circuit are disclosed. The integrated circuit comprises a substrate 72, a transistor formed in the substrate 72, a first region 74 (e.g. a well) formed in the substrate having a first conductivity type, a second region 84 below the first region 74 having a second conductivity type, and a trench formed in the substrate having a depth at least substantially as deep as the well. The trench 70 is filled with a non-conductive material 71 that forms a frame around the transistor, whereby soft errors due to electron-hole pairs caused by ionizing radiation in the frame are substantially eliminated.
    Type: Grant
    Filed: July 13, 1999
    Date of Patent: November 26, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: Thomas J. Aton
  • Publication number: 20020130385
    Abstract: A method of manufacturing an insulating layer that ensures reproducibility across like manufacturing apparatus. The insulating layer is formed on the substrate by (a) flowing an oxidizing gas at an oxidizing gas flow rate, (b) flowing a first carrier gas at a first carrier gas flow rate while carrying a first impurity including boron flowing at a first impurity flow rate, (c) flowing a second carrier gas at a second carrier gas flow rate while carrying a second impurity including phosphorus flowing at a second impurity flow rate, and (d) flowing a silicon source material at a silicon source flow rate. The second carrier gas flow rate is greater than the first carrier gas flow rate.
    Type: Application
    Filed: April 16, 2002
    Publication date: September 19, 2002
    Inventors: Woo-Chan Jung, Jin-Ho Jeon, Jeon-Sig Lim, Jong-Seung Yi
  • Patent number: 6452246
    Abstract: A trench is formed on a primary surface of a semiconductor substrate, and is filled with trench material to separate the surface region of the semiconductor substrate into plural active regions. At least a portion of the surface of the trench material adjoining the semiconductor substrate is depressed by a predetermined depth with reference to the primary surface of the semiconductor device. Thus, prevented is a decrease in a drain current of a semiconductor device having a trench isolation structure.
    Type: Grant
    Filed: February 28, 2000
    Date of Patent: September 17, 2002
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shigeki Komori
  • Patent number: 6433401
    Abstract: A microstructure and method for forming the microstructure are disclosed. The method includes: providing a handle substrate; providing a device substrate in which high-aspect-ratio structures and optional integrated circuitry will be fabricated; forming one or more filled isolation trenches within a recessed cavity on a first surface of the device substrate or alternatively forming one or more filled isolation trenches on a first surface of the device substrate and forming a recessed cavity on a first surface of the handle substrate; bonding the first surface of the device substrate to the first surface of the handle substrate; removing a substantially uniform amount of material from the second surface of the device substrate to expose at least one isolation trench; optionally forming circuits and interconnection on a second surface of the device substrate; and etching a set of features in the second surface of the device substrate to complete the definition of electrically isolated structural elements.
    Type: Grant
    Filed: April 5, 2000
    Date of Patent: August 13, 2002
    Assignee: Analog Devices IMI, Inc.
    Inventors: William A. Clark, Mark A. Lemkin, Thor N. Juneau, Allen W. Roessig