With Base Region Doping Concentration Step Or Gradient Or With Means To Increase Current Gain Patents (Class 257/558)
  • Patent number: 8994194
    Abstract: A method of manufacturing a biosensor semiconductor device in which copper electrodes at a major surface of the device are modified to form Au—Cu alloy electrodes. Such modification is effected by depositing a gold layer over the device, and then thermally treating the device to promote interdiffusion between the gold and the electrode copper. Alloyed gold-copper is removed from the surface of the device, leaving the exposed electrodes. The electrodes are better compatible with further processing into a biosensor device than is the case with conventional copper electrodes, and the process windows are wider than for gold capped copper electrodes. A biosensor semiconductor device having Au—Cu alloy electrodes is also disclosed.
    Type: Grant
    Filed: February 4, 2014
    Date of Patent: March 31, 2015
    Assignee: NXP, B.V.
    Inventors: David van Steenwinckel, Thomas Merelle, Franciscus Petrus Widdershoven, Viet Hoang Nguyen, Dimitri Soccol, Jan Leo Dominique Fransaer
  • Patent number: 8916951
    Abstract: A lateral bipolar transistor with deep emitter and deep collector regions is formed using multiple epitaxial layers of the same conductivity type. Deep emitter and deep collector regions are formed without the use of trenches. Vertically aligned diffusion regions are formed in each epitaxial layer so that the diffusion regions merged into a contiguous diffusion region after annealing to function as emitter or collector or isolation structures. In another embodiment, a lateral trench PNP bipolar transistor is formed using trench emitter and trench collector regions. In yet another embodiment, a lateral PNP bipolar transistor with a merged LDMOS transistor is formed to achieve high performance.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: December 23, 2014
    Assignee: Alpha and Omega Semiconductor Incorporated
    Inventors: Shekar Mallikarjunaswamy, François Hébert
  • Patent number: 8836043
    Abstract: A lateral bipolar junction transistor includes an emitter region; a base region surrounding the emitter region; a gate disposed at least over a portion of the base region; and a collector region surrounding the base region; wherein the portion of the base region under the gate does not under go a threshold voltage implant process.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: September 16, 2014
    Assignee: Mediatek Inc.
    Inventors: Ching-Chung Ko, Tung-Hsing Lee
  • Patent number: 8674454
    Abstract: A lateral bipolar junction transistor includes an emitter region; a base region surrounding the emitter region; a gate disposed at least over a portion of the base region; and a collector region surrounding the base region; wherein the portion of the base region under the gate does not under go a threshold voltage implant process.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: March 18, 2014
    Assignee: Mediatek Inc.
    Inventors: Ching-Chung Ko, Tung-Hsing Lee
  • Patent number: 8624355
    Abstract: A semiconductor device includes an n-type first guard ring layer provided between an emitter layer and a collector layer on a surface side of a base layer, and having a higher n-type impurity concentration than the base layer, and an n-type second guard ring layer provided between the first guard ring layer and a buried layer, connected to the first guard ring layer and the buried layer, and having a higher n-type impurity concentration than the base layer. The first guard ring layer has an n-type impurity concentration profile decreasing toward the second guard ring layer side, and the second guard ring layer has an impurity concentration profile decreasing toward the first guard ring layer side.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: January 7, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Koji Shirai
  • Patent number: 8178946
    Abstract: A heterojunction bipolar transistor (HBT) having an emitter, a base, and a collector, the base including a first semiconductor layer coupled to the collector, the first semiconductor layer having a first bandgap between a first conduction band and a first valence band and a second semiconductor layer coupled to the first semiconductor layer and having a second bandgap between a second conduction band and a second valence band, wherein the second valence band is higher than the first valence band and wherein the second semiconductor layer comprises a two dimensional hole gas and a third semiconductor layer coupled to the second semiconductor layer and having a third bandgap between a third conduction band and a third valence band, wherein the third valence band is lower than the second valence band and wherein the third semiconductor layer is coupled to the emitter.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: May 15, 2012
    Assignee: HRL Laboratories, LLC
    Inventors: James Chingwei Li, Marko Sokolich, Tahir Hussain, David H. Chow
  • Patent number: 8115280
    Abstract: An integrated circuit structure includes a well region of a first conductivity type, an emitter of a second conductivity type opposite the first conductivity type over the well region, a collector of the second conductivity type over the well region and substantially encircling the emitter, and a base contact of the first conductivity type over the well region. The base contact is horizontally spaced apart from the emitter by the collector. At least one conductive strip horizontally spaces the emitter, the collector, and the base contact apart from each other. A dielectric layer is directly under, and contacting, the at least one conductive strip.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Shuo-Mao Chen, Chin-Wei Kuo, Sally Liu
  • Patent number: 8106481
    Abstract: Most semiconductor devices manufactured today, have uniform dopant concentration, either in the lateral or vertical device active (and isolation) regions. By grading the dopant concentration, the performance in various semiconductor devices can be significantly improved. Performance improvements can be obtained in application specific areas like increase in frequency of operation for digital logic, various power MOSFET and IGBT ICS, improvement in refresh time for DRAM's, decrease in programming time for nonvolatile memory, better visual quality including pixel resolution and color sensitivity for imaging ICs, better sensitivity for varactors in tunable filters, higher drive capabilities for JFET's, and a host of other applications.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: January 31, 2012
    Inventor: G. R. Mohan Rao
  • Patent number: 8030731
    Abstract: An isolated diode comprises a floor isolation region, a dielectric-filled trench and a sidewall region extending from a bottom of the trench at least to the floor isolation region. The floor isolation region, dielectric-filled trench and a sidewall region are comprised in one terminal (anode or cathode) of the diode and together form an isolated pocket in which the other terminal of the diode is formed. In one embodiment the terminals of the diode are separated by a second dielectric-filled trench and sidewall region.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 4, 2011
    Assignees: Advanced Analogic Technologies, Inc., Advanced Analogic Technologies (Hong Kong) Limited
    Inventors: Richard K. Williams, Donald Ray Disney, Wai Tien Chan
  • Patent number: 7897995
    Abstract: A lateral bipolar junction transistor formed in a semiconductor substrate includes an emitter region; a base region surrounding the emitter region; a gate disposed at least over a portion of the base region; a collector region having at least one open side and being disposed about a periphery of the base region; a shallow trench isolation (STI) region disposed about a periphery of the collector region; a base contact region disposed about a periphery of the STI region; and an extension region merging with the base contact region and laterally extending to the gate on the open side of the collector region.
    Type: Grant
    Filed: April 7, 2009
    Date of Patent: March 1, 2011
    Assignee: Mediatek Inc.
    Inventors: Ming-Tzong Yang, Tao Cheng, Ching-Chung Ko, Tung-Hsing Lee
  • Patent number: 7855421
    Abstract: An embedded memory required for a high performance, multifunction SOC, and a method of fabricating the same are provided. The memory includes a bipolar transistor, a phase-change memory device and a MOS transistor, adjacent and electrically connected, on a substrate. The bipolar transistor includes a base composed of SiGe disposed on a collector. The phase-change memory device has a phase-change material layer which is changed from an amorphous state to a crystalline state by a current, and a heating layer composed of SiGe that contacts the lower surface of the phase-change material layer.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: December 21, 2010
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Seung-Yun Lee, Sangouk Ryu, Sung Min Yoon, Young Sam Park, Kyu-Jeong Choi, Nam-Yeal Lee, Byoung-Gon Yu
  • Patent number: 7838969
    Abstract: A diode is disclosed. One embodiment provides a semiconductor body having a front and a back, opposite the front in a vertical direction of the semiconductor body. The semiconductor body contains, successively in the vertical direction from the back to the front, a heavily n-doped zone, a weakly n-doped zone, a weakly p-doped zone and a heavily p-doped zone. In the vertical direction, the weakly p-doped zone has a thickness of at least 25% and at most 50% of the thickness of the semiconductor body.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: November 23, 2010
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Reiner Barthelmess
  • Publication number: 20100252860
    Abstract: A lateral bipolar junction transistor formed in a semiconductor substrate includes an emitter region; a base region surrounding the emitter region; a gate disposed at least over a portion of the base region; a collector region having at least one open side and being disposed about a periphery of the base region; a shallow trench isolation (STI) region disposed about a periphery of the collector region; a base contact region disposed about a periphery of the STI region; and an extension region merging with the base contact region and laterally extending to the gate on the open side of the collector region.
    Type: Application
    Filed: April 7, 2009
    Publication date: October 7, 2010
    Inventors: Ming-Tzong Yang, Tao Cheng, Ching-Chung Ko, Tung-Hsing Lee
  • Patent number: 7692268
    Abstract: An integrated circuit including a bipolar transistor is disclosed. One embodiment provides an insulation structure used to form a junction insulation, a collector structure formed inside a semiconductor zone having openings dividing the collector structure into collector zones. The collector zones are arranged in such a manner that a shortest lateral distance between an emitter zone and the insulation structure runs at least through one of the collector zones.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: April 6, 2010
    Assignee: Infineon Technologies AG
    Inventors: Gerhard Prechtl, Marcel Kreuzberg
  • Patent number: 7656011
    Abstract: A diode is disclosed. One embodiment provides a semiconductor body having a front and a back, opposite the front in a vertical direction of the semiconductor body. The semiconductor body contains, successively in the vertical direction from the back to the front, a heavily n-doped zone, a weakly n-doped zone, a weakly p-doped zone and a heavily p-doped zone. In the vertical direction, the weakly p-doped zone has a thickness of at least 25% and at most 50% of the thickness of the semiconductor body.
    Type: Grant
    Filed: January 3, 2008
    Date of Patent: February 2, 2010
    Assignee: Infineon Technologies AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Reiner Barthelmess
  • Patent number: 7495264
    Abstract: A semiconductor device has a substrate and a dielectric film formed directly or indirectly on the substrate. The dielectric film contains a metal silicate film, and a silicon concentration in the metal silicate film is lower in a center portion in the film thickness direction than in an upper portion and in a lower portion.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: February 24, 2009
    Assignee: NEC Corporation
    Inventors: Heiji Watanabe, Haruhiko Ono, Nobuyuki Ikarashi
  • Patent number: 7422952
    Abstract: A ballasting region is placed between the base region and the collector contact of a bipolar junction transistor to relocate a hot spot away from the collector contact of the transistor. Relocating the hot spot away from the collector contact prevents the collector contact from melting during an electrostatic discharge (ESD) pulse.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: September 9, 2008
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Peter J. Hopper, Yuri Mirgorodski
  • Patent number: 7342293
    Abstract: The present invention relates to bipolar junction transistors (BJTS). The collector region of each BJT is located in a semiconductor substrate surface and adjacent to a first shallow trench isolation (STI) region. A second STI region is provided, which extends between the first STI region and the collection region and undercuts a portion of the active base region with an undercut angle of not more than about 90°. For example, the second STI region may a substantially triangular cross-section with an undercut angle of less than about 90°, or a substantially rectangular cross-section with an undercut angle of about 90°. Such a second STI region can be fabricated using a porous surface section formed in an upper surface of the collector region.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: March 11, 2008
    Assignee: International Business Machines Corporation
    Inventors: Thomas A. Wallner, Thomas N. Adam, Stephen W. Bedell, Joel P. De Souza
  • Patent number: 7329925
    Abstract: A device for electrostatic discharge (ESD) protection is disclosed. The device for electrostatic discharge protection includes a lateral bipolar transistor and a diode. The semiconductor transistor has an emitter, a base and a collector electrically connected to a first power line (such as Vdd), a second power line (such as Vss) and a bond pad of an integrated circuit respectively. The diode has an n electrode and a p electrode electrically connected to the first power line and the bond pad respectively.
    Type: Grant
    Filed: January 5, 2006
    Date of Patent: February 12, 2008
    Assignee: Winbond Electronics Corporation
    Inventor: Jen-Chou Tseng
  • Patent number: 7285830
    Abstract: An improved lateral bipolar junction transistor and a method of forming such a lateral bipolar transistor without added mask in CMOS flow on a p-substrate are disclosed. The CMOS flow includes patterning and n-well implants; pattern and implant pocket implants for core nMOS and MOS; pattern and implants pocket implants I/O nMOS and pMOS; sidewall deposit and etch and then source/drain pattern and implant for nMOS and pMOS. The bipolar transistor is formed by forming emitter and collector contacts by implants used in source/drain regions; forming an emitter by implants done in core pMOS during core pMOS LDD extender; and forming part of an base by pocket implant steps.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 23, 2007
    Assignee: Texas Instruments Incorporated
    Inventor: Amitava Chatterjee
  • Patent number: 7221036
    Abstract: A ballasting region is placed between the base region and the collector contact of a bipolar junction transistor to relocate a hot spot away from the collector contact of the transistor. Relocating the hot spot away from the collector contact prevents the collector contact from melting during an electrostatic discharge (ESD) pulse.
    Type: Grant
    Filed: May 16, 2005
    Date of Patent: May 22, 2007
    Assignee: National Semiconductor Corporation
    Inventors: Vladislav Vashchenko, Peter J. Hopper, Yuri Mirgorodski
  • Patent number: 7173320
    Abstract: A lateral bipolar transistor includes an emitter region, a base region, a collector region, and a gate disposed over the base region. A bias line is connected to the gate for applying a bias voltage thereto during operation of the transistor. The polarity of the bias voltage is such as to create an accumulation layer in the base under the gate. The accumulation layer provides a low-resistance path for the transistor base current, thus reducing the base resistance of the transistor.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: February 6, 2007
    Assignee: Altera Corporation
    Inventor: Irfan Rahim
  • Patent number: 7173274
    Abstract: A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Douglas Duane Coolbaugh, James Stuart Dunn, David R. Greenberg, David L. Harame, Basanth Jagannathan, Robb Allen Johnson, Louis D. Lanzerotti, Kathryn Turner Schonenberg, Ryan Wayne Wuthrich
  • Patent number: 7019383
    Abstract: According to one exemplary embodiment, a gallium arsenide heterojunction bipolar transistor comprises a collector layer and a first spacer layer situated over the collector layer, where the first spacer layer is a high-doped P+ layer. For example, the first spacer layer may comprise GaAs doped with carbon. The gallium arsenide heterojunction bipolar transistor further comprises a base layer situated over the first spacer layer. The base layer may comprise, for example, a concentration of indium, where the concentration of indium is linearly graded in the base layer. The base layer may comprise InGaAsN, for example. The gallium arsenide heterojunction bipolar transistor further comprises an emitter layer situated over the base layer. The emitter layer may comprise, for example, InGaP.
    Type: Grant
    Filed: February 26, 2003
    Date of Patent: March 28, 2006
    Assignee: Skyworks Solutions, Inc.
    Inventors: Peter J. Zampardi, Kevin Choi, Lance G. Rushing
  • Patent number: 6894366
    Abstract: An improved BJT is described that maximizes both Bvceo and Ft/Fmax for optimum performance. Scattering centers are introduced in the collector region (80) of the BJT to improve Bvceo. The inclusion of the scattering centers allows the width of the collector region WCD (90) to be reduced leading to an improvement in Ft/Fmax.
    Type: Grant
    Filed: September 28, 2001
    Date of Patent: May 17, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Gregory E. Howard, Jeffrey Babcock, Angelo Pinto, Scott Balster
  • Patent number: 6864538
    Abstract: An ESD protection device encompassing a vertical bipolar transistor that is connected as a diode and has an additional displaced base area. The assemblage has a space-saving configuration and a decreased difference between snapback voltage and breakdown voltage.
    Type: Grant
    Filed: April 14, 2001
    Date of Patent: March 8, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Stephan Mettler, Wolfgang Wilkening
  • Publication number: 20040212043
    Abstract: A method for fabricating a bipolar transistor includes forming a first region of a first conductivity type in a semiconductor structure to form a collector region and forming a second region of a second conductivity type in the first region to form a base region. A first mask is applied including an opening defining an emitter region of the bipolar transistor. The method further includes a triple implantation process using the first mask. Thus, a third region of the first conductivity type is formed in the first region and overlaid the second region. A fourth region of the second conductivity type is formed in the second region and is more heavily doped than the second region. A fifth region of the first conductivity type is formed in the second region and above the fourth region. The fifth region forms the emitter region of the bipolar transistor.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Martin E. Garnett, Peter Zhang, Steve McCormack, Ji-hyoung Yoo
  • Patent number: 6730981
    Abstract: In an element formation region, a surface of an N− epitaxial layer is inclined upward from an end of a field oxide film to a sidewall of an opening. An external base diffusion layer at the surface of the N− epitaxial layer is inclined upward from a side of the field oxide film to the sidewall of the opening, and is exposed at the sidewall of the opening. A portion of the sidewall of the opening exposing the external base diffusion layer is tapered. The depth of a lower end of the external base diffusion layer or the sidewall of the opening is substantially equal to or smaller than that of a bottom of the opening. A decrease in breakdown voltage between an emitter and a base is suppressed, and decrease and variation of current gain hFE is suppressed.
    Type: Grant
    Filed: November 4, 2002
    Date of Patent: May 4, 2004
    Assignee: Renesas Technology Corp.
    Inventor: Hidenori Fujii
  • Patent number: 6611044
    Abstract: A lateral bipolar transistor for an intergrated circuit is provided that maintains a high current gain and high frequency capability without sacrificing high Early voltage. More particularly, a lateral bipolar transistor is formed on an integrated circuit having both bipolar and CMOS devices, the lateral bipolar transistor being formed according to the BiCMOS method and without additional steps relative to formation of vertical bipolar devices if provided in the same area. Among other things, an integrated circuit is provided in which P well structures are provided in the collector regions of an LPNP that have been found to affect a significant increase in the product of the Early voltage and the current gain.
    Type: Grant
    Filed: August 26, 1999
    Date of Patent: August 26, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Armand Pruijmboom, David M. Szmyd, Reinhard Germany Brock
  • Patent number: 6570240
    Abstract: In order to form a semiconductor device including a lateral bipolar transistor which is a match in the device performance for a vertical bipolar transistor, an electrically conductive film which is formed by filling a trench reaching a buried oxide film in an SOI substrate with an electrically conductive film is utilized for an emitter and/or a collector, whereby a bipolar transistor is formed through a simple process.
    Type: Grant
    Filed: August 29, 2000
    Date of Patent: May 27, 2003
    Assignee: Hitachi, Ltd.
    Inventors: Takasumi Ohyanagi, Atsuo Watanabe
  • Patent number: 6538294
    Abstract: An arrangement in a semiconductor component includes a highly doped layer on a substrate layer and is delimited by at least one trench extending from the surface of the component through the highly doped layer. A sub-layer between the substrate layer and the highly doped layer is doped with the same type of dopant as the buried collector, but to a lower concentration. The sub-layer causes a more even distribution of the potential lines in the substrate and in a sub-collector layer, thereby eliminating areas of dense potential lines and increasing the breakdown voltage of the component, (i.e., because the breakdown voltage is lower in areas with dense potential lines).
    Type: Grant
    Filed: June 21, 2000
    Date of Patent: March 25, 2003
    Assignee: Telefonaktiebolaget LM Ericson (publ)
    Inventors: Håkan Sjödin, Anders Söderbärg
  • Patent number: 6501152
    Abstract: A lateral NPN transistor (LPNP) (102) having the lightly doped drain extension implant blocked from the emitter region (118) but not the collector region (120). Accordingly, the emitter region (118) has a more abrupt junction for high emitter injection efficiency while the collector region (120) has a lightly doped region for reduced base depletion.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: December 31, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: F. Scott Johnson
  • Patent number: 6376897
    Abstract: In a bipolar transistor improved to exhibit an excellent high-frequency property by decreasing the width of the intrinsic base with without increasing the base resistance, an emitter region, intrinsic base region and collector region are closely aligned on an insulating layer, and the intrinsic base region and the collector region make a protrusion projecting upward from the substrate surface. The protrusion has a width wider than the width of the intrinsic base region.
    Type: Grant
    Filed: May 19, 1999
    Date of Patent: April 23, 2002
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamada, Hideaki Nii, Makoto Yoshimi, Tomoaki Shino, Kazumi Inoh, Shigeru Kawanaka, Tsuneaki Fuse, Sadayuki Yoshitomi
  • Patent number: 6281530
    Abstract: A lateral PNP transistor (LPNP) (102) having the low resistance base buried N+ region (114) removed from below the emitter region (118). This leaves a high resistance n-well (116) below the emitter. The resistance from the center of the emitter region (118) to the N+ buried region (114) is greater than the resistance at the periphery of the emitter region (118) to the N+ buried region (114). Debiasing will occur in the center of the emitter region (118) where the parasitic base current is generated. Thus, the ratio of parasitic current to active collector current and peak beta will improve.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: August 28, 2001
    Assignee: Texas Instruments Incorporated
    Inventor: F. Scott Johnson
  • Patent number: 6245609
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device), a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: June 12, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsai, Ruey-Hsin Liu, Jei-Feng Hwang, Kuo-Chio Liu
  • Patent number: 6246104
    Abstract: An Si semiconductor device has an emitter region, a base region and a collector region formed on a substrate substantially in parallel to a plane of the substrate. And at least one of the emitter region the base region and the collector region includes an SiGe mixed crystal semiconductor region formed by ion implantation of Ge.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: June 12, 2001
    Assignee: Canon Kabushiki Kaisha
    Inventors: Hisanori Tsuda, Hidenori Watanabe
  • Patent number: 6153919
    Abstract: A manufacturing method for semiconductor components is disclosed which will allow better precision in the definition of the doped areas of the components and the separation of differently doped areas. A selectively shaped area of, for example, polysilicon, defining the area or areas to be doped, is deposited on the component before the masks are applied. This makes the fitting of the masks less critical, as they only have to be fitted within the area of the polysilicon layer. In this way an accuracy of 0.1 .mu.m or better can be achieved.
    Type: Grant
    Filed: January 26, 1999
    Date of Patent: November 28, 2000
    Assignee: Telefonaktiebolaget LM Ericsson
    Inventors: H.ang.kan Sjodin, Anders Soderbarg, Nils Ogren, Ivar Hamberg, Dimitri Olofsson, Karin Andersson
  • Patent number: 6043112
    Abstract: The boundary between the P type silicon base and N.sup.+ buffer layer of an IGBT is intentionally damaged, as by a germanium implant, to create well defined and located damage sites for reducing lifetime in the silicon.
    Type: Grant
    Filed: July 18, 1997
    Date of Patent: March 28, 2000
    Assignee: International Rectifier Corp.
    Inventors: Richard Francis, Perry L. Merrill
  • Patent number: 6005283
    Abstract: A complementary bipolar transistor having a lateral npn bipolar trasistor, a vertical and a lateral pnp bipolar transistor, an integrated injection logic, a diffusion capacitor, a polysilicon capacitor and polysilicon resistors are disclosed. The lateral pnp bipolar transistor has an emitter region and a collector region which includes high-density regions and low-density regions, and the emitter region is formed in an n type tub region. In the integrated injection logic circuit, collector regions are surrounded by a high-density p type region, and low-density p type regions are formed under the collector regions. The diffusion capacitor and the polysilicon capacitor are formed in one substrate. The diffusion regions except the regions formed by diffusing the impurities in the polysilicon resistors into the epitaxial layer are formed before forming the polysilicon resistors, and polysilicon electrodes are formed along with the polysilicon resistors.
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: December 21, 1999
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Hwan Kim, Tae-Hoon Kwon, Cheol-Joong Kim, Suk-Kyun Lee
  • Patent number: 5965923
    Abstract: A substantially concentric lateral bipolar transistor and the method of forming same. A base region is disposed about a periphery of an emitter region, and a collector region is disposed about a periphery of the base region to form the concentric lateral bipolar transistor of the invention. A gate overlies the substrate and at least a portion of the base region. At least one electrical contact is formed connecting the base and the gate, although a plurality of contacts may be formed. A further bipolar transistor is formed according to the following method of the invention. A base region is formed in a substrate and a gate region is formed overlying at least a portion of the base region. Emitter and collector terminals are formed on opposed sides of the base region. The gate is used as a mask during first and second ion implants.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: October 12, 1999
    Assignee: Micron Technology, Inc.
    Inventors: Kirk D. Prall, Mike P. Violette
  • Patent number: 5920111
    Abstract: An accumulated-base bipolar junction transistor and an application of said transistor is described. A base region of an accumulated-base bipolar junction is formed by the implantation and then the diffusion of a first dopant material into the semiconductor substrate. A base contact region is a rectangular ring of a second dopant type that is implanted and annealed into the base region. The base contact region is to form a low resistance path from the base region to external circuitry. A collector region is formed by the implantation and annealing of third dopant into the base region in the form of a rectangular ring within the base contact region and a first distance from the base contact region. An emitter region is a rectangular form implanted and annealed of the third dopant within the collector region and a second distance from the collector region.
    Type: Grant
    Filed: December 12, 1996
    Date of Patent: July 6, 1999
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shyh-Chyi Wong, Mong-Song Liang
  • Patent number: 5880516
    Abstract: A semiconductor device having an epitaxial layer of one conductivity type formed on a semiconductor substrate of the other conductivity type, a base region of the other conductivity type formed on the epitaxial layer to extend from a surface of the epitaxial layer to a predetermined depth, the base region including an intrinsic base region and an external base region, an emitter region of the one conductivity type formed in the intrinsic base region, and a pedestal collector region of the one conductivity type formed in a portion of the epitaxial layer which is immediately under the base region to correspond thereto, wherein the pedestal collector region comprises a plurality of layers of pedestal collector regions which have an impurity concentration that changes in a direction of depth of the substrate and which are sequentially arranged in the direction of depth of the substrate.
    Type: Grant
    Filed: August 28, 1996
    Date of Patent: March 9, 1999
    Assignee: NEC Corporation
    Inventor: Toru Yamazaki
  • Patent number: 5828124
    Abstract: A low-noise PNP transistor comprising a cutoff region laterally surrounding the emitter region in the surface portion of the transistor. The cutoff region has such a conductivity as to practically turn off the surface portion of the transistor, so that the transistor operates mainly in the bulk portion. The cutoff region is formed by an N.sup.+ -type enriched base region arranged between the emitter region and the collector region.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: October 27, 1998
    Assignee: SGS-Thomson Microelectronics S.r.l.
    Inventor: Flavio Villa
  • Patent number: 5777375
    Abstract: A semiconductor device relating to an improvement in an L-PNP transistor in particular is such that, on a semiconductor substrate of a first conductivity type, a base region is formed which has a second conductivity type opposite in conductivity to the first conductivity type. A first conductivity type impurity ion is implanted into the base region to provide at least two first diffusion layers there. The first diffusion layers have a first impurity concentration level and are formed as collector and emitter regions. A polysilicon layer is formed on the first diffusion layer in base region in an overhanging relation to the first diffusion layer and contains the first conductivity type impurity. A second diffusion layer is formed around the collector region and around the emitter region by diffusing an impurity from the polysilicon layer. The collector and emitter regions each are formed as a two-layered structure with their first and second diffusion layers.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: July 7, 1998
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Norihiko Shishido
  • Patent number: 5629556
    Abstract: A bipolar transistor (100) and a method for forming the same. A base-link diffusion source layer (118) is formed over a portion of the collector region (102). The base-link diffusion source layer (118) comprises a material that is capable of being used as a dopant source and is capable of being etched selectively with respect to silicon. A base electrode (114) is formed over at least one end portion of the base-link diffusion source layer (118) and the exposed portions of the base-link diffusion source layer (118) are removed. An extrinsic base region (110) is diffused from the base electrode (114) and a base link-up region (112) is diffused from the base-link diffusion source layer (118). Processing may then continue to form an intrinsic base region (108), emitter region (126), and emitter electrode (124).
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: May 13, 1997
    Assignee: Texas Instruments Incorporated
    Inventor: F. Scott Johnson
  • Patent number: 5565701
    Abstract: An integrated circuit containing both power and small-signal NPN bipolar devices. The small-signal devices use lateral current flow, and are completely surrounded (laterally and vertically) by an N-type well region. The N-type well region itself is completely surrounded (laterally and vertically) by a P-type isolation region. This double isolation provides improved protection against turn-on of parasitic devices, which can cause leakage problems in the conventional device structures. Optionally a self-aligned process step is used to provide a graded base doping profile in the small-signal devices.
    Type: Grant
    Filed: July 2, 1992
    Date of Patent: October 15, 1996
    Assignee: Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno
    Inventor: Raffaele Zambrano
  • Patent number: 5548158
    Abstract: A special two-dimensional intrinsic base doping profile is utilized to improve the output current-voltage characteristics of a vertical bipolar transistor whose intrinsic base includes a main intrinsic portion. The special doping profile is achieved with a pair of more lightly doped base portions that encroach substantially into the intrinsic base below the main intrinsic base portion. The two deep encroaching base portions extend sufficiently close to each other to set up a two-dimensional charge-sharing mechanism that typically raises the magnitude of the punch-through voltage. The transistor's current-voltage characteristics are thereby enhanced.
    Type: Grant
    Filed: September 2, 1994
    Date of Patent: August 20, 1996
    Assignee: National Semiconductor Corporation
    Inventors: Constantin Bulucea, Michael J. Grubisich
  • Patent number: 5523607
    Abstract: A bipolar control transistor, forming part of an integrated current-limiter device comprises inside an epitaxial layer superimposed over a semiconductor substrate of a first type of conductivity, a base region of a second type of conductivity accessible from a base contact and regions of collector and emitter of the first type of conductivity contained in the base region and accessible from respective collector and emitter contacts. The base region comprises at least one highly-doped deep-body region which contains almost completely said emitter region, a lightly-doped body region which contains the collector region and an intermediate-doped region which co-operates with the first deep-body region to completely contain the emitter region and a surface area of the base region that is included between the regions of collector and emitter.
    Type: Grant
    Filed: February 2, 1995
    Date of Patent: June 4, 1996
    Assignee: Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno
    Inventor: Raffaele Zambrano
  • Patent number: 5501992
    Abstract: A ring-shaped emitter region is formed either in a region a little toward an inner periphery or in a region a little toward an outer periphery in an upper layer portion of a ring-shaped base region of a bipolar transistor. A conductive layer is laminated through an insulating layer in a region surrounded by the ring-shaped emitter region provided a little toward the inner periphery of the base region, a conductive side wall is formed on the sides of the conductive layer and the insulating layer, and the ring-shaped emitter region and the conductive layer are connected through the conductive side wall. A metallic emitter electrode is connected to the conductive layer.
    Type: Grant
    Filed: September 27, 1994
    Date of Patent: March 26, 1996
    Assignee: Fujitsu Limited
    Inventor: Shunji Nakamura
  • Patent number: 5448104
    Abstract: A back gate bias voltage is applied to the underside of a lateral bipolar transistor to desensitize a portion of the collector-base depletion region to changes in the collector-base voltage. Emitter-collector current flows through an active base region bypassing the portion of the collector-base depletion region that remains sensitive to the collector bias. This allows for a control over the charge in the active base region by the back gate bias, generally independent of the collector-base bias. The transistor is preferably implemented in a silicon-on-insulator-on-silicon (SOIS) configuration, with the back gate bias applied to a doped silicon substrate. The base doping concentration and the thickness of the underlying insulator are preferably selected to produce an inversion layer in the base region adjacent the insulating layer, thereby reducing the collector access resistance.
    Type: Grant
    Filed: September 14, 1994
    Date of Patent: September 5, 1995
    Assignee: Analog Devices, Inc.
    Inventor: Kevin J. Yallup