Including Additional Component In Same, Non-isolated Structure (e.g., Transistor With Diode, Transistor With Resistor, Etc.) Patents (Class 257/577)
  • Patent number: 7989885
    Abstract: A semiconductor device has a first semiconductor layer of a first conductivity type and a second semiconductor layer of a second conductivity type complementary to the first conductivity type arranged in or on the first semiconductor layer. The semiconductor device has a region of the first conductivity type arranged in the second semiconductor layer. A first electrode contacts the region of the first conductivity type and the second semiconductor layer. A trench extends into the first semiconductor layer, and a voltage dependent short circuit diverter structure has a highly-doped diverter region of the second conductivity type. This diverter region is arranged via an end of a channel region and coupled to a diode arranged in the trench.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: August 2, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Franz Hirler, Frank Dieter Pfirsch
  • Publication number: 20110180902
    Abstract: In a reverse conducting IGBT, diode cathode regions are formed dispersedly on the back side of a device chip. When the distribution density of the diode cathode region becomes low, VF of a fly-back diode, that is, a forward voltage drop becomes large. On the other hand, when the distribution density of the diode cathode region becomes high, it becomes hard for a PN junction at a collector part to turn ON and a snap back occurs. In contrast to this, there is a method of providing about one to several diode cathode absent regions having a macro area, however, the arrangement of the regions itself directly affects the device characteristics, and therefore, it is difficult to control the device characteristics and variations thereof.
    Type: Application
    Filed: January 26, 2011
    Publication date: July 28, 2011
    Inventor: HIROSHI INAGAWA
  • Patent number: 7985959
    Abstract: A phase change memory may include self-aligned polysilicon vertical bipolar junction transistors used as select devices. The bipolar junction transistors may be formed with double shallow trench isolation. For example, the emitters of each bipolar transistor may be defined by a first set of parallel trenches in one direction and a second set of parallel trenches in the opposite direction. In some embodiments, the formation of parasitic PNP transistors between adjacent emitters may be avoided.
    Type: Grant
    Filed: July 11, 2008
    Date of Patent: July 26, 2011
    Assignee: Intel Corporation
    Inventors: Michele Magistretti, Fabio Pellizzer, Augusto Benvenuti, Marcello Mariani
  • Patent number: 7973387
    Abstract: An insulated gate bipolar transistor includes bump pad connectors to provide thermal contact with a heat spreader for dissipating heat away form the insulated gate bipolar transistor.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: July 5, 2011
    Assignee: Continental Automotive Systems US, Inc.
    Inventor: Fred Flett
  • Publication number: 20110156211
    Abstract: The semiconductor structure of the present invention comprises: a P-well, a first N+ diffusion region, a first P+ diffusion region, a second P+ diffusion region, a first N-well, and a second N+ diffusion region. The semiconductor structure of the present invention comprises: a N-well, a first P+ diffusion region, a first N+ diffusion region, a second N+ diffusion region, a first P-well, and a second P+ diffusion region. Compared with the conventional semiconductor structure for realizing an ESD protection circuit, the semiconductor structure of the present invention requires a smaller area by utilizing the parasitic BJT to have the same ESD protection function. Brief summarized, the semiconductor structure disclosed by the present invention can be utilized for realizing an ESD protection circuit in a smaller area to reduce cost.
    Type: Application
    Filed: December 30, 2009
    Publication date: June 30, 2011
    Inventor: Tung-Yang Chen
  • Patent number: 7952131
    Abstract: Large tuning range junction varactor includes first and second junction capacitors coupled in parallel between first and second varactor terminals. First and second plates of the capacitors are formed by three alternating doped regions in a substrate. The second and third doped regions are of the same type sandwiching the first doped region of the second type. A first varactor terminal is coupled to the second and third doped regions and a second varactor terminal is coupled to the first doped region. At the interfaces of the doped regions are first and second depletion regions, the widths of which can be varied by varying the voltage across the terminals from zero to full reverse bias. At zero bias condition, junction capacitance (Cmax) is enhanced due to summation of two junction capacitances in parallel. At reverse bias condition, with the merging of the two junction depletion widths, the capacitor areas are drastically reduced, thereby reducing Cmin significantly.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: May 31, 2011
    Assignee: Chartered Semiconductor Manufacturing, Ltd.
    Inventor: Manju Sarkar
  • Patent number: 7939905
    Abstract: According to an embodiment of the present invention, an electrostatic breakdown protection method protects a semiconductor device from a surge current impressed between a first terminal and a second terminal, the semiconductor device including: a diode impressing a forward-bias current from the first terminal to the second terminal; and a bipolar transistor impressing a current in a direction from the second terminal to the first terminal under an ON state, a continuity between a collector terminal and an emitter terminal of the bipolar transistor being attained before a potential difference between the first terminal and the second terminal reaches such a level that the diode is broken down.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: May 10, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Takayuki Nagai
  • Patent number: 7936047
    Abstract: A method realizes a contact of a first well of a first type of dopant integrated in a semiconductor substrate next to a second well of a second type of dopant and forming with it a parasitic diode. The method comprises: formation of the first well; formation of the second well next to the first well; definition of an oxide layer above the first and second wells; and formation of an electric contact layer above the oxide layer in correspondence with the first well for realizing an electric contact with it. The definition step of the oxide layer further comprises a deposition step of this oxide layer above the whole first well and a removal step of at least one portion of the oxide layer in correspondence with a contact area of the first well so that the contact area has a shorter length than a length of the first well.
    Type: Grant
    Filed: February 28, 2008
    Date of Patent: May 3, 2011
    Assignee: STMicroelectronics S.r.l.
    Inventors: Vincenzo Enea, Cesare Ronsisvalle
  • Patent number: 7932583
    Abstract: According to one embodiment, a semiconductor device comprises a body of a first conductivity type having a source region and a channel, the body being in contact with a top contact layer. The device also comprises a gate arranged adjacent the channel and a drift zone of a second conductivity type arranged between the body and a bottom contact layer. An integrated diode is formed partially by a first zone of the first conductivity type within the body and being in contact with the top contact layer and a second zone of the second conductivity type being in contact with the bottom contact layer. A reduced charge carrier concentration region is formed in the drift zone having a continuously increasing charge carrier lifetime in the vertical direction so that the charge carrier lifetime is lowest near the body and highest near the bottom contact layer.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: April 26, 2011
    Assignee: Infineon Technologies Austria AG
    Inventors: Holger Ruething, Hans-Joachim Schulze, Frank Hille, Frank Pfirsch
  • Patent number: 7932541
    Abstract: Disclosed are embodiments of a hetero-junction bipolar transistor (HBT) structure and method of forming the structure that provides substantially lower collector-to-base parasitic capacitance and collector resistance, while also lowering or maintaining base-to-emitter capacitance, emitter resistance and base resistance in order to achieve frequency capabilities in the THz range. The HBT is a collector-up HBT in which a dielectric layer and optional sidewall spacers separate the raised extrinsic base and the collector so as to reduce collector-to-base capacitance. A lower portion of the collector is single crystalline semiconductor so as to reduce collector resistance. The raised extrinsic base and the intrinsic base are stacked single crystalline epitaxial layers, where link-up is automatic and self-aligned, so as to reduce base resistance. The emitter is a heavily doped region below the top surface of a single crystalline semiconductor substrate so as to reduce emitter resistance.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: Alvin J. Joseph, Andreas D. Stricker
  • Publication number: 20110089535
    Abstract: The invention provides an electrostatic discharge (ESD) protection device having an ESD path between a first circuit and a second circuit. The electrostatic discharge protection device includes a first doped region having a first conductive type. A first well has a second conductive type opposite to the first conductive type. A second doped region and a third doped region are in the first well, respectively having the first and second conductive types. The first doped region is coupled to a power supply terminal or a ground terminal of the first circuit, and the second and third doped regions are both coupled to a power supply terminal or a ground terminal of the second circuit, respectively.
    Type: Application
    Filed: June 14, 2010
    Publication date: April 21, 2011
    Applicant: SILICON MOTION, INC.
    Inventor: Te-Wei Chen
  • Patent number: 7923783
    Abstract: A semiconductor memory device according to an embodiment of the present invention includes a resistance element which is constructed with a first conductor which extends in a first direction and is connected to a first contact; a second conductor which extends in said first direction and is connected to a second contact; and a first insulation film which exists between said first conductor and said second conductor, said first insulation film also having an opening in which a third conductor which connects said first conductor and said second conductor is arranged.
    Type: Grant
    Filed: March 20, 2009
    Date of Patent: April 12, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Takumi Abe
  • Patent number: 7911032
    Abstract: An integrated power transistor includes emitter or source regions, and a comb-like patterned metal electrode structure interconnecting the emitter or source regions and defining at least one connection pad. The comb-like patterned metal electrode structure includes a plurality of fingers. A current sensing resistor produces a voltage drop representative of a current delivered to a load by the integrated power transistor. The current sensing resistor includes a portion of a current carrying metal track having a known resistance value and extending between one of the fingers and a connectable point along the current carrying metal track.
    Type: Grant
    Filed: January 4, 2007
    Date of Patent: March 22, 2011
    Assignee: STMicroelectronics S.R.L.
    Inventors: Davide Patti, Vincenzo Sciacca
  • Patent number: 7893521
    Abstract: An energiser for an electric fence. The energiser includes, at least, one energy storage capacitor (14), a charging circuit (13) to enable the or each storage capacitor (14) to be charged from an energy source (10), semiconductor switching means (16), and control circuit means (15) to facilitate controlled turning -on and -off of the semiconductor switching means (16) to control the duration of the discharge from the energy storage means (14). In one form of the energiser a first semi-conductor switching means is arranged to connect in parallel the energy storage capacitors (14) to be charged and second semi-conductor switching means to connect two or more of the charged energy storage capacitors (14) in series to create an output pulse.
    Type: Grant
    Filed: October 3, 2005
    Date of Patent: February 22, 2011
    Assignee: Tru-Test Limited
    Inventors: Pieter Cornelis Lunenburg, Robert Charles Bryan Woodhead, John Murphy
  • Publication number: 20110006341
    Abstract: An electrostatic discharge (ESD) protection element using an NPN bipolar transistor, includes: a trigger element connected at one end with a pad. The NPN bipolar transistor includes: a first base diffusion layer; a collector diffusion layer connected with the pad; a trigger tap formed on the first base diffusion layer and connected with the other end of the trigger element through a first wiring; and an emitter diffusion layer and a second base diffusion layer formed on the first base diffusion layer and connected in common to a power supply through a second wiring which is different from the first wiring.
    Type: Application
    Filed: June 29, 2010
    Publication date: January 13, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventor: Kouichi SAWAHATA
  • Patent number: 7863609
    Abstract: A compound semiconductor substrate 10 according to the present invention is comprised of a Group III nitride and has a surface layer 12 containing a chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and an oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, at a surface. The inventors conducted elaborate research and newly discovered that when the surface layer 12 at the surface of the compound semiconductor substrate 10 contained the chloride of not less than 200×1010 atoms/cm2 and not more than 12000×1010 atoms/cm2 in terms of Cl and the oxide of not less than 3.0 at % and not more than 15.0 at % in terms of O, Si was reduced at an interface between the compound semiconductor substrate 10 and an epitaxial layer 14 formed thereon and, as a result, the electric resistance at the interface was reduced.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: January 4, 2011
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Keiji Ishibashi, Fumitake Nakanishi
  • Publication number: 20100314716
    Abstract: A vertical TVS (VTVS) circuit includes a semiconductor substrate for supporting the VTVS device thereon having a heavily doped layer extending to the bottom of substrate. Deep trenches are provided for isolation between multi-channel VTVS. Trench gates are also provided for increasing the capacitance of VTVS with integrated EMI filter.
    Type: Application
    Filed: August 18, 2010
    Publication date: December 16, 2010
    Inventors: Shekar Mallikararjunaswamy, Madhur Bobde
  • Patent number: 7847373
    Abstract: A bipolar junction transistor may act as a select device for a semiconductor memory. The bipolar junction transistor may be formed of a stack of base and collector layers. Sets of parallel trenches are formed in a first direction down to the base and in a second direction down to the collector. The trenches may be used to form local enhancement implants into the exposed portion of the base and collector in each trench. As a result of the local enhancement implants, in some embodiments, leakage current may be reduced, active current capability may be higher, gain may be higher, base resistance may be reduced, breakdown voltage may be increased, and parasitic effects with adjacent junctions may be reduced.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: December 7, 2010
    Inventors: Agostino Pirovano, Augusto Benvenuti, Fabio Pellizzer, Giorgio Servalli
  • Publication number: 20100277466
    Abstract: A bipolar transistor structure with multiple electrodes configured to include an enhanced base capacitive element. Alternatively, a transistor with an integrated light emitting capacitive (LEC) element at the source or drain of the transistor. The transistor may be a stand alone transistor for usage in discrete applications, or may be implemented in a pixel circuit used in a display apparatus. In the pixel circuit embodiment, driver circuitry causes appropriate charging and discharging of the LEC elements of respective pixels to provide a desired display. In one alternative, a transistor may be configured to have multiple LEC elements integrated therewith, to provide respective different colors used in forming a display.
    Type: Application
    Filed: April 30, 2009
    Publication date: November 4, 2010
    Applicants: Sony Corporation, SONY ELECTRONICS INC.
    Inventor: Leonard D. Nicoletti
  • Publication number: 20100237434
    Abstract: The invention relates to a semiconductor device (10) with a substrate (11) and a semiconductor body (12) of silicon which comprises an active region (A) with a transistor (T) and a passive region (P) surrounding the active region (A) and which is provided with a buried conducting region (1) of a metallic material that is connected to a conductive region (2) of a metallic material sunken from the surface of the semiconductor body (12), by which the buried conductive region (1) is made electrically connectable at the surface of the semiconductor body (12). According to the invention, the buried conducting region (1) is made at the location of the active region (A) of the semiconductor body (12). In this way, a very low buried resistance can be locally created in the active region (A) in the semiconductor body (12), using a metallic material that has completely different crystallographic properties from the surrounding silicon. This is made possible by using a method according to the invention.
    Type: Application
    Filed: June 22, 2006
    Publication date: September 23, 2010
    Applicant: NXP B.V.
    Inventors: Wibo D. Van Noort, Jan Sonsky, Philippe Meunier-Beillard, Erwin Hijzen
  • Publication number: 20100230719
    Abstract: In an aspect of the present invention, an ESD (Electrostatic Discharge) protection element includes a bipolar transistor comprising a collector diffusion layer connected with a first terminal and an emitter diffusion layer; and current control resistances provided for a plurality of current paths from a second terminal to the collector diffusion layer through the emitter diffusion layer, respectively. The bipolar transistor further includes a base diffusion region connected with the second terminal through a first resistance which is different from the current control resistances.
    Type: Application
    Filed: March 11, 2010
    Publication date: September 16, 2010
    Applicant: NEC Electronics Corporation
    Inventor: Kouichi SAWAHATA
  • Patent number: 7795716
    Abstract: An RF/microwave circuit is configured to eliminate the physical constraint that requires a sacrifice of one output series inductor wirebond for each shunt inductor wirebond. The circuit employs a multi-level metalized substrate as part of its output impedance matching network. The lower level of the multi-level substrate serves as an intermediate connection point for the output series inductor wirebonds as it extends from the output terminal of an active device to an output metallization pad. The upper level of the multi-level substrate serves to support a DC block capacitor and as an intermediate connection point for the shunt inductor wirebonds. The multi-level substrate allows the series inductor wirebonds to be positioned at a lower height, and the shunt inductor wirebonds at a greater height. Because they are at different heights, the physical constraint of sacrificing a series wirebond per a shunt inductor wirebond can be eliminated.
    Type: Grant
    Filed: March 21, 2008
    Date of Patent: September 14, 2010
    Assignee: Integra Technologies, Inc.
    Inventors: Jeffrey A. Burger, Fouad F. Boueri
  • Patent number: 7768004
    Abstract: In a semiconductor device including a semiconductor substrate and an electrode pad formed over the semiconductor substrate, at least one of test element is formed in a region of the semiconductor substrate beneath the electrode pad. The test element is electrically isolated from upper conductive layers outside of the region and the electrode pad.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: August 3, 2010
    Assignee: NEC Electronics Corporation
    Inventor: Hideomi Shintaku
  • Patent number: 7755167
    Abstract: A semiconductor device includes a transistor, a first diode, and a second diode. A collector of the transistor and a cathode of the first diode are electrically connected. The collector of the transistor and a cathode of the second diode are electrically connected, and an emitter of the transistor and an anode of the second diode are electrically connected. The first diode and the second diode are formed in an identical substrate. Thereby, the semiconductor device can be produced in a smaller size and in less steps.
    Type: Grant
    Filed: July 12, 2007
    Date of Patent: July 13, 2010
    Assignee: Mitsubishi Electric Corporation
    Inventors: Yoshihiko Hirota, Chihiro Tadokoro
  • Publication number: 20100155831
    Abstract: In one embodiment, a power transistor device comprises a substrate of a first conductivity type that forms a PN junction with an overlying buffer layer of a second conductivity type. The power transistor device further includes a first region of the second conductivity type, a drift region of the second conductivity type that adjoins a top surface of the buffer layer, and a body region of the first conductivity type. The body region separates the first region from the drift region. First and second dielectric regions respectively adjoin opposing lateral sidewall portions of the drift region. The dielectric regions extend in a vertical direction from at least just beneath the body region down at least into the buffer layer. A trench gate that controls forward conduction is disposed above the dielectric region adjacent to and insulated from the body region.
    Type: Application
    Filed: December 20, 2008
    Publication date: June 24, 2010
    Applicant: Power Integrations, Inc.
    Inventors: Vijay Parthasarathy, Sujit Banerjee
  • Patent number: 7741700
    Abstract: A semiconductor device having sufficiently high heat dissipation performance while inhibiting an increase in the area of a chip is provided. In semiconductor device 1, a plurality of HBTs 20 and a plurality of diodes 30 are one-dimensionally and alternately arranged on semiconductor substrate 10. Anode electrode 36 of diode 30 is connected to emitter electrode 27 of HBT 20 via common emitter wiring 42. Diode 30 works as heat dissipating elements dissipating to semiconductor substrate 10 the heat transmitted through common emitter wiring 42 from emitter electrode 27, and also works as a protection diode connected in parallel between an emitter and a collector of HBT 20.
    Type: Grant
    Filed: March 30, 2005
    Date of Patent: June 22, 2010
    Assignees: NEC Corporation, NEC Electronics Corporation
    Inventors: Naotaka Kuroda, Masahiro Tanomura, Naoto Kurosawa
  • Publication number: 20100140713
    Abstract: A transistor-type protection device includes: a semiconductor substrate; a well of a first-conductivity-type formed in the semiconductor substrate; a source region of a second-conductivity-type formed in the well; a gate electrode formed on the well via a gate insulating film at one side of the source region; plural drain regions of a second-conductivity-type formed apart from each other and respectively separated at a predetermined distance from a well part immediately below the gate electrode film; and a resistive connection part connecting between the plural drain regions with a predetermined electric resistance.
    Type: Application
    Filed: November 18, 2009
    Publication date: June 10, 2010
    Applicant: SONY CORPORATION
    Inventors: Tsutomu IMOTO, Toshio KOBAYASHI
  • Patent number: 7723823
    Abstract: An improved lateral bipolar electrostatic discharge (ESD) protection device (40) comprises a semiconductor (SC) substrate (42), an overlying epitaxial SC layer (44), emitter-collector regions (48, 50) laterally spaced apart by a first distance (52) in the SC layer, a base region (54) adjacent the emitter region (48) extending laterally toward and separated from the collector region (50) by a base-collector spacing (56) that is selected to set the desired trigger voltage Vt1. By providing a buried layer region (49) under the emitter region (48) Ohmically coupled thereto, but not providing a comparable buried layer region (51) under the collector region (50), an asymmetrical structure is obtained in which the DC trigger voltage (Vt1DC) and transient trigger voltage (Vt1TR) are closely matched so that |Vt1TR?Vt1DC|˜0.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 25, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chai Ean Gill, Changsoo Hong, James D. Whitfield, Rouying Zhan
  • Patent number: 7675120
    Abstract: A composite integrated circuit incorporating two LDMOSFETs of unlike designs, with the consequent creation of a parasitic transistor. A multipurpose resistor is integrally built into the composite integrated circuit in order to prevent the parasitic transistor from accidentally turning on. In an intended application of the composite integrated circuit to a startup circuit of a switching-mode power supply, the multipurpose resistor serves as startup resistor for limiting the flow of rush current during the startup period of the switching-mode power supply.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: March 9, 2010
    Assignee: Sanken Electric Co., Ltd.
    Inventors: Keiichi Sekiguchi, Kazuya Aizawa
  • Publication number: 20100044835
    Abstract: In an output stage of an operational amplifier, first and second transistors each provide a collector current under quiescent conditions to first and second current sources. A resistor receives a portion of one the collector currents and produces a resistor voltage in response. An output transistor provides a quiescent current having a value calculated as a function of the resistor voltage and a base-emitter voltage of the second transistor.
    Type: Application
    Filed: August 25, 2008
    Publication date: February 25, 2010
    Applicant: ANALOG DEVICES, INC.
    Inventors: Eric Modica, Derek Bowers
  • Patent number: 7666787
    Abstract: An interconnect structure of the single or dual damascene type and a method of forming the same, which substantially reduces the electromigration problem that is exhibited by prior art interconnect structures, are provided. In accordance with the present invention, a grain growth promotion layer, which promotes the formation of a conductive region within the interconnect structure that has a bamboo microstructure and an average grain size of larger than 0.05 microns is utilized. The inventive structure has improved performance and reliability.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: February 23, 2010
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Shom Ponoth
  • Patent number: 7659577
    Abstract: A power semiconductor device includes a power device and a current sense device formed in a common semiconductor region.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 9, 2010
    Assignee: International Rectifier Corporation
    Inventor: Vincent Thiery
  • Patent number: 7633139
    Abstract: The invention is directed to a semiconductor device having a diode element which prevents a leakage current due to a vertical parasitic bipolar transistor and enhances current efficiency. An element isolation insulation film is provided on an N well layer, and a first P+ layer and a second P+ layer are formed on the N well layer surrounded by the element isolation insulation film, the second P+ layer being formed at a distance from the first P+ layer. An electrode layer is formed on the N well layer between the first P+ layer and the second P+ layer. An N+ layer for a contact is formed on the N well layer between the element isolation insulation film and other element isolation insulation film. The first P+ layer is connected with an anode wiring, and the electrode layer, the second P+ layer, and the N+ layer are connected with a cathode wiring. A diode element utilizing a lateral PNP bipolar transistor is thus formed on the semiconductor substrate.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: December 15, 2009
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Takashi Hiroshima, Kazutomo Goshima
  • Patent number: 7629631
    Abstract: A high-voltage field-effect device contains an extended drain or “drift” region having a plurality of JFET regions separated by portions of the drift region. Each of the JFET regions is filled with material of an opposite conductivity type to that of the drift region, and at least two sides of each JFET region is lined with an oxide layer. In one group of embodiments the JFET regions extend from the surface of an epitaxial layer to an interface between the epitaxial layer and an underlying substrate, and the walls of each JFET region are lined with an oxide layer. When the device is blocking a voltage in the off condition, the semiconductor material inside the JFET regions and in the drift region that separates the JFET regions is depleted. This improves the voltage-blocking ability of the device while conserving chip area. The oxide layer prevents dopant from the JFET regions from diffusing into the drift region and allowing the JFET regions to be accurately located in the drift region.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: December 8, 2009
    Inventor: Hamza Yilmaz
  • Patent number: 7622789
    Abstract: The invention relates to a polymer transistor arrangement, an integrated circuit arrangement and a method for producing a polymer transistor arrangement. The polymer transistor arrangement contains a polymer transistor formed in and/or on a substrate. The polymer transistor contains a first source/drain region, a second source/drain region, a channel region between the first and second source/drain regions, a gate region and a gate-insulating layer between channel region and gate region. A drive circuit of the polymer transistor arrangement is set up in such a way that it provides the source/drain regions and the gate region with electrical potentials such that the junction between at least one of the source/drain regions and the channel region can be operated as a diode.
    Type: Grant
    Filed: November 13, 2003
    Date of Patent: November 24, 2009
    Assignee: Infineon Technologies AG
    Inventor: Ralf Brederlow
  • Publication number: 20090283863
    Abstract: One of the aspects of the present invention is to provide a semiconductor device, which includes a semiconductor layer of a first conductive type having first and second surfaces. The semiconductor layer includes a base region of a second conductive type formed in the first surface and an emitter region of the first conductive type formed in the base region. Also, the semiconductor device includes a buffer layer of the first conductive type formed on the second surface of the semiconductor layer, and a collector layer of the second conductive type formed on the buffer layer. The buffer layer has a maximal concentration of the first conductive type impurity therein of approximately 5×1015 cm?3 or less, and the collector layer has a maximal concentration of the second conductive type impurity therein of approximately 1×1017 cm?3 or more. Further, the ratio of the maximal concentration of the collector layer to the maximal concentration of the buffer layer being greater than 100.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Eisuke SUEKAWA
  • Publication number: 20090283862
    Abstract: One of the aspects of the present invention is to provide a semiconductor device, which includes a semiconductor layer of a first conductive type having first and second surfaces. The semiconductor layer includes a base region of a second conductive type formed in the first surface and an emitter region of the first conductive type formed in the base region. Also, the semiconductor device includes a buffer layer of the first conductive type formed on the second surface of the semiconductor layer, and a collector layer of the second conductive type formed on the buffer layer. The buffer layer has a maximal concentration of the first conductive type impurity therein of approximately 5×1015 cm?3 or less, and the collector layer has a maximal concentration of the second conductive type impurity therein of approximately 1×1017 cm?3 or more. Further, the ratio of the maximal concentration of the collector layer to the maximal concentration of the buffer layer being greater than 100.
    Type: Application
    Filed: July 28, 2009
    Publication date: November 19, 2009
    Applicant: MITSUBISHI DENKI KABUSHIKI KAISHA
    Inventor: Eisuke SUEKAWA
  • Patent number: 7602045
    Abstract: In a semiconductor device having a pair of IGBT and diode which are connected to each other in inverse-parallel in which a collector-electrode of the IGBT and a cathode-electrode of the diode are wired to each other, and an emitter-electrode of the IGBT and an anode-electrode of the diode are wired to each other, when a breakdown voltage of a junction of a p-type emitter layer and an n-type buffer layer of the IGBT is represented as BVec, and a forward voltage occurring while the diode transits from a state of blocking to a state of forward conduction is represented as VF, a relationship of VF<BVec is satisfied in a predetermined current value Id of a current flowing in the diode, and the maximal doping concentration of the n-type cathode layer of the diode is higher than that of the n-type buffer layer of the IGBT.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: October 13, 2009
    Assignee: Renesas Technology Corp.
    Inventors: Takuo Nagase, Mutsuhiro Mori
  • Patent number: 7576410
    Abstract: A power transistor has a source region, a drain region, a semiconductor body arranged between the source region and the drain region, and a plurality of nanotubes. The plurality of nanotubes are connected in parallel and disposed in the semiconductor body such that the plurality of nanotubes are electrically insulated from the semiconductor body and electrically connect the source and drain regions of the transistor. The power transistor also includes at least one diode formed in the semiconductor body. A portion of the at least one diode formed in the semiconductor body is configured to act as a gate electrode for the transistor.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: August 18, 2009
    Assignee: Infineon Technologies AG
    Inventors: Michael Rueb, Gerhard Schmidt
  • Patent number: 7563684
    Abstract: A process for manufacturing an array of cells, including: implanting, in a body of semiconductor material of a first conductivity type, a common conduction region of the first conductivity type; forming, in the body, above the common conduction region, a plurality of active area regions of a second conductivity type and a first doping level; forming, on top of the body, an insulating layer having first and second openings; implanting first portions of the active area regions through the first openings with a doping agent of the first conductivity type, thereby forming, in the active area regions, second conduction regions of the first conductivity type; implanting second portions of the active area regions through the second openings with a doping agent of the second conductivity type, thereby forming control contact regions of the second conductivity type and a second doping level, higher than the first doping level; forming, on top of the body, a plurality of storage components, each storage component havin
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: July 21, 2009
    Inventors: Fabio Pellizzer, Giulio Casagrande, Roberto Gastaldi, Loris Vendrame, Augusto Benvenuti, Tyler Lowrey
  • Patent number: 7554188
    Abstract: A power semiconductor package that includes at least two semiconductor devices electrically coupled to one another through a common metallic web.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: June 30, 2009
    Assignee: International Rectifier Corporation
    Inventor: Henning Hauenstein
  • Patent number: 7544557
    Abstract: A Schottky diode exhibiting low series resistance is efficiently fabricated using a substantially standard CMOS process flow by forming the Schottky diode using substantially the same structures and processes that are used to form a field effect transistor (FET) of a CMOS IC device. Polycrystalline silicon, which is used to form the gate structure of the FET, is utilized to form an isolation structure between the Schottky barrier and backside structure of the Schottky diode. Silicide (e.g., cobalt silicide (CoSi2)) structures, which are utilized to form source and drain metal-to-silicon contacts in the FET, are used to form the Schottky barrier and backside Ohmic contact of the Schottky diode. Heavily doped drain (HDD) diffusions and lightly doped drain (LDD) diffusions, which are used to form source and drain diffusions of the FET, are utilized to form a suitable contact diffusion under the backside contact silicide.
    Type: Grant
    Filed: October 21, 2005
    Date of Patent: June 9, 2009
    Assignee: Tower Semiconductor Ltd.
    Inventors: Sharon Levin, Shye Shapira, Ira Naot, Robert J. Strain, Yossi Netzer
  • Publication number: 20090057832
    Abstract: A semiconductor device includes: a semiconductor substrate; a diode-built-in insulated-gate bipolar transistor having an insulated-gate bipolar transistor and a diode, which are disposed in the substrate, wherein the insulated-gate bipolar transistor includes a gate, and is driven with a driving signal input into the gate; and a feedback unit for detecting current passing through the diode. The driving signal is input from an external unit into the feedback unit. The feedback unit passes the driving signal to the gate of the insulated-gate bipolar transistor when the feedback unit detects no current through the diode, and the feedback unit stops passing the driving signal to the gate of the insulated-gate bipolar transistor when the feedback unit detects the current through the diode.
    Type: Application
    Filed: September 4, 2008
    Publication date: March 5, 2009
    Applicant: DENSO CORPORATION
    Inventor: Kenji Kouno
  • Publication number: 20090057833
    Abstract: A semiconductor device structure comprises a plurality of vertical layers and a plurality of conductive elements wherein the vertical layers and plurality of conductive elements co-operate to function as at least two active devices in parallel. The semiconductor device structure may also comprise a plurality of horizontal conductive elements wherein the structure is arranged to support at least two concurrent current flows, such that a first current flow is across the plurality of vertical conductive elements and a second current flow is across the plurality of horizontal conductive elements.
    Type: Application
    Filed: March 13, 2006
    Publication date: March 5, 2009
    Inventors: Philippe Renaud, Patrice Besse, Amaury Gendron
  • Patent number: 7482655
    Abstract: An IGBT device, comprising a substrate having a conductivity type; a drain electrode arranged on a bottom surface of the substrate; an epitaxial layer arranged on the substrate and having a conductivity type opposite that of the substrate; at least one body diffusion arranged within the epitaxial layer and having a conductivity type the same as that of the substrate; at least one source diffusion arranged within the body diffusion and having a conductivity type the same as that of the epitaxial layer; a gate electrode to control the IGBT device; a source electrode electrically coupled to the body diffusion and the source diffusion; an additional diffusion arranged within the epitaxial layer and having a conductivity type the same as that of the substrate, the additional diffusion forming a collector region of a vertical bipolar arrangement in the IGBT; and a sense electrode electrically coupled to the additional diffusion; wherein the presence of minority carriers in the epitaxial layer may be detected in acc
    Type: Grant
    Filed: May 11, 2005
    Date of Patent: January 27, 2009
    Assignee: International Rectifier Corporation
    Inventor: Bruno Nadd
  • Patent number: 7466009
    Abstract: The present invention provides a method for manufacturing a semiconductor device. In one embodiment, the method for manufacturing the semiconductor device includes a method for manufacturing a zener diode, including among others, forming a doped well within a substrate and forming a suppression implant within the substrate. The method for manufacturing the zener diode may further include forming a cathode and an anode within the substrate, wherein the suppression implant is located proximate the doped well and configured to reduce threading dislocations.
    Type: Grant
    Filed: June 5, 2006
    Date of Patent: December 16, 2008
    Assignee: Texas Instruments Incorporated
    Inventors: Martin Mollat, Tathagata Chatterjee, Henry L. Edwards, Lance S. Robertson, Richard B. Irwin, Binghua Hu
  • Publication number: 20080246118
    Abstract: A method realizes a contact of a first well of a first type of dopant integrated in a semiconductor substrate next to a second well of a second type of dopant and forming with it a parasitic diode. The method comprises: formation of the first well; formation of the second well next to the first well; definition of an oxide layer above the first and second wells; and formation of an electric contact layer above the oxide layer in correspondence with the first well for realizing an electric contact with it. The definition step of the oxide layer further comprises a deposition step of this oxide layer above the whole first well and a removal step of at least one portion of the oxide layer in correspondence with a contact area of the first well so that the contact area has a shorter length than a length of the first well.
    Type: Application
    Filed: February 28, 2008
    Publication date: October 9, 2008
    Applicant: STMicroelectronics S.r.l.
    Inventors: Vincenzo Enea, Cesare Ronsisvalle
  • Publication number: 20080203534
    Abstract: An electrostatic discharge (ESD) protection clamp (61) for I/O terminals (22, 23) of integrated circuits (ICs) (24) comprises an NPN bipolar transistor (25) coupled to an integrated Zener diode (30). Variations in the break-down current-voltage characteristics (311, 312, 313, 314) of multiple prior art ESD clamps (31) in different parts of the same IC chip is avoided by forming the anode (301) of the Zener (30) in the shape of a base-coupled P+ annular ring (75) surrounded by a spaced-apart N+ annular collector ring (70) for the cathode (302) of the Zener (30).
    Type: Application
    Filed: February 26, 2007
    Publication date: August 28, 2008
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Hongzhong Xu, Chai Ean Gill, James D. Whitfield, Jinman Yang
  • Patent number: 7414298
    Abstract: The invention relates to a process of forming a compact bipolar junction transistor (BJT) that includes forming a self-aligned collector tap adjacent the emitter stack and an isolation structure. A base layer is formed from epitaxial silicon that is disposed in the substrate.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: August 19, 2008
    Assignee: Intel Corporation
    Inventors: Shahriar Ahmed, Mark Bohr, Stephen Chambers, Richard Green
  • Publication number: 20080179670
    Abstract: A component arrangement including a MOS transistor having a field electrode is disclosed. One embodiment includes a gate electrode, a drift zone and a field electrode, arranged adjacent to the drift zone and dielectrically insulated from the drift zone by a dielectric layer a charging circuit, having a rectifier element connected between the gate electrode and the field electrode.
    Type: Application
    Filed: January 29, 2008
    Publication date: July 31, 2008
    Applicant: INFINEON TECHNOLOGIES AUSTRIA AG
    Inventors: Armin Willmeroth, Franz Hirler