With Means To Increase Current Gain Or Operating Frequency Patents (Class 257/593)
  • Patent number: 11967636
    Abstract: Structures for a bipolar junction transistor and methods of fabricating a structure for a bipolar junction transistor. The structure includes a first terminal having a first raised semiconductor layer, a second terminal having a second raised semiconductor layer, and a base layer positioned laterally between the first raised semiconductor layer and the second raised semiconductor layer. The structure further includes a spacer positioned laterally positioned between the first raised semiconductor layer and the base layer. The spacer includes a dielectric material and an airgap surrounded by the dielectric material.
    Type: Grant
    Filed: February 25, 2022
    Date of Patent: April 23, 2024
    Assignee: Global Foundries U.S. Inc.
    Inventors: Shesh Mani Pandey, Hong Yu
  • Patent number: 10819445
    Abstract: Embodiments may relate to a transceiver chip. The transceiver chip may include a substrate that has a first transceiver component and a second transceiver component positioned therein. The transceiver chip may further include a well material that is positioned between the first transceiver component and the second transceiver component. The well material may mitigate cross-talk between the first transceiver component and the second transceiver component. Other embodiments may be described or claimed.
    Type: Grant
    Filed: November 20, 2018
    Date of Patent: October 27, 2020
    Assignee: Intel Corporation
    Inventors: Telesphor Kamgaing, Georgios Dogiamis, Henning Braunisch, Hyung-Jin Lee, Richard Dischler
  • Patent number: 10645824
    Abstract: There are provided an electronic component housing package and the like which have high efficiency of heating by infrared rays. An electronic component housing package includes an insulating substrate including a plurality of insulating layers stacked on top of each other, an upper surface of the insulating substrate being provided with an electronic component mounting section. The plurality of insulating layers each contain a first material as a major constituent. The electronic component housing package comprises one or more infrared-ray absorbing layers disposed between the plurality of insulating layers and/or disposed on an upper surface of uppermost one of the plurality of insulating layers. The one or more absorbing layers contain a second material which is higher in infrared absorptivity than the first material.
    Type: Grant
    Filed: August 22, 2014
    Date of Patent: May 5, 2020
    Assignee: KYOCERA CORPORATION
    Inventor: Noritaka Niino
  • Patent number: 10043792
    Abstract: An apparatus including an electrostatic discharge (ESD) protection device comprising a semiconductor having first, second and third regions arranged to form a transistor, wherein the first region is doped with a first impurity of a first conductivity type and is separated from the second region which is doped with a second impurity of a second conductivity type opposite the first type, and wherein a dimensional constraint of the regions defines an operational threshold of the ESD protection device. In one example, the separation between a collector and an emitter of a bipolar transistor defines a trigger voltage to cause the electrostatic discharge protection device to become conducting. In another example, a width of a bipolar transistor base controls a holding voltage of the electrostatic discharge protection device.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: August 7, 2018
    Assignee: Analog Devices, Inc.
    Inventors: Edward John Coyne, Patrick Martin McGuinness, Paul Malachy Daly, Bernard Patrick Stenson, David J. Clarke, Andrew David Bain, William Allan Lane
  • Patent number: 9653566
    Abstract: Device structures, fabrication methods, and design structures for a bipolar junction transistor. A trench isolation region is formed in a substrate. The trench isolation region is coextensive with a collector in the substrate. A base layer is formed on the collector and on a first portion of the trench isolation region. A dielectric layer is formed on the base layer and on a second portion of the trench isolation region peripheral to the base layer. After the dielectric layer is formed, the trench isolation region is at least partially removed to define an air gap beneath the dielectric layer and the base layer.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: May 16, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Renata Camillo-Castillo, Vibhor Jain, Vikas K. Kaushal, Marwan H. Khater, Anthony K. Stamper
  • Patent number: 9490353
    Abstract: This disclosure describes a switch having a collector, base, emitter, and an intrinsic region between the collector and base. The intrinsic region increases the efficiency of the switch and reduces losses. The collector, base, and emitter each have respective terminals, and an AC component of current passing through the base terminal is greater than an AC component of current passing through the emitter terminal. Additionally, in an on-state a first alternating current between the base and collector terminals is greater than a second alternating current between the collector and emitter terminals. In other words, AC passes primarily between collector and base as controlled by a DC current between the base and emitter.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: November 8, 2016
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Gideon Van Zyl, Gennady G. Gurov
  • Patent number: 9368608
    Abstract: Fabrication methods for a device structure and device structures. A trench isolation region is formed that bounds an active device region of a semiconductor substrate. A first semiconductor layer is formed on the active device region and on the trench isolation region. A first airgap is formed between the first semiconductor layer and the active device region. A second airgap is formed between the first semiconductor layer and the trench isolation region. The first airgap extends into the active device region such that the height of the first airgap is greater than the height of the second airgap.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: June 14, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Renata Camillo-Castillo, Vibhor Jain, Vikas K. Kaushal, Marwan H. Khater
  • Patent number: 9331186
    Abstract: The present invention provides a semiconductor with a multilayered contact structure. The multilayered structure includes a metal contact placed on an active region of a semiconductor and a metal contact extension placed on the metal contact.
    Type: Grant
    Filed: December 21, 2009
    Date of Patent: May 3, 2016
    Assignee: NXP B.V.
    Inventors: Soenke Habenicht, Detief Oelgeschlaeger, Olrik Schumacher, Stefan Bengt Berglund
  • Patent number: 9231074
    Abstract: Device structures, fabrication methods, and design structures for a bipolar junction transistor. A trench isolation region is formed in a substrate. The trench isolation region is coextensive with a collector in the substrate. A base layer is formed on the collector and on a first portion of the trench isolation region. A dielectric layer is formed on the base layer and on a second portion of the trench isolation region peripheral to the base layer. After the dielectric layer is formed, the trench isolation region is at least partially removed to define an air gap beneath the dielectric layer and the base layer.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: January 5, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Renata Camillo-Castillo, Vibhor Jain, Vikas K. Kaushal, Marwan H. Khater, Anthony K. Stamper
  • Publication number: 20150108542
    Abstract: A bipolar transistor includes a substrate and a first well in the substrate, the first well having a first dopant type. The bipolar transistor further includes a split collector region in the first well. The split collector region includes a highly doped central region having a second dopant type opposite the first dopant type; and a lightly doped peripheral region having the second dopant type, the lightly doped peripheral region surrounding the highly doped central region. A dopant concentration of the lightly doped peripheral region is less than a dopant concentration of the highly doped central region.
    Type: Application
    Filed: October 17, 2013
    Publication date: April 23, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Fu-Hsiung YANG, Long-Shih LIN, Kun-Ming HUANG, Chih-Heng SHEN, Po-Tao CHU
  • Patent number: 8946862
    Abstract: Methods are provided for forming a device that includes merged vertical and lateral transistors with collector regions of a first conductivity type between upper and lower base regions of opposite conductivity type that are Ohmically coupled via intermediate regions of the same conductivity type and to the base contact. The emitter is provided in the upper base region and the collector contact is provided in outlying sinker regions extending to the thin collector regions and an underlying buried layer. As the collector voltage increases part of the thin collector regions become depleted of carriers from the top by the upper and from the bottom by the lower base regions. This clamps the collector regions' voltage well below the breakdown voltage of the PN junction formed between the buried layer and the lower base region. The gain and Early Voltage are increased and decoupled and a higher breakdown voltage is obtained.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: February 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Patent number: 8896024
    Abstract: Provided is an electrostatic discharge (ESD) protection structure including a first and a second well region adjacent to each other, a first and a second doped region disposed in the first well region, a fourth and a fifth doped region disposed in the second well region, and a third doped region disposed in the first region and extending into the second well region. The second doped region is disposed between the first and the third doped regions, forming a diode with the first doped region, forming, together with the first well region and the second well region, a first bipolar junction transistor (BJT) electrically connecting to the diode, and having no contact window disposed thereon. The fourth doped region is disposed between the third and the fifth doped regions, forming a second BJT with the second well region and the first well region.
    Type: Grant
    Filed: July 11, 2013
    Date of Patent: November 25, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Yi-Chun Chen, Li-Cih Wang, Lu-An Chen, Tien-Hao Tang
  • Publication number: 20140266407
    Abstract: A bipolar junction transistor and an operating method and a manufacturing method for the same are provided. The bipolar junction transistor comprises a first doped region, a second doped region and a third doped region. The first doped region has a first type conductivity. The second doped region comprises well regions formed in the first doped region, having a second type conductivity opposite to the first type conductivity, and separated from each other by the first doped region. The third doped region has the first type conductivity. The third doped region is formed in the well regions or in the first doped region between the well regions.
    Type: Application
    Filed: April 23, 2013
    Publication date: September 18, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD
    Inventors: Li-Fan Chen, Wing-Chor Chan, Jeng Gong
  • Patent number: 8729669
    Abstract: A method for manufacturing a bipolar transistor includes forming a first epitaxial layer on a semiconductor substrate, forming a second epitaxial layer on the first epitaxial layer, forming an oxide layer on the second epitaxial layer, etching the oxide layer to form an opening in which the second epitaxial layer is exposed, and forming a third epitaxial layer in the opening. The first and third epitaxial layers have a first-type conductivity, and the second epitaxial layer has a second-type conductivity.
    Type: Grant
    Filed: December 2, 2010
    Date of Patent: May 20, 2014
    Assignees: CSMC Technologies FAB1 Co., Ltd., CSMC Technologies FAB2 Co., Ltd.
    Inventors: Le Wang, Linchun Gui, Kongwei Zhu, Zhiyong Zhao
  • Patent number: 8669640
    Abstract: An improved device (20) is provided, comprising, merged vertical (251) and lateral transistors (252), comprising thin collector regions (34) of a first conductivity type sandwiched between upper (362) and lower (30) base regions of opposite conductivity type that are Ohmically coupled via intermediate regions (32, 361) of the same conductivity type and to the base contact (38). The emitter (40) is provided in the upper base region (362) and the collector contact (42) is provided in outlying sinker regions (28) extending to the thin collector regions (34) and an underlying buried layer (28). As the collector voltage increases part of the thin collector regions (34) become depleted of carriers from the top by the upper (362) and from the bottom by the lower (30) base regions. This clamps the thin collector regions' (34) voltage well below the breakdown voltage of the PN junction formed between the buried layer (28) and the lower base region (30).
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: March 11, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xin Lin, Daniel J. Blomberg, Jiang-Kai Zuo
  • Patent number: 8664697
    Abstract: To provide a transistor device, which is composed of a compound semiconductor, having a multilayer structure in which a high electron mobility transistor (HEMT) and a heterojunction bipolar transistor (HBT) are overlapped on the same substrate and epitaxial-grown thereon, wherein a band gap energy of an indium gallium phosphide layer (InGaP) included in an epitaxial layer, is set to 1.91 eV or more.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: March 4, 2014
    Assignee: Hitachi Cable, Ltd.
    Inventors: Takeshi Meguro, Jiro Wada, Yoshihiko Moriya
  • Patent number: 8525233
    Abstract: A pnp SiGe heterojunction bipolar transistor (HBT) reduces the rate that p-type dopant atoms in the p+ emitter of the transistor out diffuse into a lowly-doped region of the base of the transistor by epitaxially growing the emitter to include a single-crystal germanium region and an overlying single-crystal silicon region.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: September 3, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Jeffrey A. Babcock, Alexei Sadovnikov
  • Patent number: 8357985
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: January 22, 2013
    Assignee: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuinness, Bernard Patrick Stenson
  • Patent number: 8350352
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: January 8, 2013
    Assignee: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuinness, Bernard Patrick Stenson
  • Publication number: 20130001747
    Abstract: A method for manufacturing a bipolar transistor includes forming a first epitaxial layer on a semiconductor substrate, forming a second epitaxial layer on the first epitaxial layer, forming an oxide layer on the second epitaxial layer, etching the oxide layer to form an opening in which the second epitaxial layer is exposed, and forming a third epitaxial layer in the opening. The first and third epitaxial layers have a first-type conductivity, and the second epitaxial layer has a second-type conductivity.
    Type: Application
    Filed: December 2, 2010
    Publication date: January 3, 2013
    Applicants: CSMC TECHNOLOGIES FAB2 CO., LTD., CSMC TECHNOLOGIES FAB1 CO., LTD.
    Inventors: Le Wang, Linchun Gui, Kongwei Zhu, Zhiyong Zhao
  • Publication number: 20120313146
    Abstract: Disclosed is a transistor structure, having a completely silicided extrinsic base for reduced base resistance Rb. Specifically, a metal silicide layer covers the extrinsic base, including the portion of the extrinsic base that extends below the upper portion of a T-shaped emitter. One exemplary technique for ensuring that the metal silicide layer covers this portion of the extrinsic base requires tapering the upper portion of the emitter. Such tapering allows a sacrificial layer below the upper portion of the emitter to be completely removed during processing, thereby exposing the extrinsic base below and allowing the metal layer required for silicidation to be deposited thereon. This metal layer can be deposited, for example, using a high pressure sputtering technique to ensure that all exposed surfaces of the extrinsic base, even those below the upper portion of the emitter, are covered.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Applicant: International Business Machines Corporation
    Inventors: Marc W. Cantell, Thai Doan, Jessica A. Levy, Qizhi Liu, William J. Murphy, Christa R. Willets
  • Patent number: 8324713
    Abstract: A lateral-vertical bipolar junction transistor (LVBJT) includes a well region of a first conductivity type over a substrate; a first dielectric over the well region; and a first electrode over the first dielectric. A collector of a second conductivity type opposite the first conductivity type is in the well region and on a first side of the first electrode, and is adjacent the first electrode. An emitter of the second conductivity type is in the well region and on a second side of the first electrode, and is adjacent the first electrode, wherein the second side is opposite the first side. A collector extension region having a lower impurity concentration than the collector adjoins the collector and faces the emitter. The LVBJT does not have any emitter extension region facing the collector and adjoining the emitter.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: December 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Mao Chen, Chih-Ping Chao, Chih-Sheng Chang, Hua-Chou Tseng
  • Patent number: 8263469
    Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: September 11, 2012
    Assignee: Analog Devices, Inc.
    Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
  • Patent number: 8258545
    Abstract: An integrated circuit includes a bipolar transistor disposed over a substrate. The bipolar transistor includes a base electrode disposed around at least one germanium-containing layer. An emitter electrode is disposed over the at least one germanium-containing layer. At least one isolation structure is disposed between the emitter electrode and the at least one germanium-containing layer. A top surface of the at least one isolation structure is disposed between and electrically isolating a top surface of the emitter electrode from a top surface of the at least one germanium-containing layer.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: September 4, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Tung Huang, Chun-Tsung Kuo, Shih-Chang Liu, Yeur-Luen Tu
  • Patent number: 8120136
    Abstract: A bipolar transistor comprising an emitter region, a base region and a collector region, and a guard region spaced from and surrounding the base. The guard region can be formed in the same steps that form the base, and can serve to spread out the depletion layer in operation.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: February 21, 2012
    Assignee: Analog Devices, Inc.
    Inventors: William Allan Lane, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, Bernard Patrick Stenson
  • Patent number: 8115280
    Abstract: An integrated circuit structure includes a well region of a first conductivity type, an emitter of a second conductivity type opposite the first conductivity type over the well region, a collector of the second conductivity type over the well region and substantially encircling the emitter, and a base contact of the first conductivity type over the well region. The base contact is horizontally spaced apart from the emitter by the collector. At least one conductive strip horizontally spaces the emitter, the collector, and the base contact apart from each other. A dielectric layer is directly under, and contacting, the at least one conductive strip.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: February 14, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Shuo-Mao Chen, Chin-Wei Kuo, Sally Liu
  • Publication number: 20120025352
    Abstract: A bipolar junction transistor (BJT) device including a base region, an emitter region and a collector region comprises a substrate, a deep well region in the substrate, a first well region in the deep well region to serve as the base region, a second well region in the deep well region to serve as the collector region, the second well region and the first well region forming a first junction therebetween, and a first doped region in the first well region to serve as the emitter region, the first doped region and the first well region forming a second junction therebetween, wherein the first doped region includes a first section extending in a first direction and a second section extending in a second direction different from the first direction, the first section and the second section being coupled with each other.
    Type: Application
    Filed: July 30, 2010
    Publication date: February 2, 2012
    Inventors: Cheng-Chi Lin, Wei-Hsun Hsu, Shuo-Lun Tu, Shih-Chin Lien, Chin-Pen Yeh
  • Patent number: 8058704
    Abstract: A bipolar transistor, comprising a collector, a base and an emitter, in which the collector comprises a relatively heavily doped region, and a relatively lightly doped region adjacent the base, and in which the relatively heavily doped region is substantially omitted from an intrinsic region of the transistor.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: November 15, 2011
    Assignee: Analog Devices, Inc.
    Inventors: Bernard Patrick Stenson, Andrew David Bain, Derek Frederick Bowers, Paul Malachy Daly, Anne Maria Deignan, Michael Thomas Dunbar, Patrick Martin McGuiness, William Allan Lane
  • Patent number: 7932155
    Abstract: A method of forming a semiconductor device having two different strains therein is provided. The method includes forming a strain in a first region with a first straining film, and forming a second strain in a second region with a second straining film. Either of the first or second strains may be either tensile or compressive. Additionally the strains may be formed at right angles to one another and may be additionally formed in the same region. In particular a vertical tensile strain may be formed in a base and collector region of an NPN bipolar transistor and a horizontal compressive strain may be formed in the extrinsic base region of the NPN bipolar transistor. A PNP bipolar transistor may be formed with a compression strain in the base and collector region in the vertical direction and a tensile strain in the extrinsic base region in the horizontal direction.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: April 26, 2011
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, David L. Harame, Jeffrey B. Johnson, Alvin J. Joseph
  • Patent number: 7898061
    Abstract: A method of forming a semiconductor device having two different strains therein is provided. The method includes forming a strain in a first region with a first straining film, and forming a second strain in a second region with a second straining film. Either of the first or second strains may be either tensile or compressive. Additionally the strains may be formed at right angles to one another and may be additionally formed in the same region. In particular a vertical tensile strain may be formed in a base and collector region of an NPN bipolar transistor and a horizontal compressive strain may be formed in the extrinsic base region of the NPN bipolar transistor. A PNP bipolar transistor may be formed with a compression strain in the base and collector region in the vertical direction and a tensile strain in the extrinsic base region in the horizontal direction.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 1, 2011
    Assignee: International Business Machines Corporation
    Inventors: James S. Dunn, David L. Harame, Jeffrey B. Johnson, Alvin J. Joseph
  • Patent number: 7888225
    Abstract: A method of manufacturing an electronic device including a PNP bipolar transistor comprises forming a collector in a substrate, depositing a base layer and an emitter layer on the substrate, and growing a nitride interface layer on the base layer as a base current modulation means, such that the nitride interface layer is arranged between the base layer and the emitter layer.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: February 15, 2011
    Assignee: Texas Instruments Deutschland GmbH
    Inventor: Alfred Haeusler
  • Patent number: 7843039
    Abstract: Stress-modified device structures, methods of fabricating such stress-modified device structures, and design structures for an integrated circuit. An electrical characteristic of semiconductor devices formed on a common substrate, such as the current gains of bipolar junction transistors, may be altered by modifying stresses in structures indirectly on or over, or otherwise indirectly coupled with, the semiconductor devices. The structures, which may be liners for contacts in a contact level of an interconnect, are physically spaced away from, and not in direct physical contact with, the respective semiconductor devices because at least one additional intervening material or structure is situated between the stress-imparting structures and the stress-modified devices.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: November 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: Edward C. Cooney, III, Mark Dupuis, William J. Murphy, Steven S. Williams
  • Publication number: 20100219504
    Abstract: An integrated circuit structure includes a well region of a first conductivity type, an emitter of a second conductivity type opposite the first conductivity type over the well region, a collector of the second conductivity type over the well region and substantially encircling the emitter, and a base contact of the first conductivity type over the well region. The base contact is horizontally spaced apart from the emitter by the collector. At least one conductive strip horizontally spaces the emitter, the collector, and the base contact apart from each other. A dielectric layer is directly under, and contacting, the at least one conductive strip.
    Type: Application
    Filed: March 1, 2010
    Publication date: September 2, 2010
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Chung Chen, Shuo-Mao Chen, Chin-Wei Kuo, Sally Liu
  • Publication number: 20100187657
    Abstract: The disclosed invention provides a method for the fabrication of a bipolar transistor having a collector region comprised within a semiconductor body separated from an overlying base region by one or more isolation cavities (e.g., air gaps) filled with low permittivity gas. In particular, a multilayer base-collector dielectric film is deposited over the collector region. A base region is formed onto the multilayer dielectric film and is patterned to form one or more base connection regions. The multilayer dielectric film is selectively etched during a plurality of isotropic etch processes to allow for the formation of one or more isolation region between the base connection regions and the collector region, wherein the one or more isolation regions comprise cavities filled with a gas having a low dielectric constant (e.g., air). The resultant bipolar transistor has a reduced base-collector capacitance, thereby allowing for improved frequency properties (e.g., higher maximum frequency operation).
    Type: Application
    Filed: December 18, 2009
    Publication date: July 29, 2010
    Applicant: Infineon Technologies AG
    Inventors: Josef Boeck, Wolfgang Liebl, Thomas Meister, Herbert Schaefer
  • Patent number: 7723823
    Abstract: An improved lateral bipolar electrostatic discharge (ESD) protection device (40) comprises a semiconductor (SC) substrate (42), an overlying epitaxial SC layer (44), emitter-collector regions (48, 50) laterally spaced apart by a first distance (52) in the SC layer, a base region (54) adjacent the emitter region (48) extending laterally toward and separated from the collector region (50) by a base-collector spacing (56) that is selected to set the desired trigger voltage Vt1. By providing a buried layer region (49) under the emitter region (48) Ohmically coupled thereto, but not providing a comparable buried layer region (51) under the collector region (50), an asymmetrical structure is obtained in which the DC trigger voltage (Vt1DC) and transient trigger voltage (Vt1TR) are closely matched so that |Vt1TR?Vt1DC|˜0.
    Type: Grant
    Filed: July 24, 2008
    Date of Patent: May 25, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Chai Ean Gill, Changsoo Hong, James D. Whitfield, Rouying Zhan
  • Patent number: 7701038
    Abstract: A lateral bipolar junction transistor having improved current gain and a method for forming the same are provided. The transistor includes a well region of a first conductivity type formed over a substrate, at least one emitter of a second conductivity type opposite the first conductivity type in the well region wherein each of the at least one emitters are interconnected, a plurality of collectors of the second conductivity type in the well region wherein the collectors are interconnected to each other, and a plurality of base contacts of the first conductivity type in the well region wherein the base contacts are interconnected to each other. Preferably, all sides of the at least one emitters are adjacent the collectors, and none of the base contacts are adjacent the sides of the emitters. The neighboring emitter, collectors and base contacts are separated by spacings in the well region.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: April 20, 2010
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shuo-Mao Chen, Chih-Ping Chao, Chih-Sheng Chang
  • Patent number: 7671447
    Abstract: The invention relates to a semiconductor device (10) with a semiconductor body (12) comprising a bipolar transistor with an emitter region (1), a base region (2) and a collector region (3) of, respectively, a first conductivity type, a second conductivity type, opposite to the first conductivity type, and the first conductivity type, wherein, viewed in projection, the emitter region (1) is positioned above or below the base region (2), and the collector region (3) laterally borders the base region (2). According to the invention, the base region (2) comprises a highly doped subregion (2A) the doping concentration of which has a delta-shaped profile in the thickness direction, and said highly doped sub-region (2A) extends laterally as far as the collector region (3). Such a lateral bipolar transistor has excellent high-frequency properties and a relatively high breakdown voltage between the base and collector regions (2, 3), implying that the device is suitable for high power applications.
    Type: Grant
    Filed: July 7, 2005
    Date of Patent: March 2, 2010
    Assignee: NXP B.V.
    Inventors: Andreas Hubertus Montree, Jan Willem Slotboom, Prabhat Agarwal, Philippe Meunier-Beillard
  • Patent number: 7659577
    Abstract: A power semiconductor device includes a power device and a current sense device formed in a common semiconductor region.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: February 9, 2010
    Assignee: International Rectifier Corporation
    Inventor: Vincent Thiery
  • Publication number: 20100013051
    Abstract: A semiconductor component is formed using the following processes: (a) forming a first dielectric layer over the semiconductor substrate; (b) forming a base electrode for the bipolar transistor over the dielectric layer; (c) forming an oxide nitride structure over the base electrode; (d) forming a first spacer adjacent to the oxide nitride structure and the base electrode; (e) removing a top layer of the oxide nitride structure; (f) removing a first portion of the dielectric layer; (g) forming an epitaxial layer over the semiconductor substrate; (h) forming a second spacer over the epitaxial layer; and (i) forming an emitter electrode over the epitaxial layer and adjacent to the second spacer.
    Type: Application
    Filed: September 24, 2009
    Publication date: January 21, 2010
    Applicant: FREESCALE SEMICONDUCTOR, INC.
    Inventors: Jay P. John, James A. Kirchgessner, Matthew W. Menner
  • Patent number: 7615455
    Abstract: A bipolar transistor having a base region resting by its lower surface on a collector region and surrounded with a first insulating layer, a base contact conductive region in contact with an external upper peripheral region of the base region, a second insulating region in contact with an intermediary upper peripheral region of the base region, an emitter region in contact with the central portion of the base region. The level of the central portion is higher than the level of the intermediary portion.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: November 10, 2009
    Assignee: STMicroelectronics S.A.
    Inventors: Pascal Chevalier, Alain Chantre
  • Patent number: 7579635
    Abstract: A base layer made of SiGe mixed crystal includes a spacer layer formed in contact with a collector layer with no base impurities diffused therein and an intrinsic base layer formed in contact with an emitter layer with base impurities diffused therein. The spacer layer contains C at a low concentration. The intrinsic base layer has a first region containing C at a low concentration on the collector side and a second region containing C at a high concentration on the emitter side.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: August 25, 2009
    Assignee: Panasonic Corporation
    Inventor: Shigetaka Aoki
  • Publication number: 20090206449
    Abstract: Stress-modified device structures, methods of fabricating such stress-modified device structures, and design structures for an integrated circuit. An electrical characteristic of semiconductor devices formed on a common substrate, such as the current gains of bipolar junction transistors, may be altered by modifying stresses in structures indirectly on or over, or otherwise indirectly coupled with, the semiconductor devices. The structures, which may be liners for contacts in a contact level of an interconnect, are physically spaced away from, and not in direct physical contact with, the respective semiconductor devices because at least one additional intervening material or structure is situated between the stress-imparting structures and the stress-modified devices.
    Type: Application
    Filed: February 14, 2008
    Publication date: August 20, 2009
    Inventors: Edward C. Cooney III, Mark Dupuis, William J. Murphy, Steven S. Williams
  • Patent number: 7538412
    Abstract: A semiconductor device includes a semiconductor material, the semiconductor material including a base region and a field stop zone including a first side adjacent the base region and a second side opposite the first side. The field stop zone includes a first dopant implant and a second dopant implant. The first dopant implant has a first dopant concentration maximum and the second dopant implant has a second dopant concentration maximum with the first dopant concentration maximum being less than the second dopant concentration maximum, and being located closer to the second side than the second dopant concentration maximum.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: May 26, 2009
    Assignee: Infineon Technologies Austria AG
    Inventors: Hans-Joachim Schulze, Franz-Josef Niedernostheide, Helmut Strack, Carsten Schaeffer, Frank Pfirsch
  • Patent number: 7495313
    Abstract: Germanium circuit-type structures are facilitated. In one example embodiment, a multi-step growth and anneal process is implemented to grow Germanium (Ge) containing material, such as heteroepitaxial-Germanium, on a substrate including Silicon (Si) or Silicon-containing material. In certain applications, defects are generally confined near a Silicon/Germanium interface, with defect threading to an upper surface of the Germanium containing material generally being inhibited. These approaches are applicable to a variety of devices including Germanium MOS capacitors, pMOSFETs and optoelectronic devices.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: February 24, 2009
    Assignees: Board of Trustees of the Leland Stanford Junior University, Canon Kabushiki Kaisha
    Inventors: Ammar Munir Nayfeh, Chi On Chui, Krishna C. Saraswat, Takao Yonehara
  • Patent number: 7482673
    Abstract: A bipolar transistor is provided which includes a collector region, an intrinsic base region overlying the collector region and an emitter region overlying the intrinsic base region. An extrinsic base overlies a portion of the intrinsic base region. An epitaxial spacer layer is disposed between the collector region and the intrinsic base region in locations not underlying the emitter region.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: January 27, 2009
    Assignee: International Business Machines Corporation
    Inventor: Marwan H. Khater
  • Patent number: 7456071
    Abstract: An integrated circuit including a buried layer of determined conductivity type in a plane substantially parallel to the plane of a main circuit surface, in which the median portion of this buried layer is filled with a metal-type material.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: November 25, 2008
    Assignee: STMicroelectronics S.A.
    Inventors: Michel Marty, Philippe Coronel, François Leverd
  • Patent number: 7446012
    Abstract: The present invention relates to a lateral PNP transistor and the method of manufacturing the same. The medium doping N-type base area and the light doping P? collector area were first introduced in the structure before the formation of P+ doping emitter area and the collector area. The emitter-base-collector doping profile in the lateral and the base width of LPNP were similar to NPN. The designer can optimize the doping profile and area size of each area according to the request of the current gain (Hfe), collector-base breakdown voltage (BVceo), and early voltage (VA) of LPNP transistor. These advantages may cause to reduce the area and enhance performance of the LPNP transistor.
    Type: Grant
    Filed: January 20, 2006
    Date of Patent: November 4, 2008
    Assignee: BCD Semiconductor Manufacturing Limited
    Inventors: Chong Ren, Xian-Feng Liu, Bin Qiu
  • Patent number: 7405422
    Abstract: A method and apparatus for depositing single crystal, epitaxial films of silicon carbon and silicon germanium carbon on a plurality of substrates in a hot wall, isothermal UHV-CVD system is described. In particular, a multiple wafer low temperature growth technique in the range from 350° C. to 750° C. is described for incorporating carbon epitaxially in Si and SiGe films with very abrupt and well defined junctions, but without any associated oxygen background contamination. Preferably, these epitaxial SiC and SiGeC films are in-situ doped p- or n-type and with the presence of low concentration of carbon <1020 cm?3, the as-grown p- or n-type dopant profile can withstand furnace anneals to temperatures of 850° C. and rapid thermal anneal temperatures to 1000° C.
    Type: Grant
    Filed: December 30, 2006
    Date of Patent: July 29, 2008
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Basanth Jaqannathan, Alfred Grill, Bernard S. Meyerson, John A Ott
  • Patent number: 7397108
    Abstract: A monolithically integrated bipolar transistor has an SOI substrate, a collector region in the SOI substrate, a base layer region on top of and in contact with the collector region, and an emitter layer region on top of and in contact with the base layer region, wherein the collector, base layer, and emitter layer regions are provided with separate contact regions. Further, a region of an insulating material, preferably an oxide or nitride, is provided in the base layer region, in the emitter layer region, or between the base and emitter layer regions, wherein the insulating region extends laterally at a fraction of a width of the base and emitter layer regions to reduce an effective width of the bipolar transistor to thereby eliminate any base push out effects that would otherwise occur.
    Type: Grant
    Filed: March 11, 2005
    Date of Patent: July 8, 2008
    Assignee: Infineon Technologies AG
    Inventor: Torkel Arnborg
  • Patent number: 7394113
    Abstract: Embodiments herein present a structure, method, etc. for a self-alignment scheme for a heterojunction bipolar transistor (HBT). An HBT is provided, comprising an extrinsic base, a first self-aligned silicide layer over the extrinsic base, and a nitride etch stop layer above the first self-aligned silicide layer. A continuous layer is also included between the first self-aligned silicide layer and the nitride etch stop layer, wherein the continuous layer can comprise oxide. The HBT further includes spacers adjacent the continuous layer, wherein the spacers and the continuous layer separate the extrinsic base from an emitter contact. In addition, an emitter is provided, wherein the height of the emitter is less than or equal to the height of the extrinsic base. Moreover, a second self-aligned silicide layer is over the emitter, wherein the height of the second silicide layer is less than or equal to the height of the first silicide layer.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: July 1, 2008
    Assignee: International Business Machines Corporation
    Inventors: Francois Pagette, Anna Topol