In Array Patents (Class 257/5)
  • Publication number: 20130234102
    Abstract: Some embodiments include methods of forming BJTs. A first type doped region is formed within semiconductor material. First and second trenches are formed within the semiconductor material to pattern an array of pedestals, and the trenches are filled with electrically insulative material. An upper portion of the first type doped region is counter-doped to form a first stack having a second type doped region over a first type doped region, and an upper portion of the first stack is then counter-doped to form a second stack having a second type doped region between a pair of first type doped regions. Some embodiments include a BJT array. A base implant region is between a pair of emitter/collector implant regions. Electrically insulative material is adjacent the base implant region, and contains at least about 7×1016 atoms/cm3 of base implant region dopant.
    Type: Application
    Filed: March 8, 2012
    Publication date: September 12, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Federica Ottogalli, Luca Laurin
  • Patent number: 8530874
    Abstract: A phase change memory may include a plurality of thin layers covering a stack including a chalcogenide and a heater. The thin layers may form a barrier to heat loss. The thin layers may be the same or different materials. The layers may also be chemically or morphologically altered to improve the adverse affect of the interface between the layers on heat transfer.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Enrico Varesi
  • Patent number: 8530880
    Abstract: A reconfigurable multilayer circuit (400) includes a complimentary metal-oxide-semiconductor (CMOS) layer (210) having control circuitry, logic gates (515), and at least two crossbar arrays (205, 420) which overlie the CMOS layer (210). The at least two crossbar arrays (205, 420) are configured by the control circuitry and form reconfigurable interconnections between the logic gates (515) within the CMOS layer (210).
    Type: Grant
    Filed: July 27, 2009
    Date of Patent: September 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Dmitri Borisovich Strukov, R. Stanley Williams, Yevgeniy Eugene Shteyn
  • Patent number: 8530878
    Abstract: Some embodiments include methods of forming memory cells utilizing various arrangements of conductive lines, electrodes and programmable material; with the programmable material containing high k dielectric material directly against multivalent metal oxide. Some embodiments include arrays of memory cells, with the memory cells including programmable material containing high k dielectric material directly against multivalent metal oxide.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 10, 2013
    Assignee: Micron Technology, Inc.
    Inventors: John Smythe, Gurtej S. Sandhu
  • Patent number: 8530879
    Abstract: A semiconductor memory device in accordance with an embodiment comprises first lines, second lines, and a memory cell array including memory cells. Each of the memory cells is disposed at each of intersections of the first lines and the second lines and is configured by a rectifier element and a variable resistor connected in series. The rectifier element comprises a first semiconductor region of a first conductivity type including an impurity of a first impurity concentration, and a second semiconductor region of a second conductivity type including an impurity of a second impurity concentration lower than the first impurity concentration. The first semiconductor region and the second semiconductor region are formed by silicon. A junction interface of the first semiconductor region and the second semiconductor region is a pseudo-heterojunction formed by two layers that have different band gap widths and are formed of the same material.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: September 10, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroomi Nakajima
  • Patent number: 8531868
    Abstract: According to various embodiments, a resistive-switching memory element and memory element array that uses a bipolar switching includes a select element comprising only a single diode that is not a Zener diode. The resistive-switching memory elements described herein can switch even when a switching voltage less than the breakdown voltage of the diode is applied in the reverse-bias direction of the diode. The memory elements are able to switch during the very brief period when a transient pulse voltage is visible to the memory element, and therefore can use a single diode per memory cell.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 10, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Yun Wang, Prashant B. Phatak, Tony P. Chiang
  • Patent number: 8530873
    Abstract: An electroforming free memristor includes a first electrode, a second electrode spaced from the first electrode, and a switching layer positioned between the first electrode and the second electrode. The switching layer is formed of a matrix of a switching material and reactive particles that are to react with the switching material during a fabrication process of the memristor to form one or more conductance channels in the switching layer.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: September 10, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Gilberto Medeiros Ribeiro, R Stanley Williams
  • Patent number: 8525145
    Abstract: Phase change memory elements, devices and systems using the same and methods of forming the same are disclosed. A memory element includes first and second electrodes, and a phase change material layer between the first and second electrodes. The phase change material layer has a first portion with a width less than a width of a second portion of the phase change material layer. The first electrode, second electrode and phase change material layer may be oriented at least partially along a same horizontal plane.
    Type: Grant
    Filed: February 2, 2012
    Date of Patent: September 3, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8525298
    Abstract: A phase change memory device having a 3-D stack structure and a fabrication method for making the same are presented. The phase change memory device includes a semiconductor substrate, a word line structure and one or more phase change structures. The word line structure extends in one first direction on the semiconductor substrate. The one or more phase change structures extend mutually in parallel from one sidewall of the word line structure. The, the memory cell including a switching device, one side of the switching device contacted with the one sidewall of the word line structure, a heating electrode formed on the other side portion of the switching device, and a phase change pattern, one sidewall of the phase change pattern contacted with the heating electrode.
    Type: Grant
    Filed: May 19, 2010
    Date of Patent: September 3, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Ki Ho Yang
  • Patent number: 8525146
    Abstract: An electrical circuit component includes a first electrode, a plurality of second electrodes and a negative differential resistance (NDR) material. The first electrode and the plurality of second electrodes are connected to the NDR material and the NDR material is to electrically connect the first electrode to one of the plurality of second electrodes when a sufficient voltage is applied between the first electrode and the one of the plurality of second electrodes through the NDR material.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: September 3, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Wei Wu, Matthew D. Pickett, Jianhua Yang, Qiangfei Xia, Gilberto Medeiros Ribeiro
  • Publication number: 20130221317
    Abstract: An embodiment of the present invention sets forth an embedded resistive memory cell that includes a first stack of deposited layers, a second stack of deposited layers, a first electrode disposed under a first portion of the first stack, and a second electrode disposed under a second portion of the first stack and extending from under the second portion of the first stack to under the second stack. The second electrode is disposed proximate to the first electrode within the embedded resistive memory cell. The first stack of deposited layers includes a dielectric layer, a high-k dielectric layer disposed above the dielectric layer, and a metal layer disposed above the high-k dielectric layer. The second stack of deposited layers includes a high-k dielectric layer formed simultaneously with the high-k dielectric layer included in the first stack, and a metal layer disposed above the high-k dielectric layer.
    Type: Application
    Filed: February 29, 2012
    Publication date: August 29, 2013
    Applicant: Intermolecular, Inc
    Inventors: Dipankar Pramanik, Tony P. Chiang, David Lazosky
  • Publication number: 20130221318
    Abstract: Some embodiments include memory cells. The memory cells may have a first electrode, and a trench-shaped programmable material structure over the first electrode. The trench-shape defines an opening. The programmable material may be configured to reversibly retain a conductive bridge. The memory cell may have an ion source material directly against the programmable material, and may have a second electrode within the opening defined by the trench-shaped programmable material. Some embodiments include arrays of memory cells. The arrays may have first electrically conductive lines, and trench-shaped programmable material structures over the first lines. The trench-shaped structures may define openings within them. Ion source material may be directly against the programmable material, and second electrically conductive lines may be over the ion source material and within the openings defined by the trench-shaped structures.
    Type: Application
    Filed: April 4, 2013
    Publication date: August 29, 2013
    Applicant: Micron Technology, Inc.
    Inventor: Micron Technology, Inc.
  • Patent number: 8519377
    Abstract: A nonvolatile memory device group includes: (A) a first insulating layer; (B) a second insulating layer that has a first concavity and a second concavity communicating with the first concavity and having a width larger than that of the first concavity and that is disposed on the first insulating layer; (C) a plurality of electrodes that are disposed in the first insulating layer and the top surface of which is exposed from the bottom surface of the first concavity; (D) an information storage layer that is formed on the side walls and the bottom surfaces of the first concavity and the second concavity; and (E) a conductive material layer that is filled in a space surrounded with the information storage layer in the second concavity.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: August 27, 2013
    Assignee: Sony Corporation
    Inventors: Jun Sumino, Motonari Honda
  • Patent number: 8519374
    Abstract: A resistive memory device includes a lower electrode formed on a substrate, a resistive layer formed on the lower electrode, and an upper electrode on the resistive layer, wherein a lower portion of the upper electrode is narrower than an upper portion of the upper electrode.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: August 27, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Seok-Pyo Song, Yu-Jin Lee
  • Patent number: 8519372
    Abstract: A nanoscale switching device is constructed such that an electroforming process is not needed to condition the device for normal switching operations. The switching device has an active region disposed between two electrodes. The active region has at least one switching layer formed of a switching material capable of transporting dopants under an electric field, and at least one conductive layer formed of a dopant source material containing dopants that can drift into the switching layer under an electric field. The switching layer has a thickness about 6 nm or less.
    Type: Grant
    Filed: July 30, 2009
    Date of Patent: August 27, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jianhua Yang, Shih-Yuan Wang, R. Stanley Williams, Alexandre Bratkovski, Gilberto Ribeiro
  • Patent number: 8516690
    Abstract: An anisotropic conductive joint package in which an anisotropic conductive film is joined to at least one conductive material selected from among the group consisting of gold (Au), silver (Ag), copper (Cu), aluminum (Al), magnesium (Mg), nickel (Ni), a tin oxide doped with indium (ITO), molybdenum (Mo), iron (Fe), palladium (Pd), beryllium (Be), and rhenium (Re).
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: August 27, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Yusuke Hatanaka, Yoshinori Hotta, Tadabumi Tomita
  • Patent number: 8519376
    Abstract: Nonvolatile resistive memory devices are disclosed. In some embodiments, the memory devices comprise multilayer structures including electrodes, one or more resistive storage layers, and separation layers. The separation layers insulate the resistive storage layers to prevent charge leakage from the storage layers and allow for the use of thin resistive storage layers. In some embodiments, the nonvolatile resistive memory device includes a metallic multilayer comprising two metallic layers about an interlayer. A dopant at an interface of the interlayer and metallic layers can provide a switchable electric field within the multilayer.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 27, 2013
    Assignee: Seagate Technology LLC
    Inventors: Dimitar Velikov Dimitrov, Insik Jin, Haiwen Xi
  • Publication number: 20130214241
    Abstract: A method of forming a disturb-resistant non volatile memory device. The method includes providing a semiconductor substrate having a surface region and forming a first dielectric material overlying the surface region. A first wiring material overlies the first dielectric material, a doped polysilicon material overlies the first wiring material, and an amorphous silicon switching material overlies the said polysilicon material. The switching material is subjected to a first patterning and etching process to separating a first strip of switching material from a second strip of switching spatially oriented in a first direction.
    Type: Application
    Filed: January 3, 2013
    Publication date: August 22, 2013
    Applicant: Crossbar, Inc.
    Inventor: Crossbar, Inc.
  • Patent number: 8513640
    Abstract: On the same semiconductor substrate 1, a memory cell array in which a plurality of memory elements R having a chalcogenide-material storage layer 22 storing a high-resistance state with a high electric resistance value and a low-resistance state with a low electric resistance value by a change of an atom arrangement are disposed in a matrix is formed in a memory cell region mmry, and a semiconductor integrated circuit is formed in a logic circuit region lgc. This chalcogenide-material storage layer 22 is made of a chalcogenide material containing at least either one of Ga or In of 10.5 atom % or larger to 40 atom % or smaller, Ge of 5 atom % or larger to 35 atom % or smaller, Sb of 5 atom % or larger to 25 atom % or smaller, and Te of 40 atom % or larger to 65 atom % or smaller.
    Type: Grant
    Filed: November 14, 2006
    Date of Patent: August 20, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Takahiro Morikawa, Motoyasu Terao, Norikatsu Takaura, Kenzo Kurotsuchi
  • Patent number: 8513638
    Abstract: A semiconductor device may include, but is not limited to: a first insulating film; a second insulating film over the first insulating film; a first memory structure between the first and second insulating films; and a third insulating film between the first and second insulating films. The first memory structure may include, but is not limited to: a heater electrode; and a phase-change memory element between the heater electrode and the second insulating film. The phase-change memory element contacts the heater electrode. The third insulating film covers at least a side surface of the phase-change memory element. Empty space is positioned adjacent to at least one of the heater electrode and the third insulating film.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 20, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Tomoyasu Kakegawa, Isamu Asano, Tsuyoshi Kawagoe, Hiromi Sasaoka, Naoya Higano, Yuta Watanabe
  • Patent number: 8513064
    Abstract: Some embodiments include methods of forming memory arrays. A stack of semiconductor material plates may be patterned to subdivide the plates into pieces. Electrically conductive tiers may be formed along sidewall edges of the pieces. The pieces may then be patterned into an array of wires, with the array having vertical columns and horizontal rows. Individual wires may have first ends joining to the electrically conductive tiers, may have second ends in opposing relation to the first ends, and may have intermediate regions between the first and second ends. Gate material may be formed along the intermediate regions. Memory cell structures may be formed at the second ends of the wires. A plurality of vertically-extending electrical interconnects may be connected to the wires through the memory cell structures, with individual vertically-extending electrical interconnects being along individual columns of the array. Some embodiments include memory arrays incorporated into integrated circuitry.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: August 20, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sanh D. Tang, Janos Fucsko
  • Patent number: 8513636
    Abstract: A steering device. The steering device includes an n-type impurity region comprising a zinc oxide material and a p-type impurity region comprising a silicon germanium material. A pn junction region formed from the zinc oxide material and the silicon germanium material. The steering device is a serially coupled to a resistive switching device to provide rectification for the resistive switching device to form a non-volatile memory device.
    Type: Grant
    Filed: January 23, 2013
    Date of Patent: August 20, 2013
    Assignee: Crossbar, Inc.
    Inventor: Scott Brad Herner
  • Publication number: 20130207067
    Abstract: The present disclosure discloses a vertical selection transistor, a memory cell having the vertical selection transistor, a three-dimensional memory array structure and a method for fabricating the three-dimensional memory array structure. The vertical selection transistor comprises: an upper electrode; a lower electrode; a first semiconductor layer, a second semiconductor layer, a third semiconductor layer and a fourth semiconductor layer vertically stacked between the lower electrode and the upper electrode; and a gate stack formed on a side of the second semiconductor layer, in which the first semiconductor layer and the third semiconductor layer are first type doped layers, the second semiconductor layer and the fourth semiconductor layer are second type doped layers, and a doping concentration of the second semiconductor layer is lower than that of the first semiconductor layer or that of the third semiconductor layer respectively.
    Type: Application
    Filed: March 12, 2012
    Publication date: August 15, 2013
    Inventors: Liyang Pan, Fang Yuan
  • Publication number: 20130207068
    Abstract: Memory cells, arrays of memory cells, and methods of forming the same with sealing material on sidewalls thereof are disclosed herein. One example of forming a memory cell includes forming a stack of materials, forming a trench to a first depth in the stack of materials such that a portion of at least one of the active storage element material and the active select device material is exposed on sidewalls of the trench. A sealing material is formed on the exposed portion of the at least one of the active storage element material and the active select device material and the trench is deepened such that a portion of the other of the at least one of the active storage element material and the active select device material is exposed on the sidewalls of the trench.
    Type: Application
    Filed: February 9, 2012
    Publication date: August 15, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Fabio Pellizzer
  • Patent number: 8507889
    Abstract: A nonvolatile semiconductor memory device includes a memory cell array where a plurality of memory cell layers having a plurality of first and second wires which cross each other and a memory cell provided at each intersection of these first and second wires are laminated on top of each other, wherein the memory cells have a variable resistance element and a non-ohmic element laminated in the direction in which the memory cell layers are laminated and tapered in such a manner that the area in a cross section gradually becomes smaller from the bottom memory cell layer towards the top memory cell layer, and the variable resistance element and the non-ohmic element in the memory cells in a certain memory cell layer are laminated in the same order as the variable resistance element and the non-ohmic element of the memory cells in another memory cell layer.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: August 13, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Nagashima
  • Patent number: 8507315
    Abstract: A method of forming a memory cell is provided that includes forming a steering element above a substrate, and forming a reversible resistance-switching element coupled to the steering element. The reversible resistance-switching element includes one or more of TiOx, Ta2O5, Nb2O5, Al2O3, HfO2, and V2O5, and the reversible resistance switching element is formed without being etched. Numerous other aspects are provided.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: August 13, 2013
    Assignee: SanDisk 3D LLC
    Inventors: April D. Schricker, S. Brad Herner, Mark H. Clark
  • Publication number: 20130200331
    Abstract: In a semiconductor storage device where a plurality of memory cells obtained by connecting a vertical transistor and a phase-change element in parallel is formed along a direction perpendicular to a main face of a semiconductor substrate, highly-reliable selection operation is made possible with a further low voltage. A plurality of through-holes extending through insulating films and polysilicon layers is formed in regions at which word lines and bit lines intersect with each other. A plurality of vertical chain memories composed of a gate insulating film 111, a channel film, a reaction-preventing film, a metal silicide film having a resistance lower than that of the reaction-preventing film, a phase-change film, and an embedding insulating film is formed inside each through-hole. The channel film and the reaction-preventing film are separated into respective pieces at regions among a plurality of memory cells arranged along a direction perpendicular to a main face of a semiconductor substrate.
    Type: Application
    Filed: February 5, 2013
    Publication date: August 8, 2013
    Applicant: National Institute of Advanced Industrial Science and Technology
    Inventor: National Institute of Advanced Industrial Science and Technology
  • Publication number: 20130200322
    Abstract: Memory arrays and methods of forming the same are provided. One example method of forming a memory array can include forming a conductive material in a number of vias and on a substrate structure, the conductive material to serve as a number of conductive lines of the array and coupling the number of conductive lines to the array circuitry.
    Type: Application
    Filed: February 2, 2012
    Publication date: August 8, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Roberto Somaschini, Fabio Pellizzer, Carmela Cupeta, Nicola Nastasi
  • Publication number: 20130200330
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line and placed on both sides of the gate contact over a layer of insulating material. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes formation of a pair of pillars over an insulating material on the substrate, depositing an electrically conductive gate material between and over the pillars, etching the gate material such that it both partially fills a space between the pair of pillars and forms a word line for the memory cells, and depositing a gate contact between the dielectric pillars such that the gate contact is in electrical contact with the gate material.
    Type: Application
    Filed: February 8, 2012
    Publication date: August 8, 2013
    Applicant: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Patent number: 8502183
    Abstract: According to one embodiment, a semiconductor memory device includes a first conductive line, a second conductive line, a rectifying element, a switching element, a first side wall film and a second side wall film. The first conductive line extends in a first direction. The second conductive line extends in a second direction crossing the first direction. The rectifying element is connected between the first and second conductive lines. The switching element is connected in series with the rectifying element between the first and second conductive lines. The first side wall film is formed on a side surface of the rectifying element. The second side wall film is formed on a side surface of at least one of the first and second conductive lines. At least one of a film type and a film thickness of the second side wall film is different from that of the first side wall film.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Jun Nishimura, Nobuaki Yasutake, Takeshi Murata
  • Patent number: 8502184
    Abstract: A nonvolatile memory device and a method of fabricating the same are provided. The nonvolatile memory device includes a conductive pillar that extends from a substrate in a first direction, a variable resistor that surrounds the conductive pillar, a switching material layer that surrounds the variable resistor, a first conductive layer that extends in a second direction, and a first electrode that extends in a third direction and contacts the first conductive layer and the switching material layer. Not one of the first, second, and third directions is parallel to another one of the first, second, and third directions.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: August 6, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeong-Geun An, Sung-Lae Cho, Ik-Soo Kim, Dong-Hyun Im, Eun-Hee Cho
  • Patent number: 8501525
    Abstract: A method of fabricating a programmable memory microelectronic device includes depositing onto a first electrode an intermediate layer of a material having a chalcogenide; depositing an ionizable metallic layer on the intermediate layer; irradiating with ultraviolet radiation the ionizable metallic layer so that metallic ions from the ionizable metallic layer diffuse into the intermediate layer to form a chalcogenide material containing metallic ions, and depositing a second electrode on the layer of chalcogenide material containing metallic ions obtained in the prior step. The second and third steps are repeated at least n times, where n is an integer greater than or equal to 1. The ionizable metallic layer deposited during the second step has a sufficiently small thickness that the metallic ions may be diffused totally during the irradiation (third) step.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: August 6, 2013
    Assignee: Altis Semiconductor
    Inventor: Faiz Dahmani
  • Patent number: 8502185
    Abstract: A switching device includes a substrate; a first electrode formed over the substrate; a second electrode formed over the first electrode; a switching medium disposed between the first and second electrode; and a nonlinear element disposed between the first and second electrodes and electrically coupled in series to the first electrode and the switching medium. The nonlinear element is configured to change from a first resistance state to a second resistance state on application of a voltage greater than a threshold.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: August 6, 2013
    Assignee: Crossbar, Inc.
    Inventors: Wei Lu, Sung Hyun Jo
  • Patent number: 8502188
    Abstract: An electrically actuated device includes a first electrode and a second electrode crossing the first electrode at a non-zero angle, thereby forming a junction therebetween. A material is established on the first electrode and at the junction. At least a portion of the material is a matrix region. A current conduction channel extends substantially vertically between the first and second electrodes, and is defined in at least a portion of the material positioned at the junction. The current conduction channel has a controlled profile of dopants therein.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 6, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Matthew D. Pickett, Hans S. Cho, Julien Borghetti, Duncan Stewart
  • Patent number: 8502322
    Abstract: According to the nonvolatile memory device in one embodiment, contact plugs connect between second wires and third wires in a memory layer and a first wire connected to a control element. Drawn wire portions connect the second wires and the third wires with the contact plug. The drawn wire portion connected to the second wires and the third wires of the memory layer is formed of a wire with a critical dimension same as the second wires and the third wires and is in contact with the contact plug on an upper surface and both side surfaces of the drawn wire portion.
    Type: Grant
    Filed: March 10, 2011
    Date of Patent: August 6, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Nitta
  • Publication number: 20130193402
    Abstract: A phase-change random access memory (PCRAM) device and a method of manufacturing the same. The PCRAM device includes memory cells that each include a semiconductor substrate having a switching element, a lower electrode formed on the switching element, a phase-change layer formed on the lower electrode, and an upper electrode formed on the phase-change layer; and a porous insulating layer arranged to insulate one memory cell from another memory cell of the memory cells.
    Type: Application
    Filed: May 29, 2012
    Publication date: August 1, 2013
    Inventor: Choon Kun RYU
  • Publication number: 20130193403
    Abstract: Some embodiments include methods of forming memory cells utilizing various arrangements of conductive lines, electrodes and programmable material; with the programmable material containing high k dielectric material directly against multivalent metal oxide. Some embodiments include arrays of memory cells, with the memory cells including programmable material containing high k dielectric material directly against multivalent metal oxide.
    Type: Application
    Filed: February 28, 2013
    Publication date: August 1, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Micron Technology, Inc.
  • Publication number: 20130193401
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line. Dielectric pillars are placed on both sides of the gate contact. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes formation of a pair of pillars made of an insulating material over the substrate, depositing an electrically conductive gate material between and over the pillars, etching the gate material such that it both partially fills a space between the pair of pillars and forms a word line for the memory cells, and depositing a gate contact between the dielectric pillars such that the gate contact is in electrical contact with the gate material.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 1, 2013
    Applicant: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Publication number: 20130193398
    Abstract: Memory arrays and methods of forming the same are provided. One example method of forming a memory array can include forming a first conductive material having a looped feature using a self-aligning multiple patterning technique, and forming a first sealing material over the looped feature. A first chop mask material is formed over the first sealing material. The looped feature and the first sealing material are removed outside the first chop mask material.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Antonino Rigano
  • Publication number: 20130193400
    Abstract: Some embodiments include memory cell structures. The structures include a vertical transistor having a bottom source/drain region electrically coupled to a first access/sense line, and having a gate comprised by a second access/sense line. The structures also include programmable material over the vertical transistor and electrically coupled with a top source/drain region of the vertical transistor, with the programmable material having at least two compositionally different regions. The structures also include an electrically conductive material over and directly against the programmable material. Some embodiments include memory arrays.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej S. Sandhu, John K. Zahurak
  • Publication number: 20130193399
    Abstract: The present invention generally relates to the three-dimensional arrangement of memory cells. This 3D arrangement and orientation is made with macro cells that enable the programming, reading and/or querying of any memory cell in the 3D array without the need for overhead wiring or by utilizing a minimal amount of overhead wiring. The individual macro cells are electrically coupled together such that a single transistor on the substrate can be utilized to address multiple macro cells. In such an arrangement, all the auxiliary circuits for addressing memory elements are simplified thereby diminishing their integrated circuit area.
    Type: Application
    Filed: January 26, 2012
    Publication date: August 1, 2013
    Inventor: LUIZ M. FRANCA-NETO
  • Patent number: 8497492
    Abstract: A variable resistive element comprising a configuration that an area of an electrically contributing region of a variable resistor body is finer than that constrained by an upper electrode or a lower electrode and its manufacturing method are provided. A bump electrode material is formed on a lower electrode arranged on a base substrate. The bump electrode material is contacted to a variable resistor body at a surface different from a contact surface to the lower electrode. The variable resistor body is contacted to an upper electrode at a surface different from a contact surface to the bump electrode material. Thus, a cross point region between the bump electrode material (the variable resistor body) and the upper electrode becomes an electrically contributing region of the variable resistor body, and then an area thereof can be reduced compared with that of the region regarding the conventional variable resistive element.
    Type: Grant
    Filed: February 23, 2007
    Date of Patent: July 30, 2013
    Assignee: Xenogenic Development Limited Liability Company
    Inventors: Yasunari Hosoi, Kazuya Ishihara, Takahiro Shibuya, Tetsuya Ohnishi, Takashi Nakano
  • Publication number: 20130187120
    Abstract: Memory cells having heaters with angled sidewalls and methods of forming the same are described herein. As an example, a method of forming an array of resistive memory cells can include forming a first resistive memory cell having a first heater element angled with respect to a vertical plane, forming a second resistive memory cell adjacent to the first resistive memory cell and having a second heater element angled with respect to the vertical plane and toward the first heater, and forming a third resistive memory cell adjacent to the first resistive memory cell and having a third heater element angled with respect to the vertical plane and away from the first heater element.
    Type: Application
    Filed: January 20, 2012
    Publication date: July 25, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Andrea Redaelli, Giorgio Servalli, Pietro Petruzza, Cinzia Perrone
  • Publication number: 20130187121
    Abstract: Memory devices utilizing memory cells including a resistive element and a diode coupled in series between two conductors. The diodes include a ruthenium material and a silicon material. The diodes further include an interface on the silicon material of ruthenium or ruthenium silicide. A ruthenium silicide interface may be a polycrystalline ruthenium silicide.
    Type: Application
    Filed: March 11, 2013
    Publication date: July 25, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: MICRON TECHNOLOGY, INC.
  • Patent number: 8492741
    Abstract: A resistive random access memory (RRAM) includes a resistive memory layer of a transition metal oxide, such as Ni oxide, and is doped with a metal material. The RRAM may include at least one first electrode, a resistive memory layer on the at least one first electrode, the resistive memory layer including a Ni oxide layer doped with at least one element selected from a group consisting of Fe, Co, and Sn, and at least one second electrode on the resistive memory layer. The RRAM device may include a plurality of first electrodes and a plurality of second electrodes, and the resistive memory layer may be between the plurality of first electrodes and the plurality of second electrodes.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: July 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-bum Lee, Dong-soo Lee, Chang-jung Kim
  • Patent number: 8492194
    Abstract: A method for fabricating a phase change memory pore cell that includes forming a bottom electrode, forming a dielectric layer on the bottom electrode, and forming a sacrificial layer on the dielectric layer. The method further includes selectively etching portions of the sacrificial layer and the dielectric layer to define a pore extending through the sacrificial layer and the dielectric layer, depositing phase change material on the sacrificial layer and into the pore and removing the phase change material formed outside the pore, removing the sacrificial layer to expose the pore, the pore being vertically aligned, and forming a top electrode over the pore.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. Breitwisch, Chung H. Lam
  • Patent number: 8493772
    Abstract: Methods, devices, and systems associated with phase change memory structures are described herein. One method of forming a phase change memory structure includes forming an insulator material on a first conductive element and on a dielectric material of a phase change memory cell, forming a heater self-aligned with the first conductive element, forming a phase change material on the heater and at least a portion of the insulator material formed on the dielectric material, and forming a second conductive element of the phase change memory cell on the phase change material.
    Type: Grant
    Filed: August 14, 2012
    Date of Patent: July 23, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Jun Liu
  • Patent number: 8492743
    Abstract: A nonvolatile memory device includes a substrate, a lower electrode formed above said substrate, a second variable resistance layer formed above said lower electrode and comprising a second transitional metal oxide, a first variable resistance layer formed above said second variable resistance layer and comprising a first transitional metal oxide having an oxygen content that is lower than an oxygen content of the second transitional metal oxide, and an upper electrode formed above said first variable resistance layer. A step is formed in an interface between said lower electrode and said second variable resistance layer. The second variable resistance layer is formed covering the step and has a bend above the step.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: July 23, 2013
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Yoshio Kawashima
  • Patent number: 8492740
    Abstract: The capability of retaining a resistance value of a stored state and an erased state is improved in a resistance variation-type memory device. A memory layer 5 including a high-resistance layer 2 and an ion source layer 3 is provided between a lower electrode 1 and an upper electrode 4. The ion source layer 3 contains Al (aluminum) as an additive element together with an ion conductive material such as S (sulfur), Se (selenium), and Te (tellurium) (chalcogenide element) and a metal element to be ionized such as Zr (zirconium). Since Al is included in the ion source layer 3, the high-resistance layer which includes Al (Al oxide) is formed on an anode in erasing operation. Thus, a retaining property in a high-resistance state improves, and at the same time, an operating speed is improved.
    Type: Grant
    Filed: July 31, 2008
    Date of Patent: July 23, 2013
    Assignee: Sony Corporation
    Inventors: Kazuhiro Ohba, Tetsuya Mizuguchi, Shuichiro Yasuda
  • Publication number: 20130181183
    Abstract: Resistive memory cell structures and methods are described herein. One or more memory cell structures comprise a first resistive memory cell comprising a first resistance variable material and a second resistive memory cell comprising a second resistance variable material that is different than the first resistance variable material.
    Type: Application
    Filed: January 18, 2012
    Publication date: July 18, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Ferdinando Bedeschi