In Array Patents (Class 257/5)
  • Publication number: 20140043894
    Abstract: Resistance variable memory cells having a plurality of resistance variable materials and methods of operating and forming the same are described herein. As an example, a resistance variable memory cell can include a plurality of resistance variable materials located between a plug material and an electrode material. The resistance variable memory cell also includes a first conductive material that contacts the plug material and each of the plurality of resistance variable materials and a second conductive material that contacts the electrode material and each of the plurality of resistance variable materials.
    Type: Application
    Filed: August 9, 2012
    Publication date: February 13, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Ugo Russo, Andrea Redaelli, Fabio Pellizzer
  • Patent number: 8648327
    Abstract: A memory device includes a first plurality of memory cells arranged in a first crossbar array, a first thickness of dielectric material overlying the first plurality of memory cells, and a second plurality of memory cells arranged in a second crossbar array overlying the first thickness of dielectric material. The memory device further includes a second thickness of dielectric material overlying the second plurality of memory cells. In a specific embodiment, the memory device further includes a Nth thickness of dielectric material overlying an Nth plurality of memory cells, where N is an integer ranging from 3 to 8.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: February 11, 2014
    Assignee: Crossbar, Inc.
    Inventor: Scott Brad Herner
  • Patent number: 8642988
    Abstract: A non-volatile memory device includes: a first line extending along a main surface of a substrate; a stack provided above the first line; a second line formed above the stack; a select element provided where the first and second lines intersect, the select element adapted to pass current in a direction perpendicular to the main surface; a second insulator film provided along a side surface of the stack; a channel layer provided along the second insulator film; an adhesion layer provided along the channel layer; and a variable resistance material layer provided along the adhesion layer, wherein the first and second lines are electrically connected via the select element and channel layer, a contact resistance via the adhesion layer between the channel layer and variable resistance material layer is low, and a resistance of the adhesion layer is high with respect to an extending direction of the channel layer.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: February 4, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Masaharu Kinoshita, Yoshitaka Sasago, Takashi Kobayashi, Hiroyuki Minemura
  • Patent number: 8642985
    Abstract: A memory cell includes a memory element, a current-limiting element electrically coupled to the memory element, and a high-selection-ratio element electrically coupled to the current-limiting element. The memory element is configured to store data as a resistance state. The current-limiting element is a voltage-controlled resistor (VCR) having a resistance that decreases when a voltage applied thereto increases. The high-selection-ratio element has a first resistance that is small when a voltage applied to the memory cell is approximately equal to a selection voltage of the memory cell, and has a second resistance that is substantially larger than the first resistance when the voltage applied to the memory cell is approximately equal to one-half of the selection voltage.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: February 4, 2014
    Assignee: Industrial Technology Research Institute
    Inventors: Frederick T. Chen, Heng-Yuan Lee, Yu-Sheng Chen
  • Patent number: 8642990
    Abstract: A method of forming a phase-change random access memory (PRAM) cell, and a structure of a phase-change random access memory (PRAM) cell are disclosed. The PRAM cell includes a bottom electrode, a heater resistor coupled to the bottom electrode, a phase change material (PCM) formed over and coupled to the heater resistor, and a top electrode coupled to the phase change material. The phase change material contacts a portion of a vertical surface of the heater resistor and a portion of a horizontal surface of the heater resistor to form an active region between the heater resistor and the phase change material.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: February 4, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Xia Li
  • Publication number: 20140027702
    Abstract: A vertically integrated reconfigurable and programmable diode/memory resistor (1D1R) and thin film transistor/memory resistor (1T1R) structures built on substrates are disclosed.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 30, 2014
    Applicant: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: Yicheng Lu, Yang Zhang, Chieh-Jen Ku
  • Publication number: 20140027707
    Abstract: According to one embodiment, a memory device includes first interconnects, second interconnects, and a first memory cell. The first memory cell is located in an intersection of one of the first interconnects and one of the second interconnects. The first memory cell includes a first multilayer structure and a first variable resistance layer, the first multilayer structure including a first electrode, a first selector, and a first insulator which are stacked. The first selector and the first variable resistance layer are electrically connected in series between the one of the first interconnect and the one of the second interconnect. The first variable resistance layer is formed on a portion of a side surface of the first insulator to cover the portion without covering a residual portion.
    Type: Application
    Filed: September 26, 2013
    Publication date: January 30, 2014
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Kenichi Murooka
  • Publication number: 20140027705
    Abstract: A memristor array includes a lower layer of crossbars, upper layer of crossbars intersecting the lower layer of crossbars, memristor cells interposed between intersecting crossbars, and pores separating adjacent memristor cells. A method forming a memristor array is also provided.
    Type: Application
    Filed: July 27, 2012
    Publication date: January 30, 2014
    Inventors: Jianhua Yang, Minxian Max Zhang, Gilberto Medeiros Ribeiro, R. Stanley Williams
  • Publication number: 20140027706
    Abstract: A switching device and an operating method for the same and a memory array are provided. The switching device comprises a first solid electrolyte, a second solid electrolyte and a switching layer. The switching layer is adjoined between the first solid electrolyte and the second solid electrolyte.
    Type: Application
    Filed: July 30, 2012
    Publication date: January 30, 2014
    Applicant: MACRONIX INTERNATIONAL CO., LTD.
    Inventors: Wei-Chih Chien, Feng-Ming Lee, Ming-Hsiu Lee
  • Patent number: 8637847
    Abstract: Resistive memory cells having a plurality of heaters and methods of operating and forming the same are described herein. As an example, a resistive memory cell may include a resistance variable material located between a first electrode and a second electrode, a first heater coupled to a first portion of the resistance variable material, a second heater coupled to a second portion of the resistance variable material, a third heater coupled to a third portion of resistance variable material, and a conductive material coupled to the first, second, and third heaters.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: January 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Ugo Russo, Andrea Redaelli
  • Patent number: 8637845
    Abstract: Optimized electrodes for ReRAM memory cells and methods for forming the same are discloses. One aspect comprises forming a first electrode, forming a state change element in contact with the first electrode, treating the state change element, and forming a second electrode. Treating the state change element increases the barrier height at the interface between the second electrode and the state change element. Another aspect comprises forming a first electrode in a manner to deliberately establish a certain degree of amorphization in the first electrode, forming a state change element in contact with the first electrode. The degree of amorphization of the first electrode is either at least as great as the degree of amorphization of the state change element or no more than 5 percent less than the degree of amorphization of the state change element.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: January 28, 2014
    Assignee: SanDisk 3D LLC
    Inventors: Deepak C. Sekar, April Schricker, Xiying Chen, Klaus Schuegraf
  • Publication number: 20140021439
    Abstract: Some embodiments include methods of forming semiconductor constructions. Carbon-containing material is formed over oxygen-sensitive material. The carbon-containing material and oxygen-sensitive material together form a structure having a sidewall that extends along both the carbon-containing material and the oxygen-sensitive material. First protective material is formed along the sidewall. The first protective material extends across an interface of the carbon-containing material and the oxygen-sensitive material, and does not extend to a top region of the carbon-containing material. Second protective material is formed across the top of the carbon-containing material, with the second protective material having a common composition to the first protective material. The second protective material is etched to expose an upper surface of the carbon-containing material. Some embodiments include semiconductor constructions, memory arrays and methods of forming memory arrays.
    Type: Application
    Filed: July 18, 2012
    Publication date: January 23, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Cinzia Perrone
  • Patent number: 8634236
    Abstract: Provided are a phase change memory device and a fabricating method thereof. The phase change memory device includes a substrate, an interlayer dielectric layer formed on the substrate, first and second contact holes formed in the interlayer dielectric layer, and a memory cell formed in the first and second contact holes and including a diode, a first electrode on the diode, a phase change material layer on the first electrode, and a second electrode on the phase change material layer, wherein the first contact hole and the second contact hole are spaced apart from and separated from each other.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hye-Young Park, Jeong-Hee Park, Hyun-Suk Kwon
  • Patent number: 8633566
    Abstract: A repairable memory cell in accordance with one or more embodiments of the present disclosure includes a storage element positioned between a first and a second electrode, and a repair element positioned between the storage element and at least one of the first electrode and the second electrode.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: January 21, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Scott E. Sills
  • Patent number: 8629421
    Abstract: Some embodiments include memory cells having programmable material between a pair of electrodes. The programmable material includes a material selected from the group consisting of a metal silicate with a ratio of metal to silicon within a range of from about 2 to about 6, and metal aluminate with a ratio of metal to aluminum within a range of from about 2 to about 6. Some embodiments include methods of forming memory cells. First electrode material is formed. Programmable material is formed over the first electrode material, with the programmable material including metal silicate and/or metal aluminate. Second electrode material is formed over the programmable material, and then an anneal is conducted at a temperature within a range of from about 300° C. to about 500° C. for a time of from about 1 minute to about 1 hour.
    Type: Grant
    Filed: October 15, 2012
    Date of Patent: January 14, 2014
    Assignee: Micron Technology, Inc.
    Inventors: D.V. Nirmal Ramaswamy, Murali Balakrishnan, Alessandro Torsi, Noel Rocklein
  • Patent number: 8623697
    Abstract: A storage element structure for phase change memory (PCM) cell and a method for forming such a structure are disclosed. The method of forming a storage element structure, comprises providing a multilayer stack comprising a chalcogenide layer (206), a metal cap layer (208), and a dielectric hard mask layer (210), depositing and patterning a photo resist layer (212) on top of the multilayer stack, etching the dielectric hard mask layer using the photo resist layer as etch mask, after the dielectric hard mask layer is etched, removing the photo resist layer before etching the chalcogenide, etching the chalcogenide layer using the dielectric hard mask layer as etch mask, depositing a spacer dielectric (214) over the multilayer stack and anisotropically etching the spacer dielectric to form sidewall spacers (216) for the multilayer stack.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: January 7, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Michele Magistretti, Pietro Petruzza, Samuele Sciarrillo, Cristina Casellato
  • Patent number: 8624217
    Abstract: A planar phase change memory cell with parallel electrical paths. The memory cell includes a first conductive electrode region having a length greater than its width and an axis aligned with the length. The memory cell also includes a second conductive electrode region having an edge oriented at an angle to the axis of the first conductive electrode region. The memory cell further includes an insulator region providing a lateral separation distance between an end of the first conductive electrode region and the edge of the second conductive electrode region, the insulator region including at least part of an insulator film and the lateral separation distance is responsive to the thickness of the insulator film.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: January 7, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michele M. Franceschini, John P. Karidis
  • Patent number: 8618527
    Abstract: There are provided a memory element and a memory device with a smaller range of element-to-element variation of electrical characteristics. The memory element includes a first electrode, a memory layer, and a second layer in this order. The memory layer includes a resistance change layer including a plurality of layers varying in diffusion coefficient of mobile atoms, and an ion source layer disposed between the resistance change layer and the second electrode.
    Type: Grant
    Filed: September 8, 2011
    Date of Patent: December 31, 2013
    Assignee: Sony Corporation
    Inventors: Shinnosuke Hattori, Toshiyuki Kunikiyo, Mitsunori Nakamoto, Shuichiro Yasuda
  • Publication number: 20130341587
    Abstract: Some embodiments include methods of forming memory cells. A stack includes ovonic material over an electrically conductive region. The stack is patterned into rails that extend along a first direction. The rails are patterned into pillars. Electrically conductive lines are formed over the ovonic material. The electrically conductive lines extend along a second direction that intersects the first direction. The electrically conductive lines interconnect the pillars along the second direction. Some embodiments include a memory array having first electrically conductive lines extending along a first direction. The lines contain n-type doped regions of semiconductor material. Pillars are over the first conductive lines and contain mesas of the n-type doped regions together with p-type doped regions and ovonic material. Second electrically conductive lines are over the ovonic material and extend along a second direction that intersects the first direction.
    Type: Application
    Filed: August 23, 2013
    Publication date: December 26, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Fabio Pellizzer, Roberto Bez, Lorenzo Fratin
  • Patent number: 8614117
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line and placed on both sides of the gate contact over a layer of insulating material. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes formation of a pair of pillars over an insulating material on the substrate, depositing an electrically conductive gate material between and over the pillars, etching the gate material such that it both partially fills a space between the pair of pillars and forms a word line for the memory cells, and depositing a gate contact between the dielectric pillars such that the gate contact is in electrical contact with the gate material.
    Type: Grant
    Filed: February 8, 2012
    Date of Patent: December 24, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Patent number: 8614432
    Abstract: A memristive device includes a first and a second electrode; a silicon memristive matrix interposed between the first electrode and the second electrode; and a mobile dopant species within the silicon memristive matrix which moves in response to a programming electrical field and remains substantially in place after the removal of the programming electrical field. A method for using a crossbar architecture containing a silicon memristive matrix includes: applying a programming electrical field by applying a voltage bias across a first conductor and a second conductor; a silicon memristive matrix containing mobile dopants being interposed between the first conductor and the second conductor, the programming voltage repositioning the mobile dopants within the silicon memristive matrix; and reading a state of the silicon memristive matrix by applying a reading energy across the silicon memristive matrix, the reading energy producing a measurable indication of the state of the silicon memristive matrix.
    Type: Grant
    Filed: January 15, 2009
    Date of Patent: December 24, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Matthew D Pickett, Duncan Stewart
  • Patent number: 8610098
    Abstract: Memory cells are described along with arrays and methods for manufacturing. An embodiment of a memory cell as described herein includes a second doped semiconductor region on a first doped semiconductor region and defining a pn junction therebetween. A first electrode on the second doped semiconductor region. An insulating member between the first electrode and a second electrode, the insulating member having a thickness between the first and second electrodes. A bridge of memory material across the insulating member, the bridge having a bottom surface and contacting the first and second electrodes on the bottom surface, and defining an inter-electrode path between the first and second electrodes across the insulating member, the inter-electrode path having a path length defined by the thickness of the insulating member, wherein the memory material has at least two solid phases.
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: December 17, 2013
    Assignee: Macronix International Co., Ltd.
    Inventor: Hsiang-Lan Lung
  • Patent number: 8610102
    Abstract: A nonvolatile memory device (10A) comprises an upper electrode layer (2); a lower electrode layer (4); a resistance variable layer (3) sandwiched between the upper electrode layer (2) and the lower electrode layer (4); and a charge diffusion prevention mask (1A) formed on a portion of the upper electrode layer (2); wherein the resistance variable layer (3) includes a first film comprising oxygen-deficient transition metal oxide and a second film comprising oxygen-deficient transition metal oxide which is higher in oxygen content than the first film; at least one of the upper electrode layer (2) and the lower electrode layer (4) comprises a simple substance or alloy of a platinum group element; and the charge diffusion prevention mask (1A) is insulative, and is lower in etching rate of dry etching than the upper electrode layer (2) and the lower electrode layer (4).
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: December 17, 2013
    Assignee: Panasonic Corporation
    Inventors: Yoshio Kawashima, Takumi Mikawa
  • Patent number: 8610099
    Abstract: In an example, a single damascene structure is formed by, for example, providing a dielectric layer, forming a void in the dielectric layer, and forming a portion of a first two-terminal resistive memory cell and a portion of a second two-terminal resistive memory cell within the void. The portions of the two-terminal resistive memory cells may be vertically stacked within the void.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: December 17, 2013
    Assignee: Unity Semiconductor Corporation
    Inventors: Lidia Vereen, Bruce Bateman, Louis Parrillo, Elizabeth Friend, David Eggleston
  • Patent number: 8610101
    Abstract: According to one embodiment, there are provided a first electrode, a second electrode containing a 1B group element having an Al element added thereto, and a variable resistive layer disposed between the first electrode and the second electrode and having a silicon element.
    Type: Grant
    Filed: January 27, 2012
    Date of Patent: December 17, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takashi Yamauchi, Shosuke Fujii, Reika Ichihara
  • Publication number: 20130320292
    Abstract: A semiconductor memory device in accordance with an embodiment comprises first lines, second lines, and a memory cell array including memory cells. Each of the memory cells is disposed at each of intersections of the first lines and the second lines and is configured by a rectifier element and a variable resistor connected in series. The rectifier element comprises a first semiconductor region of a first conductivity type including an impurity of a first impurity concentration, and a second semiconductor region of a second conductivity type including an impurity of a second impurity concentration lower than the first impurity concentration. The first semiconductor region and the second semiconductor region are formed by silicon. A junction interface of the first semiconductor region and the second semiconductor region is a pseudo-heterojunction formed by two layers that have different band gap widths and are formed of the same material.
    Type: Application
    Filed: August 7, 2013
    Publication date: December 5, 2013
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Hiroomi NAKAJIMA
  • Patent number: 8598561
    Abstract: A nonvolatile memory device includes first and second conductive layers, a resistance change layer, and a rectifying element. The first conductive layer has first and second major surfaces. The second conductive layer has third and fourth major surfaces, a side face, and a corner part. The third major surface faces the first major surface and includes a plane parallel to the first major surface and is provided between the fourth and first major surfaces. The corner part is provided between the third major surface and the side face and has a curvature higher than that of the third major surface. The resistance change layer is provided between the first and second conductive layers. The rectifying element faces the second major surface of the first conductive layer. An area of the third major surface is smaller than that of the second major surface.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: December 3, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Katsuyuki Sekine, Ryota Fujitsuka, Yoshio Ozawa
  • Publication number: 20130313511
    Abstract: A memory cell array and a resistive variable memory device including the memory cell array are provided. The memory cell array includes a memory group. The memory cell array includes a pair of word lines, an inter-pattern insulating layer interposed between the pair of word lines, and a plurality of active pillars, each having one side contacted with the inter-pattern insulating layer and other sides surrounded by the word line.
    Type: Application
    Filed: August 31, 2012
    Publication date: November 28, 2013
    Inventors: Sung Cheoul KIM, Kang Sik Choi
  • Patent number: 8592789
    Abstract: In a nonvolatile semiconductor memory device, there is provided a technique which promotes microfabrication by reducing a thickness of the device as suppressing an OFF current of a polysilicon diode which is a selective element. A polysilicon layer to which an impurity is doped at low concentration and which becomes an electric-field relaxation layer of the polysilicon diode which is a selective element of a resistance variable memory is formed so as to be divided into two or more layers such as polysilicon layers. In this manner, it is suppressed to form the crystal grain boundaries thoroughly penetrating between an n-type polysilicon layer and a p-type polysilicon layer in the electric-field relaxation layer, and therefore, it is prevented to generate a leakage current flowing through the crystal grain boundaries in application of a reverse-bias voltage without increasing a height of the polysilicon diode.
    Type: Grant
    Filed: May 17, 2011
    Date of Patent: November 26, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Yoshitaka Sasago, Masaharu Kinoshita, Mitsuharu Tai, Takashi Kobayashi
  • Patent number: 8592793
    Abstract: A non-volatile memory device includes a plurality of pillars, where each of the plurality of pillars contains a non-volatile memory cell containing a steering element and a storage element and at least one of a top corner or a bottom corner of each of the plurality of pillars is rounded. A method of making non-volatile memory device includes forming a stack of device layers, and patterning the stack to form a plurality of pillars, where each of the plurality of pillars contains a non-volatile memory cell that contains a steering element and a storage element, and where at least one of top corner or bottom corner of each of the plurality of pillars is rounded.
    Type: Grant
    Filed: May 4, 2011
    Date of Patent: November 26, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Xiying Chen, Huiwen Xu, Chuanbin Pan
  • Patent number: 8592792
    Abstract: A monolithic three dimensional memory array is provided that includes a first memory level formed above a substrate, and a second memory level monolithically formed above the first memory level. The first memory level includes a first plurality of substantially parallel, substantially coplanar conductors extending in a first direction, a second plurality of substantially parallel, substantially coplanar conductors extending in a second direction, the second direction different from the first direction, the second conductors above the first conductors, and a first plurality of devices. Each of the first plurality of devices is disposed between one of the first conductors and one of the second conductors, and includes a resistivity-switching binary metal oxide or nitride compound and a silicon, germanium, or silicon-germanium alloy resistor of a single conductivity type. Numerous other aspects are provided.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: November 26, 2013
    Assignee: SanDisk 3D LLC
    Inventors: Tanmay Kumar, Scott Brad Herner
  • Patent number: 8592796
    Abstract: A phase-change random access memory device includes a semiconductor substrate, an interlayer dielectric layer formed over the semiconductor substrate and having contact holes defined therein, metal contacts formed in the contact holes, an ohmic contact layer formed over the metal contacts and having recesses defined therein, and switching elements formed over the recesses of the ohmic contact layer.
    Type: Grant
    Filed: December 15, 2011
    Date of Patent: November 26, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Myoung Sul Yoo, Jae Min Oh, Ky Hyun Han
  • Patent number: 8592250
    Abstract: A memory array including a plurality of memory cells. Each word line is electrically coupled to a set of memory cells, a gate contact and a pair of dielectric pillars positioned parallel to the word line. Dielectric pillars are placed on both sides of the gate contact. Also a method to prevent a gate contact from electrically connecting to a source contact for a plurality of memory cells on a substrate. The method includes formation of a pair of pillars made of an insulating material over the substrate, depositing an electrically conductive gate material between and over the pillars, etching the gate material such that it both partially fills a space between the pair of pillars and forms a word line for the memory cells, and depositing a gate contact between the dielectric pillars such that the gate contact is in electrical contact with the gate material.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: November 26, 2013
    Assignee: International Business Machines Corporation
    Inventors: Matthew J. BrightSky, Chung H. Lam, Gen P. Lauer
  • Patent number: 8592798
    Abstract: A variable resistance non-volatile storage device includes: a first line which includes a barrier metal layer and a main layer, and fills an inside of a line trench formed in a first interlayer insulating layer; a first electrode covering a top surface of the first line and comprising a precious metal; memory cell holes formed in a second interlayer insulating layer; a variable resistance layer formed in the memory cell holes and connected to the first electrode; and second lines covering the variable resistance layer and the memory cell holes, wherein in an area near the memory cell holes, the main layer is covered with the barrier metal layer and the first electrode in an arbitrary widthwise cross section of the first line.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: November 26, 2013
    Assignee: Panasonic Corporation
    Inventors: Takumi Mikawa, Haruyuki Sorada
  • Publication number: 20130306933
    Abstract: A nonvolatile memory cell includes first and second electrodes. Programmable material and a select device are received in series between and with the first and second electrodes. Current conductive material is in series between and with the programmable material and the select device. An array of vertically stacked tiers of such nonvolatile memory cells is disclosed. Methods of forming arrays of nonvolatile memory cells are disclosed.
    Type: Application
    Filed: July 24, 2013
    Publication date: November 21, 2013
    Applicant: Micron Technology, Inc.
    Inventors: Zengtao T. Liu, David H. Wells
  • Patent number: 8586959
    Abstract: A memristive switch device can comprise a switch formed between a first electrode and a second electrode, where the switch includes a memristive layer and a select layer directly adjacent the memristive layer. The select layer blocks current to the memristive layer over a symmetric bipolar range of subthreshold voltages applied between the first and second electrodes.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: November 19, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Matthew D. Pickett, Jianhua Yang, Dmitri Strukov
  • Patent number: 8586962
    Abstract: A cross point memory array includes a structure in which holes are formed in an insulating layer and a storage node is formed in each of the holes. The storage node may include a memory resistor and a switching structure. The master for an imprint process used to form the cross-point memory array includes various pattern shapes, and the method of manufacturing the master uses various etching methods.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: November 19, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Byung-kyu Lee, Du-hyun Lee, Myoung-jae Lee
  • Patent number: 8586957
    Abstract: A three-terminal switching device for use in integrated circuit devices, including a phase change material (PCM) disposed in contact between a first terminal and a second terminal; a heating device disposed in direct electrical contact between said second terminal and a third terminal, said heating device positioned proximate said PCM, and configured to switch the conductivity of a transformable portion of said PCM between a lower resistance crystalline state and a higher resistance amorphous state; and an insulating layer configured to electrically isolate said heater from said PCM material, and said heater from said first terminal.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: November 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Lia Krusin-Elbaum, Dennis M. Newns, Matthew R. Wordeman
  • Patent number: 8586960
    Abstract: An integrated circuit includes a substrate including isolation regions, a first conductive line formed in the substrate between isolation regions, and a vertical diode formed in the substrate. The integrated circuit includes a contact coupled to the vertical diode and a memory element coupled to the contact. The first conductive line provides a portion of the vertical diode.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 19, 2013
    Assignees: International Business Machines Corporation, Macronix International Co., Ltd., Qimonda AG
    Inventors: Thomas Happ, Hsiang-Lan Lung, Bipin Rajendran, Min Yang
  • Patent number: 8586961
    Abstract: A device that incorporates teachings of the present disclosure may include, for example, a memory array having a first array of nanotubes, a second array of nanotubes, and a resistive change material located between the first and second array of nanotubes. Other embodiments are disclosed.
    Type: Grant
    Filed: May 11, 2009
    Date of Patent: November 19, 2013
    Assignee: The Board of Trustees of the University of Illinois
    Inventor: Eric Pop
  • Patent number: 8586443
    Abstract: A phase change memory device capable of reducing disturbances between adjacent PRAM memory cells and a fabrication method are presented. The phase change memory device includes word lines, heating electrodes, an interlayer insulating layer, and a phase change lines. The word lines are formed on a semiconductor substrate and extend in parallel with a constant space. The heating electrodes are electrically connected to the plurality of word lines. The interlayer insulating layer insulates the heating electrodes. The phase change lines extend in a direction orthogonal to the word line and are electrically connected to the heating electrodes. Curves are formed on a surface of the interlayer insulating layer between the word lines such that the effective length of the phase change layer between adjacent heating electrodes is larger than the physical distance between the adjacent heating electrodes.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: November 19, 2013
    Assignee: SK Hynix Inc.
    Inventor: Jang Uk Lee
  • Patent number: 8586405
    Abstract: A method of manufacturing a semiconductor device and a semiconductor device made by the method is disclosed. The method comprises forming a buried N+ layer in an upper portion of a P-type substrate; performing ion implantation on the buried N+ layer; annealing the buried N+ layer; forming an epitaxial semiconductor layer on the buried N+ layer through epitaxial deposition, wherein, an upper portion of said epitaxial semiconductor layer and a portion underlying said P+ region of said epitaxial semiconductor layer are doped to form a P+ region and an N? region, respectively. Increasing the ion implant dosage of the BNL layer, adjusting the method of annealing the BNL layer to increase the width of the BNL layer, or increasing the thickness of the EPI layer, reduces the vertical BJT current gain and suppressed the substrate leakage current.
    Type: Grant
    Filed: February 9, 2012
    Date of Patent: November 19, 2013
    Assignee: Semiconductor Manufacturing International (Beijing) Corporation
    Inventors: Chao Zhang, Guanping Wu, Bo Liu, Zhitang Song
  • Patent number: 8581424
    Abstract: According to one embodiment, an information recording/reproducing device including a semiconductor substrate, a first interconnect layer on the semiconductor substrate, a first memory cell array layer on the first interconnect layer, and a second interconnect layer on the first memory cell array layer. The first memory cell array layer comprises an insulating layer having an alignment mark, and a stacked layer structure on the insulating layer and including a storage layer and an electrode layer. All of the layers in the stacked layer structure comprises a material with a permeability of visible light of 1% or more.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Takahiro Hirai, Tsukasa Nakai, Kohichi Kubo, Chikayoshi Kamata, Takayuki Tsukamoto, Shinya Aoki
  • Patent number: 8580636
    Abstract: A highly integrated phase change memory device and a method for manufacturing the same is disclosed. The highly integrated phase change memory device includes a semiconductor substrate having a cell area and a peripheral area with impurity regions formed in the cell area and extending in parallel to each other in a first direction to form a striped pattern. A gate electrode is formed in the peripheral area and dummy gate electrodes are formed in the cell area and extending in a second direction perpendicular to the first direction of the impurity regions. An interlayer dielectric layer pattern exposes portions of the cell area and the peripheral area and a PN diode is formed in a space defined by a pair of dummy gate electrodes and a pair of interlayer dielectric layer patterns.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: November 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventors: Ki Sung Kwon, Jun Hyung Park
  • Patent number: 8581225
    Abstract: A manufacturing method includes forming, on a substrate, lower layer copper lines each being shaped into a strip, forming electrode seed layers each being shaped into a strip, on the respective lower layer copper lines using electroless plating, forming an interlayer insulating layer above the electrode seed layers, forming, in the interlayer insulating layer, memory cell holes, penetrating through the interlayer insulating layer and extending to the electrode seed layers, forming noble metal electrode layers on the electrode seed layers exposed in the respective memory cell holes using the electroless plating, forming, in the respective memory cell holes, variable resistance layers connected to the noble electrode layers, and forming, above the interlayer insulating layer and the variable resistance layers, upper layer copper lines each being shaped into a strip, connected to a corresponding one of the variable resistance layers, and crossing the lower layer copper lines.
    Type: Grant
    Filed: April 26, 2011
    Date of Patent: November 12, 2013
    Assignee: Panasonic Corporation
    Inventors: Atsushi Himeno, Haruyuki Sorada, Takumi Mikawa
  • Patent number: 8581224
    Abstract: Some embodiments include memory cells which contain, in order; a first electrode material, a first metal oxide material, a second metal oxide material, and a second electrode material. The first metal oxide material has at least two regions which differ in oxygen concentration relative to one another. One of the regions is a first region and another is a second region. The first region is closer to the first electrode material than the second region, and has a greater oxygen concentration than the second region. The second metal oxide material includes a different metal than the first metal oxide material. Some embodiments include methods of forming memory cells in which oxygen is substantially irreversibly transferred from a region of a metal oxide material to an oxygen-sink material. The oxygen transfer creates a difference in oxygen concentration within one region of the metal oxide material relative to another.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: November 12, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej S. Sandhu, Bhaskar Srinivasan
  • Patent number: 8581223
    Abstract: A radial memory device includes a phase-change material, a first electrode in electrical communication with the phase-change material, the first electrode having a substantially planar first area of electrical communication with the phase-change material. The radial memory device also includes a second electrode in electrical communication with the phase-change material, the second electrode having a second area of electrical communication with the phase-change material, the second area being laterally spacedly disposed from the first area and substantially circumscribing the first area. Further, a method of making a memory device is disclosed. The steps include depositing a first electrode, depositing a first insulator, configuring the first insulator to define a first opening. The first opening provides for a generally planar first contact of the first electrode.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: November 12, 2013
    Assignee: Ovonyx, Inc.
    Inventors: Wolodymyr Czubatyj, Tyler Lowrey, Sergey Kostylev
  • Patent number: 8581226
    Abstract: According to one embodiment, a nonvolatile memory device includes a word line interconnect layer, a bit line interconnect layer, and a pillar. The word line interconnect layer includes a plurality of word lines extending in a first direction. The bit line interconnect layer includes a plurality of bit lines extending in a second direction. The pillar is disposed between each of the word lines and each of the bit lines. The pillar includes a current selection film and a plurality of variable resistance films stacked on the current selection film. One variable resistance film includes a metal and either oxygen or nitrogen. Remainder of the variable resistance films include the metal, either oxygen or nitrogen, and a highly electronegative substance having electronegativity higher than electronegativity of the metal. A concentration of highly electronegative substance in the remainder of the variable resistance films is different among the variable resistance films.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 12, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Kensuke Takahashi
  • Publication number: 20130292633
    Abstract: Methods and memory devices formed using etch bias homogenization are provided. One example method of forming a memory device using etch bias homogenization includes forming conductive material at respective levels over a substrate. Each respective level of conductive material is electrically coupled to corresponding circuitry on the substrate during patterning of the respective level of conductive material so that each respective level of conductive material has a homogenized etch bias during patterning thereof. Each respective level of conductive material electrically coupled to corresponding circuitry on the substrate is patterned.
    Type: Application
    Filed: May 3, 2012
    Publication date: November 7, 2013
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Fabio Pellizzer, Hernan A. Castro, Eddie T. Flores
  • Publication number: 20130292634
    Abstract: In some aspects, a memory cell is provided that includes a steering element, a metal-insulator-metal (“MIM”) stack coupled in series with the steering element, and a conductor above the MIM stack. The MIM stack includes a resistance switching element and a top electrode disposed on the resistance switching element, and the top electrode includes a highly doped semiconductor material. The memory cell does not include a metal layer between the MIM stack and the conductor. Numerous other aspects are provided.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: Yung-Tin Chen, Kun Hou, Zhida Lan