With Means To Facilitate Electron-hole Recombination (e.g., Isoelectronic Traps Such As Nitrogen In Gap) Patents (Class 257/87)
  • Patent number: 11646394
    Abstract: A radiation-emitting semiconductor body having a semiconductor layer sequence includes an active region that generates radiation, an n-conducting region and a p-conducting region, wherein the active region is located between the n-conducting region and the p-conducting region, the p-conducting region includes a current expansion layer based on a phosphide compound semiconductor material, and the current expansion layer is doped with a first dopant incorporated at phosphorus lattice sites.
    Type: Grant
    Filed: March 5, 2018
    Date of Patent: May 9, 2023
    Assignee: OSRAM OLED GmbH
    Inventors: Xue Wang, Markus Bröll, Anna Nirschl
  • Patent number: 11151922
    Abstract: A micro display, which includes LEDs and TFTs of a TFT electronic control circuit for controlling the LEDs, is produced monolithically on a silicon, silicon carbide, or sapphire wafer. The display includes red, green, and blue micro LEDs, and electronic control circuits include TFTs with Indium gallium zinc oxide (IGZO) channels or Indium phosphide (InP) channels. The TFTs are formed above the LEDs and laterally removed from the LEDs and paths of light emissions from the plurality of LEDs to prevent light blocking by the TFTs.
    Type: Grant
    Filed: February 11, 2020
    Date of Patent: October 19, 2021
    Assignee: INTEL CORPORATION
    Inventors: Khaled Ahmed, Kunjal Parikh
  • Patent number: 10879671
    Abstract: A semiconductor vertical resonant cavity light source includes an upper and lower mirror that define a vertical resonant cavity. An active region is within the cavity for light generation between the upper and lower mirror. At least one cavity spacer region is between the active region and the upper mirror or lower mirror. The cavity includes an inner mode confinement region and an outer current blocking region. An index guide in the inner mode confinement region is between the cavity spacer region and the upper or lower mirror. The index guide and outer current blocking region each include a lower and upper epitaxial material layer thereon with an epitaxial interface region in between. At least a top surface of the lower material layer includes aluminum in the interface region throughout a full area of an active part of the vertical light source.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: December 29, 2020
    Assignee: sdPhotonics LLC
    Inventor: Dennis G. Deppe
  • Patent number: 10720512
    Abstract: This disclosure discloses a production method of a thin-film transistor, a thin-film transistor, a display apparatus, and a fingerprint recognition unit. Said method comprises the steps of: sequentially depositing a metal layer and an indium zinc oxide layer as a protective layer on a substrate; etching the metal layer and the indium zinc oxide layer to form a first electrode and a second electrode of a photosensitive device; and forming a photoelectric semiconductor of the photosensitive device on the first electrode.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: July 21, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Yingwei Liu
  • Patent number: 10295124
    Abstract: Light emitter packages and related methods having improved performance are disclosed. In one aspect, a light emitter package can include at least one light emitter chip disposed over a substrate or submount. In some aspects, the package can include a reflective polymeric material or polymeric reflector (sometimes referred to as a “solder mask” or “solder mask material”), a reflective material, and a conductive material disposed adjacent each other within a portion of the light emitter package. In some aspects, the reflective material can include a metallic material or metallic reflector applied to side walls of traces and/or within portions of a gap between traces prior to application of the reflective polymeric material within the gap.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: May 21, 2019
    Assignee: Cree, Inc.
    Inventor: Peter Scott Andrews
  • Patent number: 10263393
    Abstract: A semiconductor vertical resonant cavity light source includes an upper and lower mirror that define a vertical resonant cavity. An active region is within the cavity for light generation between the upper and lower mirror. At least one cavity spacer region is between the active region and the upper mirror or lower mirror. The cavity includes an inner mode confinement region and an outer current blocking region. An index guide in the inner mode confinement region is between the cavity spacer region and the upper or lower mirror. The index guide and outer current blocking region each include a lower and upper epitaxial material layer thereon with an epitaxial interface region in between. At least a top surface of the lower material layer includes aluminum in the interface region throughout a full area of an active part of the vertical light source.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: April 16, 2019
    Assignee: University of Central Florida Research Foundation, Inc.
    Inventor: Dennis G. Deppe
  • Patent number: 10096628
    Abstract: Provided is a novel semiconductor device. A switching element, specifically a transistor having a well potential structure is manufactured by utilizing a structure including at least a composite material in which a first region and a second region are stacked over a base like a superlattice. The thickness of each of the first region and the second region is greater than or equal to 0.5 nm and less than or equal to 5 nm. A band structure can be controlled by adjusting the number of stacks, which enables application to a variety of semiconductor elements.
    Type: Grant
    Filed: February 28, 2017
    Date of Patent: October 9, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9515218
    Abstract: A photovoltaic device operable to convert light to electricity, comprising a substrate, a plurality of structures essentially perpendicular to the substrate, one or more recesses between the structures, each recess having a planar mirror on a bottom wall thereof. The structures have p-n or p-i-n junctions for converting light into electricity. The planar mirrors function as an electrode and can reflect light incident thereon back to the structures to be converted into electricity.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 6, 2016
    Assignee: ZENA TECHNOLOGIES, INC.
    Inventors: Young-June Yu, Munib Wober
  • Patent number: 9484545
    Abstract: Provided is an organic electroluminescent element that can obtain white light with excellent color rendering properties and is particularly suitable for a light source of a lighting device. The organic electroluminescent element includes a plurality of light emitting units that are provided between a cathode and an anode and include at least a light emitting layer made of an organic compound. White light emitted from the plurality of light emitting units has a continuous emission spectrum (S) in a wavelength range of at least 380 nm to 780 nm. The emission spectrum (S) includes one peak wavelength (p1) in a red wavelength range (R) of 600 nm to 640 nm, one peak wavelength (p2) in a green wavelength range G of 500 nm to 540 nm, and two peak wavelengths (p3) and (p4) in a blue wavelength range B of 440 nm to 490 nm.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: November 1, 2016
    Assignee: Lumiotec, Inc.
    Inventors: Mitsuru Morimoto, Junichi Tanaka, Koichi Mori
  • Patent number: 9362455
    Abstract: A light emitting device includes a diode region comprising a first face and opposing edges, and a bond pad structure comprising at least three bond pads along only one of the opposing edges of the first face.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 7, 2016
    Assignee: Cree, Inc.
    Inventors: John Adam Edmond, Matthew Donofrlo, Shawn Pyles
  • Patent number: 9024333
    Abstract: Disclosed is a light emitting device including a substrate, a first conductive semiconductor layer disposed on the substrate, an active layer disposed on the first conductive semiconductor layer, and a second conductive semiconductor layer disposed on the active layer, wherein the first conductive semiconductor layer comprises a first layer provided at the upper surface thereof with a notch, a second layer disposed on the first layer and a third layer disposed on the second layer, wherein the first conductive semiconductor layer further comprises a blocking layer between the first layer and the second layer and the blocking layer is disposed along the notch. The light emitting device can reduce leakage current by dislocation and improve resistance to static electricity.
    Type: Grant
    Filed: January 26, 2012
    Date of Patent: May 5, 2015
    Assignee: LG Innotek Co., Ltd.
    Inventors: Jongpil Jeong, Sanghyun Lee, Sehwan Sim, Sungyi Jung
  • Patent number: 9000470
    Abstract: Light emitter devices for light emitting diodes (LED chips) and related methods are disclosed. In one embodiment a light emitter device includes a substrate and a chip on board (COB) array of LED chips disposed over the substrate. A layer having wavelength conversion material provided therein is disposed over the array of LED chips for forming a light emitting surface from which light is emitted upon activation of the LED chips. In some aspects, the wavelength conversion material includes phosphoric or lumiphoric material that is settled and/or more densely concentrated within one or more predetermined portions of the layer. In some aspects, the devices and methods provided herein can comprise a lumen density of approximately 30 lm/mm2 or greater.
    Type: Grant
    Filed: January 30, 2014
    Date of Patent: April 7, 2015
    Assignee: Cree, Inc.
    Inventors: Florin A. Tudorica, Christopher P. Hussell, Amber C. Abare, Peter Scott Andrews, Sung Chul Joo
  • Patent number: 8994057
    Abstract: Light emitting devices for light emitting diodes (LEDs) are disclosed. In one embodiment a light emitting device can include a submount and a light emission area disposed over the submount. The light emission area can include one or more light emitting diodes (LEDs), a fillet at least partially disposed about the one or more the LEDs, and filling material. The filling material can be disposed over a portion of the one or more LEDs and a portion of the fillet.
    Type: Grant
    Filed: October 11, 2013
    Date of Patent: March 31, 2015
    Assignee: Cree, Inc.
    Inventor: Christopher P. Hussell
  • Patent number: 8987749
    Abstract: The disclosed technology relates to a light-emitting diode (LED) and a method of fabricating the same. In one aspect, the LED includes a GaN p-n junction formed at a junction between a p-type GaN layer and an n-type GaN layer. The LED further includes a first metal electrode layer provided on the p-type GaN layer, where the first metal electrode layer is configured to reflect light emitted by the p-n junction towards a light emitting side of the LED. The LED additionally includes an attachment layer interposed between and configured to electrically connect the p-type GaN layer and the metal electrode layer, wherein the attachment layer comprises a transition metal oxide and is configured to transmit light emitted by the p-n junction and to transmit light reflected by the metal electrode layer.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 24, 2015
    Assignee: IMEC
    Inventors: Barry Rand, Celso Cavaco
  • Patent number: 8987759
    Abstract: A substrate for a display device comprises a first pattern and a second pattern disposed within an active region of the substrate; a first overlay pattern disposed at corner regions of the active region and made of the same material as that of the first pattern; and a second overlay pattern disposed at corner regions of the active region and made of the same material as that of the second pattern, wherein the first overlay pattern includes gradations, and the second overlay pattern includes gradations to face the gradations of the first overlay pattern.
    Type: Grant
    Filed: March 10, 2014
    Date of Patent: March 24, 2015
    Assignee: LG Display Co., Ltd.
    Inventors: Youn-Oh Kim, JongChun Lim, JaeHyun You
  • Patent number: 8963169
    Abstract: Photonic devices monolithically integrated with CMOS are disclosed, including sub-100 nm CMOS, with active layers comprising acceleration regions, light emission and absorption layers, and optional energy filtering regions. Light emission or absorption is controlled by an applied voltage to deposited films on a pre-defined CMOS active area of a substrate, such as bulk Si, bulk Ge, Thick-Film SOI, Thin-Film SOI, Thin-Film GOI.
    Type: Grant
    Filed: July 28, 2005
    Date of Patent: February 24, 2015
    Assignee: Quantum Semiconductor LLC
    Inventor: Carlos J. R. P. Augusto
  • Patent number: 8952364
    Abstract: Light-emitting devices are described herein.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: February 10, 2015
    Assignee: Nitto Denko Corporation
    Inventors: Qianxi Lai, Shijun Zheng, David T. Sisk, Amane Mochizuki
  • Patent number: 8952394
    Abstract: An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side.
    Type: Grant
    Filed: November 4, 2013
    Date of Patent: February 10, 2015
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Nowatari, Satoshi Seo, Nobuharu Ohsawa, Takahiro Ushikubo, Tetsuo Tsutsui
  • Patent number: 8928029
    Abstract: Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.
    Type: Grant
    Filed: December 12, 2012
    Date of Patent: January 6, 2015
    Assignee: California Institute of Technology
    Inventors: David Z. Ting, Sarath D. Gunapala, Alexander Soibel, Jean Nguyen, Arezou Khoshakhlagh
  • Patent number: 8916857
    Abstract: A light-emitting element disclosed in the present invention includes a light-emitting layer and a first layer between a first electrode and a second electrode, in which the first layer is provided between the light-emitting layer and the first electrode. The present invention is characterized by the device structure in which the first layer comprising a hole-transporting material is doped with a hole-blocking material or an organic compound having a large dipole moment. This structure allows the formation of a high performance light-emitting element with high luminous efficiency and long lifetime. The device structure of the present invention facilitates the control of the rate of the carrier transport, and thus, leads to the formation of a light-emitting element with a well-controlled carrier balance, which contributes to the excellent characteristics of the light-emitting element of the present invention.
    Type: Grant
    Filed: November 24, 2012
    Date of Patent: December 23, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Satoko Shitagaki, Satoshi Seo, Ryoji Nomura
  • Patent number: 8916885
    Abstract: The present invention introduces the novel, improved design approach of the semiconductor devices that utilize the effect of carrier recombination, for example, to produce the electromagnetic radiation. The approach is based on the separate control over the injection of the electrons and holes into the active region of the device. As a result, better recombination efficiencies can be achieved, and the effect of the wavelength shift of the produced radiation can be eliminated. The devices according to the present invention outperform existing solid state light and electromagnetic radiation sources and can be used in any applications where solid state light sources are currently involved, as well as any applications future discovered.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: December 23, 2014
    Inventors: Alexei Koudymov, Christian Martin Wetzel
  • Patent number: 8890177
    Abstract: An electronic or optoelectronic device fabricated from a crystalline material in which a parameter of a bandgap characteristic of said crystalline material has been modified locally by introducing distortions on an atomic scale in the lattice structure of said crystalline material and the electronic and/or optoelectronic parameters of said device are dependent on the modification of said bandgap is exemplified by a radiation emissive optoelectronic semiconductor device which comprises a junction (10) formed from a p-type layer (11) and an n-type layer (12), both formed from indirect bandgap semiconductor material. The p-type layer (11) contains a array of dislocation loops which create a strain field to confine spatially and promote radiative recombination of the charge carriers.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: November 18, 2014
    Assignee: University of Surrey
    Inventors: Kevin Peter Homewood, Russell Mark Gwilliam, Guosheng Shao
  • Patent number: 8878204
    Abstract: Submount based light emitter components and methods are provided herein. In one aspect, a submount based light emitter component can include a primary submount, a secondary submount, and at least one light emitter chip. The at least one light emitter chip can be disposed over the primary submount and electrically connected to the secondary submount.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: November 4, 2014
    Assignee: Cree, Inc.
    Inventors: Jesse Colin Reiherzer, Christopher P. Hussell, Erin Welch
  • Patent number: 8865482
    Abstract: A method of detecting the circular uniformity of semiconductor circular contact holes. Several detection circuit structures are disposed on the semiconductor wafer: N-type active regions and P-type active regions; silicon dioxide layers separate the N-type active regions from the P-type active regions; the N-type active regions are formed in the P well and the P-type active regions are formed in the N well; polysilicon gates bridge the N-type active regions and the P-type active regions; gate oxide layers insulate the P-type regions and the N-type regions from the polysilicon gates, so that the P-type regions and the N-type regions are independent; the N-type active regions connect with circular contact holes while the P-type active regions and the polysilicon gates connect with oval contact holes; a electron beam scanner detects the circular uniformity of the contact holes. This invention advantageously reflects effectively and comprehensively the circular uniformity of the contact holes.
    Type: Grant
    Filed: October 15, 2013
    Date of Patent: October 21, 2014
    Assignee: Shanghai Huali Microelectronics Corporation
    Inventors: Kai Wang, HungLin Chen, Yin Long, Qiliang Ni, MingShen Kuo
  • Patent number: 8866176
    Abstract: A structure of an EL display device which has an increased display area is provided. Further, a structure of an EL display device which has a high definition display is provided. An auxiliary electrode is formed over a first partition and side surfaces of the auxiliary electrode are covered with a second partition. A top surface of the auxiliary electrode is in contact with the conductive film which is one electrode of a light-emitting element and has a light-transmitting property, which enables a large-area display. Further, even the distance between the adjacent light-emitting elements is shortened, the auxiliary electrode can be provided between the adjacent light-emitting elements, which enables a high definition display.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: October 21, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshiharu Hirakata, Shunpei Yamazaki, Hideaki Kuwabara
  • Patent number: 8860046
    Abstract: A two dimensional array light-emitting diode device is disclosed, which includes a transparent substrate including a first surface; a plurality of adjacent light-emitting diode units arranged on the first surface, wherein each of the light-emitting diode units including a plurality of sides and a circumference; and a plurality of conductive connecting structures arranged on the first surface, electrically connecting the plurality of light-emitting diode units mentioned above; wherein the sides of each of the light-emitting diode units have a plurality of vertical distances between the closest light-emitting diode units, and when the plurality of vertical distances larger than 50 ?m, the sides are not near the closest light-emitting diode units; wherein the ratio of the total length of the sides not near the light-emitting diode units of each light-emitting diode unit and the circumference of the light-emitting diode unit is larger than 50%.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: October 14, 2014
    Assignee: Epistar Corporation
    Inventors: Jhih-Sian Wang, Chia-Liang Hsu, Yi-Ming Chen, Yi-Tang Lai
  • Patent number: 8835973
    Abstract: Light-emitting elements in which an increase of driving voltage can be suppressed are provided. Light-emitting devices whose power consumption is reduced by including such light-emitting elements are also provided. In a light-emitting element having an EL layer between an anode and a cathode, a first layer in which carriers can be produced is formed between the cathode and the EL layer and in contact with the cathode, a second layer which transfers electrons produced in the first layer is formed in contact with the first layer, and a third layer which injects the electrons received from the second layer into the EL layer is formed in contact with the second layer.
    Type: Grant
    Filed: March 8, 2012
    Date of Patent: September 16, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Nowatari, Satoshi Seo, Nobuharu Ohsawa, Tetsuo Tsutsui
  • Patent number: 8803169
    Abstract: A liquid crystal display device includes a liquid crystal display panel, and a backlight unit. The backlight unit includes a plurality of light emitting diodes each having an anode and a cathode, and first adjacently and disposed substrates. The plurality of light emitting diodes are mounted on the first substrate and the second substrate and arranged in a plurality of rows. A first light emitting diode mounted on the first substrate and a second light emitting diode mounted on the second substrate which are adjacent across a boundary between the first substrate and the second substrate are disposed so that respective anodes of the first and second light emitting diodes are opposed to each other and have a pitch equal to or smaller than a pitch of other light emitting diodes mounted on the first and second substrates.
    Type: Grant
    Filed: November 27, 2013
    Date of Patent: August 12, 2014
    Assignees: Japan Display Inc., Panasonic Liquid Crystal Co., Ltd.
    Inventors: Masashi Baba, Ikuko Imajo, Isao Matsuda
  • Patent number: 8759845
    Abstract: A light emitting device (10) comprises a body (12) of a semiconductor material. A first junction region (14) is formed in the body between a first region (12.1) of the body of a first doping kind and a second region (12.2) of the body of a second doping kind. A second junction region (16) is formed in the body between the second region (12.2) of the body and a third region (12.3) of the body of the first doping kind. A terminal arrangement (18) is connected to the body for, in use, reverse biasing the first junction region (14) into a breakdown mode and for forward biasing at least part (16.1) of the second junction region (16), to inject carriers towards the first junction region (14). The device (10) is configured so that a first depletion region (20) associated with the reverse biased first junction region (14) punches through to a second depletion region associated with the forward biased second junction region (16).
    Type: Grant
    Filed: January 21, 2009
    Date of Patent: June 24, 2014
    Assignee: Insiava (Pty) Limited
    Inventors: Lukas Willem Snyman, Monuko Du Plessis
  • Patent number: 8748908
    Abstract: A semiconductor optical emission device comprising a layer of material containing a plurality of stress variations and adhering to a surface of a semiconductor is described. In one embodiment the semiconductor is an indirect band gap semiconductor and is silicon in one aspect, the material of the layer comprises silicon and metal oxides and is prepared by a sol-gel process including thermal annealing in one aspect. The layer urges a plurality of randomly distributed elastic deformations in the semiconductor that substantially enhances the radiative recombination interactions among free carriers in the semiconductor.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: June 10, 2014
    Inventors: Sufian Abedrabbo, Anthony Thomas Fiory
  • Patent number: 8742413
    Abstract: In a photosensor and a method of manufacturing the same, the photosensor comprises: an intrinsic silicon layer formed on a substrate; a P-type doped region formed in a same plane with the intrinsic silicon layer; and an oxide semiconductor layer formed on or under the intrinsic silicon layer, and overlapping an entire region of the intrinsic silicon layer.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: June 3, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jae-Hwan Oh, Won-Kyu Lee, Seong-Hyun Jin, Young-Jin Chang, Jae-Beom Choi
  • Patent number: 8742432
    Abstract: The invention provides a metal substrate and a light source device ensuring that a semiconductor chip working as a light source can be firmly joined by using a metal joining material, such that heat generated in the mounted semiconductor chip can be efficiently dissipated through a metal plate. The metal substrate includes a heat dissipating metal plate made of a metal except for Au, an insulating resin-made white film stacked on a part of the heat dissipating metal plate, and a light source mounting surface-forming layer stacked on another part of the heat dissipating metal plate. The metal substrate is such that the light source mounting surface-forming layer is a metal layer directly contacting the heat dissipating metal plate, and the light source mounting surface is a surface of an Au layer which is the outermost layer of the light source mounting surface-forming layer.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: June 3, 2014
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Yoshihito Sato, Nobuhiro Arai, Jun Matsui, Shingetsu Yamada, Shuuji Suzuki
  • Patent number: 8723336
    Abstract: According to an embodiment, a semiconductor light emitting device includes a light emitting body including a semiconductor light emitting layer, a support substrate supporting the light emitting body, and a bonding layer provided between the light emitting body and the support substrate, the bonding layer bonding the light emitting body and the support substrate together. The device also includes a first barrier metal layer provided between the light emitting body and the bonding layer, and an electrode provided between the light emitting body and the first barrier metal layer. The first barrier layer includes a first layer made of nickel and a second layer made of a metal having a smaller linear expansion coefficient than nickel, and the first layer and the second layer are alternately disposed in a multiple-layer structure. The electrode is electrically connected to the light emitting body.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: May 13, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yasuharu Sugawara
  • Patent number: 8648355
    Abstract: Disclosed is a semiconductor light emitting device. The semiconductor light emitting device comprises a substrate; a light emitting structure comprising a first conductive semiconductor layer, an active layer and a second conductive semiconductor layer on the substrate; an electrode layer on the second conductive semiconductor layer; and an electrode on the electrode layer, wherein the substrate comprises a plurality of convex portions, wherein the electrode layer comprises a plurality of holes corresponding to a region of at least one of the plurality of convex portions of the substrate, wherein an insulating material is disposed in the plurality of holes on the light emitting structure.
    Type: Grant
    Filed: August 9, 2012
    Date of Patent: February 11, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventor: Sung Min Choi
  • Publication number: 20140017839
    Abstract: An optoelectronic device as well as its methods of use and manufacture are disclosed. In one embodiment, the optoelectronic device includes a first optoelectronic material that is inhomogeneously strained. A first charge carrier collector and a second charge carrier collector are each in electrical communication with the first optoelectronic material and are adapted to collect charge carriers from the first optoelectronic material. In another embodiment, a method of photocatalyzing a reaction includes using a strained optoelectronic material.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 16, 2014
    Applicant: Peking University
    Inventors: Ju Li, Xiaofeng Qian, Ji Feng
  • Patent number: 8618561
    Abstract: A method comprising depositing an ink comprising a nanomaterial and a liquid vehicle from a micro-dispenser onto a layer of a device is disclosed. A method comprising depositing an ink comprising a nanomaterial and a liquid vehicle from a micro-dispenser onto a material capable of transporting charge in a predetermined arrangement is also disclosed. Methods for fabricating devices including nanomaterials are also disclosed. In certain preferred embodiments, the nanomaterial comprises semiconductor nanocrystals. In certain preferred embodiments, a micro-dispenser comprises an inkjet printhead.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: December 31, 2013
    Assignee: QD Vision, Inc.
    Inventor: Seth Coe-Sullivan
  • Patent number: 8581266
    Abstract: An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side.
    Type: Grant
    Filed: April 18, 2013
    Date of Patent: November 12, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Nowatari, Satoshi Seo, Nobuharu Ohsawa, Takahiro Ushikubo, Tetsuo Tsutsui
  • Publication number: 20130292707
    Abstract: A semiconductor optical emission device comprising a layer of material containing a plurality of stress variations and adhering to a surface of a semiconductor is described. In one embodiment the semiconductor is an indirect band gap semiconductor and is silicon in one aspect, the material of the layer comprises silicon and metal oxides and is prepared by a sol-gel process including thermal annealing in one aspect. The layer urges a plurality of randomly distributed elastic deformations in the semiconductor that substantially enhances the radiative recombination interactions among free carriers in the semiconductor.
    Type: Application
    Filed: May 7, 2012
    Publication date: November 7, 2013
    Inventors: Sufian Abedrabbo, Anthony Thomas Fiory
  • Patent number: 8541791
    Abstract: A source of photons resulting from a recombination of localized excitons, including a semiconductor layer having a central portion surrounded with heavily-doped regions; above said central portion, a layer portion containing elements capable of being activated by excitons, coated with a first metallization; and under the semiconductor layer, a second metallization of greater extension than the first metallization. The distance between the first and second metallizations is on the order of from 10 to 60 nm; and the lateral extension of the first metallization is on the order of from ?0/10*ne to ?0/2*ne, where ?0 is the wavelength in vacuum of the emitted light and ne is the effective refractive index of the mode formed in the cavity created by the two metallizations.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: September 24, 2013
    Assignees: STMicroelectronics (Grenoble) SAS, Commissariat à l'Énergie Atomique et aux Énergies Alternatives Centre National de la Recherche Scientifique
    Inventors: Roch Espiau de Lamaestre, Jean-Jacques Greffet, Bernard Guillaumot, Ruben Esteban Llorente
  • Patent number: 8519408
    Abstract: Disclosed is a method of producing a thin film transistor substrate having high light sensitivity, heat-resistance, impact resistance, and a photosensitive composition used by the same, the method including forming data wires on an insulating substrate, forming an organic insulating film on the data wires by applying a photosensitive composition comprising a terpolymer, where the terpolymer is derived from monomers of an unsaturated carboxylic acid, an unsaturated carboxylic acid anhydride, or a mixture thereof, an unsaturated epoxy group-containing compound, and an olefinic compound.
    Type: Grant
    Filed: August 30, 2012
    Date of Patent: August 27, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hoon Kang, Jae-sung Kim, Yang-ho Jung, Hi-kuk Lee
  • Patent number: 8513692
    Abstract: Light-emitting devices, and related components, systems and methods are disclosed.
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: August 20, 2013
    Assignee: Luminus Devices, Inc.
    Inventors: Alexei A. Erchak, Elefterios Lidorikis, Chiyan Luo
  • Patent number: 8502238
    Abstract: A nitride semiconductor laser device with a reduction in internal crystal defects and an alleviation in stress, and a semiconductor optical apparatus comprising this nitride semiconductor laser device. First, a growth suppressing film against GaN crystal growth is formed on the surface of an n-type GaN substrate equipped with alternate stripes of dislocation concentrated regions showing a high density of crystal defects and low-dislocation regions so as to coat the dislocation concentrate regions. Next, the n-type GaN substrate coated with the growth suppressing film is overlaid with a nitride semiconductor layer by the epitaxial growth of GaN crystals. Further, the growth suppressing film is removed to adjust the lateral distance between a laser waveguide region and the closest dislocation concentrated region to 40 ?m or more.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: August 6, 2013
    Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Shigetoshi Ito, Takayuki Yuasa, Yoshihiro Ueta, Mototaka Taneya, Zenpei Tani, Kensaku Motoki
  • Patent number: 8476647
    Abstract: A silicon-germanium, quantum-well, light-emitting diode. The light-emitting diode includes a p-doped portion, a quantum-well portion, and an p-doped portion. The quantum-well portion is disposed between the p-doped portion and the n-doped portion. The quantum-well portion includes a carrier confinement region that is configured to facilitate luminescence with emission of light produced by direct recombination with a hole confined within the carrier confinement region. The p-doped portion includes a first alloy of silicon-germanium, and the n-doped portion includes a second alloy of silicon-germanium.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 2, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Viatcheslav Osipov
  • Patent number: 8471270
    Abstract: An indirect-bandgap-semiconductor, light-emitting diode. The indirect-bandgap-semiconductor, light-emitting diode includes a plurality of portions including a p-doped portion of an indirect-bandgap semiconductor, an intrinsic portion of the indirect-bandgap semiconductor, and a n-doped portion of the indirect-bandgap semiconductor. The intrinsic portion is disposed between the p-doped portion and the n-doped portion and forms a p-i junction with the p-doped portion, and an i-n junction with the n-doped portion. The p-i junction and the i-n junction are configured to facilitate formation of at least one hot electron-hole plasma in the intrinsic portion when the indirect-bandgap-semiconductor, light-emitting diode is reverse biased and to facilitate luminescence produced by recombination of a hot electron with a hole.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: June 25, 2013
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Alexandre M. Bratkovski, Viatcheslav Osipov
  • Publication number: 20130112999
    Abstract: A light emitting diode is provided by the present invention which includes a pn junction-type light emitting unit having a light emitting layer (10) composed of n layers of a strained light emitting layer (12) and n?1 layers of a barrier layer (13), wherein when a barrier layer exists, the light emitting layer (10) has a structure in which one strained light emitting layer (12) and one barrier layer (13) are laminated alternately, n represents an integer of 1 to 7, and the thickness of the light emitting layer (10) is not more than 250 nm.
    Type: Application
    Filed: July 8, 2011
    Publication date: May 9, 2013
    Applicant: SHOWA DENKO K.K.
    Inventors: Noriyoshi Seo, Atsushi Matsumura, Ryouichi Takeuchi
  • Patent number: 8431940
    Abstract: An object is to provide a light-emitting element which exhibits light emission with high luminance and can be driven at low voltage. Another object is to provide a light-emitting device or an electronic device with reduced power consumption. Between an anode and a cathode, n (n is a natural number of two or more) EL layers are provided, where between a first EL layer and a second EL layer, a first layer containing any of an alkali metal, an alkaline earth metal, a rare earth metal, an alkali metal compound, an alkaline earth metal compound, and a rare earth metal compound, a second layer containing a material having a high electron-transporting property in contact with the first layer, and a region containing a material having a high hole-transporting property and an acceptor material in contact with the second layer are provided in this order from the anode side.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: April 30, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hiromi Nowatari, Satoshi Seo, Nobuharu Ohsawa, Takahiro Ushikubo, Tetsuo Tsutsui
  • Patent number: 8415687
    Abstract: An organic light emitting device with improved light emitting efficiency, the organic light emitting device includes a substrate, a first electrode arranged on the substrate, a second electrode arranged to face the first electrode, an organic light-emitting layer arranged between the first electrode and the second electrode, an electron transport layer arranged between the organic light-emitting layer and the second electrode, wherein the electron transport layer includes a multi-layer structure that includes at least one first layer and at least two second layers, wherein ones of said at least one first layer and ones of said at least two second layers are alternately stacked, wherein ones of the at least two second layers are arranged at both opposite ends of the electron transport layer, each of the at least two second layers having a lower electron mobility than that of each of the at least one first layer.
    Type: Grant
    Filed: January 14, 2010
    Date of Patent: April 9, 2013
    Assignee: Samsung Display Co., Ltd.
    Inventors: Mi-Kyung Kim, Min-Seung Chun, Dong-Heon Kim, Kwan-Hee Lee
  • Patent number: 8378362
    Abstract: An organic light emitting diode display and a method of manufacturing the same are disclosed. The organic light emitting diode display includes a substrate, a first electrode positioned on the substrate, an organic light emitting layer positioned on the first electrode, and a second electrode positioned on the organic light emitting layer. The organic light emitting layer includes an inorganic oxide layer between a light emitting layer and a common layer.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: February 19, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Jeonghaeng Heo, Hyunsuk Kim, Jinho Park
  • Patent number: 8334544
    Abstract: A nitride semiconductor laser device with a reduction in internal crystal defects and an alleviation in stress, and a semiconductor optical apparatus comprising this nitride semiconductor laser device. First, a growth suppressing film against GaN crystal growth is formed on the surface of an n-type GaN substrate equipped with alternate stripes of dislocation concentrated regions showing a high density of crystal defects and low-dislocation regions so as to coat the dislocation concentrate regions. Next, the n-type GaN substrate coated with the growth suppressing film is overlaid with a nitride semiconductor layer by the epitaxial growth of GaN crystals. Further, the growth suppressing film is removed to adjust the lateral distance between a laser waveguide region and the closest dislocation concentrated region to 40 ?m or more.
    Type: Grant
    Filed: July 14, 2010
    Date of Patent: December 18, 2012
    Assignees: Sharp Kabushiki Kaisha, Sumitomo Electric Industries, Ltd.
    Inventors: Shigetoshi Ito, Takayuki Yuasa, Yoshihiro Ueta, Mototaka Taneya, Zenpei Tani, Kensaku Motoki
  • Patent number: 8293555
    Abstract: A semiconductor light-emitting device has a semiconductor layer containing Al between a substrate and an active layer containing nitrogen, wherein Al and oxygen are removed from a growth chamber before growing said active layer and a concentration of oxygen incorporated into said active layer together with Al is set to a level such that said semiconductor light-emitting device can perform a continuous laser oscillation at room temperature.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: October 23, 2012
    Assignee: Ricoh Company, Ltd.
    Inventors: Takashi Takahashi, Morimasa Kaminishi, Shunichi Sato, Akihiro Itoh, Naoto Jikutani