Mosfet Type Gate Sidewall Insulating Spacer Patents (Class 257/900)
  • Patent number: 7271414
    Abstract: A semiconductor device includes a transistor of a first conductivity type and a transistor of a second conductivity type. The transistor of the first conductivity type includes a first gate portion formed on a first region of a semiconductor substrate, a first sidewall formed on each side face of the first gate portion, a first protecting film formed between the first sidewall and the first gate portion, and an extension diffusion layer of the first conductivity type. The transistor of the second conductivity type includes a second gate portion formed on a second region of the semiconductor substrate, a second sidewall formed on each side face of the second gate portion, a second protecting film having an L-shaped cross-section and formed between the second sidewall and the second gate portion and between the second sidewall and the semiconductor substrate, and an extension diffusion layer of the second conductivity type.
    Type: Grant
    Filed: January 23, 2006
    Date of Patent: September 18, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Nobuyuki Tamura, Takehisa Kishimoto, Mizuki Segawa
  • Patent number: 7265419
    Abstract: A semiconductor memory device includes: a semiconductor device base having an insulating substrate and a semiconductor layer overlying it; a cell array formed on the semiconductor device base with cell transistors disposed in such a manner that each of source and drain layers is shared by adjacent two cell transistors arranged in a direction, the cell transistor having an electrically floating channel body to store data defined by a carrier accumulation state of the channel body; and logic transistors formed on the semiconductor device base to constitute a peripheral circuit of said cell array, wherein at least a part of source and drain layers of each the cell transistor is formed with a thickness different from source and drain layers of the logic transistors.
    Type: Grant
    Filed: January 25, 2005
    Date of Patent: September 4, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Yoshihiro Minami
  • Patent number: 7256081
    Abstract: A semiconductor device is provided with a stressed channel region, where the stresses film causing the stress in the stress channel region can extend partly or wholly under the gate structure of the semiconductor device. In some embodiments, a ring of stress film surround the channel region, and may apply stress from all sides of the channel. Consequently, the stress film better surrounds the channel region of the semiconductor device and can apply more stress in the channel region.
    Type: Grant
    Filed: February 1, 2005
    Date of Patent: August 14, 2007
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Huilong Zhu
  • Patent number: 7253481
    Abstract: A semiconductor device suffering fewer current crowding effects and a method of forming the same are provided. The semiconductor device includes a substrate, a gate over the substrate, a gate spacer along an edge of the gate and overlying a portion of the substrate, a diffusion region in the substrate wherein the diffusion region comprises a first portion and a second portion between the first portion and the gate spacer. The first portion of the diffusion region has a recessed top surface. The semiconductor device further includes a silicide layer on the diffusion region, and a cap layer over at least the silicide layer. The cap layer provides a strain to the channel region of the semiconductor device.
    Type: Grant
    Filed: July 14, 2005
    Date of Patent: August 7, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Wang, Ta-Wei Wang, Ching-Wei Tsai
  • Patent number: 7253525
    Abstract: The semiconductor device comprises a semiconductor substrate 10, a conducting film 20 formed on the semiconductor substrate 10 and including two conductor patterns adjacent to each other; an etching stopper film covering the upper surface of the conducting film 20; an insulation film 28 which includes a contact hole which reaches the semiconductor substrate 10 between the two conductor patterns and the an end of which is positioned on the etching stopper film 22 on the two conductor patterns; and a sidewall insulation film 32 formed on the side walls of the conducting film 20 and of the etching stopper film 22 in the contact hole. The fluctuation of a contact hole size due to disalignment of the lithography can be restrained, and in the lithography step of opening the contact hole, the photoresist can have a large openings size, which facilitate the lithography step.
    Type: Grant
    Filed: March 30, 1998
    Date of Patent: August 7, 2007
    Assignee: Fujitsu Limited
    Inventor: Taiji Ema
  • Patent number: 7242063
    Abstract: A technique for and structures for camouflaging an integrated circuit structure. The technique including forming active areas of a first conductivity type and LDD regions of a second conductivity type resulting in a transistor that is always non-operational when standard voltages are applied to the device.
    Type: Grant
    Filed: June 29, 2004
    Date of Patent: July 10, 2007
    Assignee: HRL Laboratories, LLC
    Inventors: Lap-Wai Chow, William M. Clark, Jr., Gavin J. Harbison, Paul Ou Yang
  • Patent number: 7227230
    Abstract: A MOSFET device and a method of fabricating a MOSFET device having low-K dielectric oxide gate sidewall spacers produced by fluorine implantation. The present invention implants fluorine into the gate oxide sidewall spacers which is used to alter the properties of advanced composite gate dielectrics e.g. nitridized oxides, NO, and gate sidewall dielectrics, such that the low-K properties of fluorine are used to develop low parasitic capacitance MOSFETs.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: June 5, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey P. Gambino, Jack Mandelman, William R. Tonti
  • Patent number: 7211872
    Abstract: A method and device for improved salicide resistance in polysilicon gates under 0.20 ?m. The several embodiments of the invention provide for formation of gate electrode structures with recessed and partially recessed spacers. One embodiment, provides a gate electrode structure with recessed thick inner spacers and thick outer spacers. Another embodiment provides a gate electrode structure with recessed thin inner spacers and recessed thick outer spacers. Another embodiment provides a gate electrode structure with thin inner spacers and partially recessed outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers. The inner spacer stack within inner spacers and thin outer spacers. Another embodiment provides a gate electrode structure with two spacer stacks. The outermost spacer stack with recessed thin inner spacers and recessed thick outer spacers.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: May 1, 2007
    Assignee: Intel Corporation
    Inventors: Chia-Hong Jan, Julie A. Tsai, Simon Yang, Tahir Ghani, Kevin A. Whitehill, Steven J. Keating, Alan Myers
  • Patent number: 7208803
    Abstract: A method of forming a raised source/drain proximate a spacer of a gate of a transistor on a substrate, and a semiconductor device of an integrated circuit employing the same. In one embodiment, the method includes orienting the gate substantially along a <100> direction of the substrate. The method also includes providing a semiconductor material adjacent the spacer of the gate to form a raised source/drain layer of the raised source/drain oriented substantially along a <100> direction of the substrate.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: April 24, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Steve Ming Ting
  • Patent number: 7205612
    Abstract: A device and method are described for forming a grounded gate NMOS (GGNMOS) device used to provide protection against electrostatic discharge (ESD) in an integrated circuit (IC). The device is achieved by adding n-wells below the source and drain regions. By tailoring the dopant concentration profiles of the p-well and n-wells provided in the fabrication process, peak dopant concentrations are moved below the silicon surface. This moves ESD conduction deeper into the IC where thermal conductivity is improved, thereby avoiding thermal damage occurring with surface conduction. The device does not require a salicidation block or additional implantation and uses standard NMOS fabrication processing steps, making it advantageous over prior art solutions.
    Type: Grant
    Filed: November 1, 2004
    Date of Patent: April 17, 2007
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Jun Cai, Keng Foo Lo
  • Patent number: 7187031
    Abstract: A semiconductor device has a structure that reduces the parasitic capacitance by using a film with a low relative dielectric constant as the side wall material of the gate. The material with a low relative dielectric constant is preferably a material whose relative dielectric constant is less than the relative dielectric constant of an oxide film, i.e., less than about 3.9.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: March 6, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Kenichi Azuma
  • Patent number: 7183662
    Abstract: A memory device, such as a DRAM, SRAM or non-volatile memory device, includes a substrate, a gate electrode disposed on the substrate, and source and drain regions in the substrate adjacent respective first and second sidewalls of the gate electrode. First and second sidewall spacers are disposed on respective ones of the first and second sidewalls of the gate electrode. The first and second sidewall spacers have different dielectric constants. The first and second sidewall spacers may be substantially symmetrical and/or have substantially the same thickness.
    Type: Grant
    Filed: August 5, 2004
    Date of Patent: February 27, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gyu-chul Kim, Sung-bong Kim
  • Patent number: 7157374
    Abstract: A method of removing the cap from a gate of an embedded SiGe semiconductor device includes the formation of the embedded SiGe semiconductor device with the cap consisting of a cap material on top of the gate, first sidewall spacers on side surfaces of the gate, and embedded SiGe in source and drain regions. Second sidewall spacers are formed on the first sidewall spacers, these second sidewall spacers consisting of a material different from the cap material. The cap is stripped from the top of the gate with an etchant that selectively etches the cap material and not the second sidewall spacer material.
    Type: Grant
    Filed: June 28, 2004
    Date of Patent: January 2, 2007
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Andrew M. Waite, Huicai Zhong
  • Patent number: 7148552
    Abstract: The present invention has an object to provide a semiconductor device that is equipped with a high breakdown voltage transistor of a high junction breakdown voltage characteristic and a low voltage transistor of a high electric current drive characteristic to thereby ensure the element isolation performance in the both transistor forming regions. The semiconductor device is equipped with a high breakdown voltage transistor (a) and low voltage transistor (b) the widths of whose side walls are different from each other. The side walls of the high breakdown voltage transistor (a) each consist of four layers of first side wall film, second side wall film, third side wall film, and fourth side wall film that are formed in such a way that they are laminated from both side surfaces of a gate electrode in directions that are sidewardly remote away from this gate electrode.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: December 12, 2006
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Masayuki Fujio, Motoharu Arimura
  • Patent number: 7135707
    Abstract: An insulated-gate field effect transistor with the structure capable of weakening an electric field near or around the drain thereof. To this end, the transistor of the top gate type has its gate electrode which is formed of two kinds of metal layers (4, 5) capable of being anodized while carefully selecting materials and anodization process conditions in such a way as to let anodization of the lowermost metal layer (4) be faster in progress than that of its overlying metal layer (5). This ensures that an intensity-decreased electric field is applied to a portion (20) underlying an anodized part of the lower metal layer not only through a gate insulation film (3) but also through an anodized oxide (17). A weak inversion layer as created by this electric field may cause the electric field to decrease in intensity near or around the drain.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: November 14, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Hisashi Ohtani
  • Patent number: 7132704
    Abstract: A semiconductor fabrication process and the resulting integrated circuit include forming a gate electrode (116) over a gate dielectric (104) over a semiconductor substrate (102). A spacer film (124) exhibiting a tensile stress characteristic is deposited over the gate electrode (116). The stress characteristics of at least a portion of the spacer film is then modulated (132, 192) and the spacer film (124) is etched to form sidewall spacers (160, 162) on the gate electrode sidewalls. The spacer film (124) is an LPCVD silicon nitride in one embodiment. Modulating (132) the spacer film (124) includes implanting Xenon or Germanium into the spacers (160) at an implant energy sufficient to break at least some of the silicon nitride bonds. The modulation implant (132) may be performed selectively or non-selectively either before or after etching the spacer film (124).
    Type: Grant
    Filed: January 13, 2005
    Date of Patent: November 7, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Paul A. Grudowski
  • Patent number: 7122833
    Abstract: A semiconductor integrated circuit comprising thin-film transistors in each of which the second wiring is prevented from breaking at steps. A silicon nitride film is formed on gate electrodes and on gate wiring extending from the gate electrodes. Substantially triangular regions are formed out of an insulator over side surfaces of the gate electrodes and of the gate wiring. The presence of these substantially triangular side walls make milder the steps at which the second wiring goes over the gate wiring. This suppresses breakage of the second wiring.
    Type: Grant
    Filed: April 29, 2003
    Date of Patent: October 17, 2006
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Hideomi Suzawa, Yasuhiko Takemura
  • Patent number: 7119435
    Abstract: In a MOS transistor and a method of manufacturing the same, a gate structure including a gate insulating layer and a gate electrode is formed on a semiconductor substrate. A first insulating layer is formed to cover the gate structure. A second insulating layer is formed on the substrate that is spaced apart from the first insulating layer. A lightly doped source/drain region is formed in the surface portions of the substrate between the second insulating layer and the gate structure. A source/drain extension layer are formed on the lightly doped source/drain region. A heavily doped source/drain region is formed on the second insulating layer so as to connect with the source/drain extension layer. The short channel effect is suppressed and the source/drain junction capacitance is reduced.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: October 10, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Jae-Kyu Lee
  • Patent number: 7112847
    Abstract: A semiconductor device includes a semiconductor fin formed on an insulator and sidewall spacers formed adjacent the sides of the fin. A gate material layer is formed over the fin and the sidewall spacers and etched to form a gate. The presence of the sidewall spacers causes a topology of the gate material layer to smoothly transition over the fin and the first and second sidewall spacers.
    Type: Grant
    Filed: September 3, 2003
    Date of Patent: September 26, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bin Yu, Haihong Wang
  • Patent number: 7112859
    Abstract: Embodiments of the invention provides a stepped tip junction region between a source/drain region of a transistor and a gate. In some embodiments, a spacer of the transistor includes a tip junction spacer layer and a source/drain spacer layer.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: September 26, 2006
    Assignee: Intel Corporation
    Inventors: Ibrahim Ban, Bernhard Sell, Sanjay Natarajan, Mark Bohr
  • Patent number: 7105934
    Abstract: A FinFET device and a method of lowering a gate capacitance and extrinsic resistance in a field effect transistor, wherein the method comprises forming an isolation layer comprising a BOX layer over a substrate, configuring source/drain regions above the isolation layer, forming a fin structure over the isolation layer, configuring a first gate electrode adjacent to the fin structure, disposing a gate insulator between the first gate electrode and the fin structure, positioning a second gate electrode transverse to the first gate electrode, and depositing a third gate electrode on the fin structure, the first gate electrode, and the second gate electrode, wherein the isolation layer is formed beneath the insulator, the first gate electrode, and the fin structure. The method further comprises sandwiching the second gate electrode with a dielectric material. The fin structure is formed by depositing an oxide layer over a silicon layer.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: September 12, 2006
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, Edward J. Nowak
  • Patent number: 7094636
    Abstract: A method of forming a conductive line includes forming conductive material received over a semiconductor substrate into a line having opposing sidewalls. Insulative material is deposited over the line, and is planarized. An insulating spacer forming layer is deposited over the line and the planarized insulative material. The spacer forming layer is anisotropically etched form a pair of insulative spacers over the opposing line sidewalls with the insulative material being received between at least one of the sidewalls and one insulative spacer formed thereover. The insulative material as so received has a maximum lateral thickness which is greater than a maximum lateral thickness of the one sidewall spacer.
    Type: Grant
    Filed: November 10, 2004
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventor: H. Montgomery Manning
  • Patent number: 7091567
    Abstract: A semiconductor device includes source/drain regions, a gate pattern disposed on the semiconductor substrate between the source/drain regions, and L-shaped spacers that are used as masks in the forming of the source/drain regions. The L-shaped spacers each include a vertical portion covering a side wall of the gate pattern, and a lateral portion extending from the bottom of the vertical portion over the source/drain region. Support portions interposed between the L-shaped spacers and the gate pattern support the lateral portions of the L-shaped spacers such that an air gap is defined between at least the lateral portions of the L-shaped spacers and the source/drain regions. The air gap minimizes the parasitic capacitance associated with the gate electrode of the semiconductor device.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: August 15, 2006
    Assignee: Samsung Electronics Co., Ltd..
    Inventors: Ho-Woo Park, Hyung-Moo Park
  • Patent number: 7081652
    Abstract: A manufacturing method of a semiconductor device having a side wall insulating film, comprising; forming a gate insulating film on a semiconductor substrate, forming a gate electrode on the gate insulating film, forming a first side wall insulating film on a side surface of the gate electrode, forming a projecting portion on a first upper surface of the semiconductor substrate adjacent to the first side wall insulating film, forming a first diffusion layer by introducing impurities to the projecting portion formed on the semiconductor substrate, removing the first side wall insulating film so as to expose a second upper surface of the semiconductor substrate located below the first side wall insulating film, a width of the second upper surface exposed being a X, forming a second diffusion layer by introducing impurities to the second upper surface of the semiconductor substrate, and forming a second side wall insulating film on the side surface of the gate electrode and the second upper surface of the semicon
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: July 25, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Amane Oishi
  • Patent number: 7078287
    Abstract: A gate electrode is formed on a silicon substrate. First spacers are formed on side surfaces of the gate electrode. With the gate electrode and the first spacers as masks, the surface of the silicon substrate is chipped off to form steplike portions at positions adjacent to base portions of the first spacers. Second spacers are formed at the steplike portions. Silicides are formed on the silicon substrate with the first spacers and the second spacers as masks.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: July 18, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hiroshi Nagatomo
  • Patent number: 7042107
    Abstract: A memory device includes a semiconductor substrate, a first gate insulator on a first portion of a semiconductor substrate, a storage node on the first gate insulator, a tunnel junction barrier on the storage node and a data electrode on the layer tunnel junction barrier. The device further includes a second gate insulator layer on a sidewall of the tunnel junction barrier, a third gate insulator on a second portion of the substrate adjacent the tunnel junction barrier and a gate electrode on the second gate insulator and the third gate insulator. First and second impurity-doped regions are disposed in the substrate and are coupled by a channel through the first and second portions of the substrate. Fabrication of such a device is also describes.
    Type: Grant
    Filed: March 15, 2004
    Date of Patent: May 9, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Seung-Jae Baik
  • Patent number: 7042050
    Abstract: A semiconductor device includes a gate insulating film which is formed on the major surface of a semiconductor substrate, a gate electrode which is formed on the gate insulating film, a first offset-spacer which is formed in contact with one side surface of the gate electrode, a first spacer which is formed in contact with the other side surface of the gate electrode, a second spacer which is formed in contact with the first offset-spacer, and source and drain regions which are formed apart from each other in the major surface of the semiconductor substrate below the first and second spacers so as to sandwich the gate electrode and the first offset-spacer. The source region is formed at a position deeper than the drain region. The dopant concentration of the source region is higher than that of the drain region.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: May 9, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hideji Tsujii
  • Patent number: 7034407
    Abstract: A substrate 11 consists of a semiconductor layer 12 as an element formation region and an STI 13 as an isolation region. A gate dielectric 15 is provided on the semiconductor layer 12, and a gate electrode 14 is provided to extend from the top of the gate dielectric 15 to the top of the STI 13. A sidewall 30 for covering the sides of the gate electrode 14 is provided to extend across the top of the semiconductor layer 12 to the tops of regions of the STI 13 adjacent to the outer edges of the semiconductor layer 12. The sidewall 30 is employed as an ion implantation mask for forming high-concentration impurity diffusion layers 16 each serving as a source/drain region.
    Type: Grant
    Filed: June 24, 2003
    Date of Patent: April 25, 2006
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiro Imade, Tadashi Kadowaki, Hiroyuki Umimoto
  • Patent number: 7023064
    Abstract: An integrated circuit is provided including an FET gate structure formed on a substrate. This structure includes a gate dielectric on the substrate, and a metal nitride layer overlying the gate dielectric and in contact therewith. This metal nitride layer is characterized as MNx, where M is one of W, Re, Zr, and Hf, and x is in the range of about 0.7 to about 1.5. Preferably the layer is of WNx, and x is about 0.9. Varying the nitrogen concentration in the nitride layer permits integration of different FET characteristics on the same chip. In particular, varying x in the WNx layer permits adjustment of the threshold voltage in the different FETs. The polysilicon depletion effect is substantially reduced, and the gate structure can be made thermally stable up to about 1000° C.
    Type: Grant
    Filed: June 16, 2004
    Date of Patent: April 4, 2006
    Assignee: International Business Machines Corporation
    Inventors: Dae-Gyu Park, Cyril Cabral, Jr., Oleg Gluschenkov, Hyungjun Kim
  • Patent number: 7015542
    Abstract: A semiconductor device having a memory region in which a memory cell array is formed of non-volatile memory devices arranged in a matrix of plurality of rows and columns. Each of the non-volatile memory devices has: a word gate formed above a semiconductor layer with a gate insulating layer interposed; an impurity layer formed in the semiconductor layer to form a source region or a drain region; and sidewall-shaped control gates formed along both side surface of the word gate. Each of the control gates consists of a first control gate and a second control gate adjacent to each other. The first control gate and the second control gate are respectively formed on insulating layers having different thickness.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: March 21, 2006
    Assignee: Seiko Epson Corporation
    Inventor: Yoshikazu Kasuya
  • Patent number: 7015567
    Abstract: A method produces a semiconductor structure on a substrate. Then, a protective layer is applied to the semiconductor structure. To fabricate a further semiconductor structure that is to be formed on the substrate, intermediate processes, which lead to the formation of cracks in the protective layer, are carried out. The protective layer is repaired with the aid of a repair layer.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: March 21, 2006
    Assignee: Infineon Technologies AG
    Inventor: Juergen Holz
  • Patent number: 7009226
    Abstract: Carrier mobility in transistor channel regions is increased by depositing a conformal stressed liner. Embodiments include forming a silicon oxynitride layer on the stressed liner to reduce or eliminate deposition surface pattern sensitivity during gap filling, and in-situ SACVD of silicon oxide gap fill directly on the stressed liner with reduced pattern sensitivity. Embodiments also include the use of Si—Ge substrates.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: March 7, 2006
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Sey-Ping Sun
  • Patent number: 7009264
    Abstract: A selective spacer to prevent metal oxide formation during polycide reoxidation of a feature such as an electrode and a method for forming the selective spacer are disclosed. A material such as a thin silicon nitride or an amorphous silicon film is selectively deposited on the electrode by limiting deposition time to a period less than an incubation time for the material on silicon dioxide near the electrode. The spacer is deposited only on the electrode and not on surrounding silicon dioxide. The spacer serves as a barrier for the electrode during subsequent oxidation to prevent metal oxide formation while allowing oxidation to take place over the silicon dioxide.
    Type: Grant
    Filed: July 30, 1997
    Date of Patent: March 7, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Klaus Florian Schuegraf, Scott Jeffrey DeBoer, Randhir P. S. Thakur
  • Patent number: 6974996
    Abstract: In a semiconductor device having a trench-gate structure in which polysilicon doped with boron is embedded in a trench, insulating film formed on the inner wall of the trench comprises ONO film, and silicon nitride film constituting the ONO film is formed to such film thickness and film quality that boron can be suppressed from passing through the silicon nitride film. Silicon oxide film is formed so that a top oxide film is thin and a bottom oxide film is thick.
    Type: Grant
    Filed: December 4, 2003
    Date of Patent: December 13, 2005
    Assignee: Denso Corporation
    Inventors: Tomofusa Shiga, Takaaki Aoki, Yoshifumi Okabe
  • Patent number: 6972222
    Abstract: A method is provided for forming NMOS and PMOS transistors with ultra shallow source/drain regions having high dopant concentrations. First sidewall spacers and nitride spacers are sequentially formed on the sides of a gate electrode followed by forming a self-aligned oxide etch stop layer. The nitride spacer is removed and an amorphous silicon layer is deposited. The etch stop layer enables a controlled etch of the amorphous silicon layer to form silicon sidewalls on the first sidewall spacers. Implant steps are followed by an RTA to activate shallow and deep S/D regions. The etch stop layer maintains a high dopant concentration in deep S/D regions. After the etch stop is removed and a titanium layer is deposited on the substrate, an RTA forms a titanium silicide layer on the gate electrode and an extended silicide layer over the silicon sidewalls and substrate which results in a low resistivity.
    Type: Grant
    Filed: January 9, 2004
    Date of Patent: December 6, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Shu-Ying Cho, Chien-Ming Chung, Yuan-Chang Huang
  • Patent number: 6956276
    Abstract: Provided is a semiconductor device, comprising a gate electrode formed on a semiconductor substrate, source/drain diffusion layers formed on both sides of the gate electrode, a gate electrode side-wall on the side of the source/drain diffusion layer and a gate side-wall insulating film covering a part of the upper surface of the semiconductor substrate in the vicinity of the gate electrode and having an L-shaped/reversed L-shaped cross-sectional shape, and a semiconductor layer extending over the gate side-wall insulating film covering a part of the upper surface of the semiconductor substrate in the vicinity of the gate electrode.
    Type: Grant
    Filed: April 25, 2003
    Date of Patent: October 18, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Akira Hokazono
  • Patent number: 6940134
    Abstract: Methods of forming a contact to a gate electrode or substrate despite misalignment of the contact opening due to lithographic techniques, and a semiconductor having such a contact. Silicide can be created on the gate and/or diffusion using the invention.
    Type: Grant
    Filed: July 2, 2002
    Date of Patent: September 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak
  • Patent number: 6936891
    Abstract: A semiconductor memory device, adapted for storing plural bits per cell to be able to accomplish high storage density by a simplified structure, includes a plurality of first gate electrodes extending parallel to one another along one direction and a plurality of second gate electrodes extending in a direction of intersecting the first gate electrodes, in which a diffusion region is provided on each of a plurality of divisions demarcated in a matrix-like pattern by first and second electrodes on a substrate surface. One of the divisions, the four sides of which are defined by two neighboring first gate electrodes and two neighboring second gate electrodes, has four independently accessible bits, and is connected by a contact (CT) with a diffusion region in the division. There are provided a plurality of interconnections connected via contacts to the diffusion regions of other divisions in the plural matrix-like divisions lying on the line of extension of the aforementioned diagonal line.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: August 30, 2005
    Assignee: NEC Electronics Corporation
    Inventors: Kenji Saito, Hiroshi Furuta
  • Patent number: 6933620
    Abstract: An insulated gate semiconductor device (100) having reduced gate resistance and a method for manufacturing the semiconductor device (100). A gate structure (112) is formed on a major surface (104) of a semiconductor substrate (102). Successive nitride spacers (118, 128) are formed adjacent the sidewalls of the gate structure (112). The nitride spacers (118, 128) are etched and recessed using a single etch to expose the upper portions (115A, 117A) of the gate structure (112). Source (132) and drain (134) regions are formed in the semiconductor substrate (102). Silicide regions (140, 142, 144) are formed on the top surface (109) and the exposed upper portions (115A, 117A) of the gate structure (112) and the source region (132) and the drain region (134). Electrodes (150, 152, 154) are formed in contact with the silicide (140, 142, 144) of the respective gate structure (112), source region (132), and the drain region (134).
    Type: Grant
    Filed: August 9, 2004
    Date of Patent: August 23, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Scott Lunning, Karsten Wieczorek, Thorsten Kammler
  • Patent number: 6927467
    Abstract: Embodiments of the invention include magnetoresistive memory cells having magnetic focusing spacers are formed on sidewalls thereof. Therefore, magnetic fields generated by a bit line and a digit line are focused by the magnetic focusing spacers and efficiently transferred to the magnetoresistive memory cell. In addition, an interlayer dielectric layer surrounding the magnetoresistive memory cell may be formed of high permeability material, thereby efficiently transferring magnetic field.
    Type: Grant
    Filed: August 6, 2003
    Date of Patent: August 9, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Hyeong-Jun Kim
  • Patent number: 6927461
    Abstract: Semiconductor devices and methods of fabrication. A device includes a semiconductor substrate, a gate electrode insulated from the semiconductor substrate by a gate insulation layer, LDD-type source/drain regions formed at both sides of the gate electrode, an interlayer insulation layer formed over the gate electrode and the substrate, and a shared contact piercing the interlayer insulation layer and contacting the gate electrode and one of the LDD-type source/drain regions including at least a part of a lightly doped drain region. Multiple-layer spacers are formed on both sides of the gate structure and used as a mask in forming the LDD-type regions. At least one layer of the spacer is removed in the contact opening to widen the opening to receive a contact plug.
    Type: Grant
    Filed: March 29, 2002
    Date of Patent: August 9, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Do-Hyung Kim, Jung-In Hong
  • Patent number: 6919606
    Abstract: A semiconductor device includes a semiconductor layer of a first conductive type formed in an active region, a first gate electrode formed on the semiconductor layer via a gate insulating film in a predetermined pattern, a first insulating mask formed on at least a part of the first gate electrode and a part of the semiconductor layer, and a pair of first diffusion regions of a second conductive type formed in the active region not covered with the first insulating mask and first gate electrode. The pair of first diffusion regions is positioned adjacent to the first gate electrode and being used as a source and drain.
    Type: Grant
    Filed: December 26, 2001
    Date of Patent: July 19, 2005
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Tomoaki Shino
  • Patent number: 6914313
    Abstract: A CMOS device structure, and a method of fabricating the CMOS device, featuring a gate insulator layer comprised of a high k metal oxide layer, has been developed. The process features formation of recessed, heavily doped source/drain regions, and of vertical, polysilicon LDD spacers, prior to deposition of the high k metal oxide layer. Removal of a silicon nitride shape, previously used as a mask for definition of the recessed regions, which in turn are used for accommodation of the heavily doped source/drain regions, provides the space to be occupied by the high k metal oxide layer. The integrity of the high k, gate insulator layer, butted by the vertical polysilicon spacers, and overlying a channel region provided by the non-recessed portion of the semiconductor substrate, is preserved via delayed deposition of the metal oxide layer, performed after high temperature anneals such as the activation anneal for heavily doped source/drain regions, as well as the anneal used for metal silicide formation.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: July 5, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ming-Fang Wang, Chien-Hao Chen, Liang-Gi Yao, Shih-Chang Chen
  • Patent number: 6911740
    Abstract: According to embodiments of the present invention, methods of manufacturing a semiconductor device, and semiconductor devices manufactured thereby, are provided. A field region is formed that defines active regions in a semiconductor substrate. Spaced apart gates are formed on the active regions in the semiconductor substrate. The gates have sidewalls that extend away from the semiconductor substrate. First spacers are formed on the sidewalls of the gates. Second spacers are formed on the first spacers and opposite to the gates. Ion impurities are implanted into the active regions in the semiconductor substrate, adjacent to the gates, using the first and second spacers as an ion implantation mask. A portion of the second spacers is removed to widen the gaps between the gates. A dielectric layer is formed on the semiconductor substrate in the gaps between the gates.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: June 28, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-soo Chun, Dong-won Shin, Ki-nam Kim
  • Patent number: 6909144
    Abstract: A gate electrode 14 is formed through a gate oxide film 13 over a channel region 12 in an element region 11, and sidewall dielectric films 16 are provided on side sections of the gate electrode 14. Source/drain regions 17 include low concentration impurity regions 171 and high concentration impurity regions 172. The impurity regions 172 are provided, by an over-etching method when forming the sidewalls 16, at a disposition level LV2 in the element region 11, which is lower than a disposition level LV1 where the impurity regions 171 are disposed. Assisting impurity regions 173 are provided in regions where the levels change between level LV1 and LV2. As a result, the continuity of impurity regions between the impurity regions 172 and the impurity regions 171 that are low concentration extension regions is secured, the their electrical connection is stabilized.
    Type: Grant
    Filed: July 12, 2002
    Date of Patent: June 21, 2005
    Assignee: Seiko Epson Corporation
    Inventor: Kazunobu Kuwazawa
  • Patent number: 6861327
    Abstract: A method for manufacturing a gate spacer for self-aligned contacts is provided. A gate stack is formed on a semiconductor substrate. A conformal dielectric layer is then formed over the gate stack. An etch-stop material layer, e.g., a photoresist layer, is formed over the conformal dielectric layer. Next, an upper portion of the etch stop material layer is removed to expose an upper portion of the conformal dielectric layer by techniques such as etching back. Subsequently, the exposed conformal dielectric layer is etched back using the remaining etch-stop material layer as an etch stopper. The remaining etch-stop material layer is removed and the etched-back conformal dielectric layer is again etched back to form a gate spacer.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: March 1, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: June Seo, Jong-Heui Sing
  • Patent number: 6853020
    Abstract: A double-gate semiconductor device includes a substrate, an insulating layer, a fin and two gates. The insulating layer is formed on the substrate and the fin is formed on the insulating layer. A first gate is formed on the insulating layer and is located on one side of the fin. A portion of the first gate includes conductive material doped with an n-type dopant. The second gate is formed on the insulating layer and is located on the opposite side of the fin as the first gate. A portion of the second gate includes conductive material doped with a p-type dopant.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: February 8, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Bin Yu, Judy Xilin An
  • Patent number: 6852581
    Abstract: According to embodiments of the present invention, methods of manufacturing a semiconductor device, and semiconductor devices manufactured thereby, are provided. A field region is formed that defines active regions in a semiconductor substrate. Spaced apart gates are formed on the active regions in the semiconductor substrate. The gates have sidewalls that extend away from the semiconductor substrate. First spacers are formed on the sidewalls of the gates. Second spacers are formed on the first spacers and opposite to the gates. Ion impurities are implanted into the active regions in the semiconductor substrate, adjacent to the gates, using the first and second spacers as an ion implantation mask. A portion of the second spacers is removed to widen the gaps between the gates. A dielectric layer is formed on the semiconductor substrate in the gaps between the gates.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: February 8, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-soo Chun, Dong-won Shin, Ki-nam Kim
  • Patent number: 6841826
    Abstract: A low-GIDL current MOSFET device structure and a method of fabrication thereof which provides a low-GIDL current. The MOSFET device structure contains a central gate conductor whose edges may slightly overlap the source/drain diffusions, and left and right side wing gate conductors which are separated from the central gate conductor by a thin insulating and diffusion barrier layer.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: January 11, 2005
    Assignee: International Business Machines Corporation
    Inventors: Omer H. Dokumaci, Bruce B. Doris, Oleg Gluschenkov, Jack A. Mandelman, Carl J. Radens
  • Patent number: 6838777
    Abstract: Gate electrodes (3) are formed on a semiconductor substrate (1), each with a gate insulating film (2) interposed therebetween. A pair of offset spacers (4) are respectively formed on opposite side faces of each of the gate insulating film (2) and the gate electrodes (3). Diffusion layers (5) are formed in the semiconductor substrate (1) on opposite sides of a portion of the semiconductor substrate (1) immediately under each of the gate electrodes (3), by ion implantation.
    Type: Grant
    Filed: August 27, 2003
    Date of Patent: January 4, 2005
    Assignee: Renesas Technology Corp.
    Inventor: Motoshige Igarashi