Organic Substrates, E.g., Plastic (epo) Patents (Class 257/E23.007)
  • Patent number: 10580729
    Abstract: A chip on film package includes a chip and a flexible substrate having a film and a circuit layer. The circuit layer is formed on a first surface of the film and electrically connected to the chip. At least one groove is recessed on a second surface of the film. The flexible substrate is bent to form flat portions and at least one curved portion located between the flat portions when it is bonded to external electronic components. The groove is located on the curved portion and provided to protect the curved portion of the flexible substrate from breaking.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: March 3, 2020
    Assignee: CHIPBOND TECHNOLOGY CORPORATION
    Inventors: Chin-Tang Hsieh, Chun-Te Lee
  • Patent number: 10524360
    Abstract: A material for forming of the capacitor layer which generates no crack in drilling on the dielectric layer of the capacitor in manufacturing of a highly multilayered printed wiring board embedded a capacitor circuit. Copper clad laminate for forming of an embedded capacitor layer of a multilayered printed wiring board including an embedded capacitor circuit having a layer structure of copper layer/dielectric layer of the capacitor/copper layer in an inner layer characterized in that the composite elastic modulus Er of the resin film constituting the dielectric layer of the capacitor along the thickness direction is less than 6.1 GPa is employed.
    Type: Grant
    Filed: February 8, 2018
    Date of Patent: December 31, 2019
    Assignee: MITSUI MINING & SMELTING CO., LTD.
    Inventors: Fujio Kuwako, Toshifumi Matsushima, Toshihiro Hosoi
  • Patent number: 10456986
    Abstract: A method of manufacturing a heterogeneous composite includes the steps of providing a first constituent and a second constituent, wherein the first constituent is porous or capable of developing pores when under hydrostatic pressure, and the second constituent comprises a solid having thermoplastic properties; positioning the second constituent relative to the first constituent and coupling energy into the second constituent to cause at least portions of the second constituent to liquefy and to penetrate into pores or other structures of the first constituent, whereby the first constituent is interpenetrated by the second constituent to yield a composite; and, causing an irreversible transition at least of the second constituent to yield a modified composite.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: October 29, 2019
    Assignee: WOODWELDING AG
    Inventor: Jörg Mayer
  • Patent number: 10307990
    Abstract: An epoxy resin composition contains a polyfunctional epoxy resin (A), a polyphenylene ether compound (B) and a phosphorus-modified curing agent (C). A polyphenylene ether (B1) having a number-average molecular weight of 500 to 3000 and an average of 1.0 to 3.0 hydroxyl groups per molecule, and an epoxy resin (B2) obtained by reacting this polyphenylene ether (B1) with an epoxy resin (D) having an average of 2.3 or fewer epoxy groups per molecule and the like, are included as the polyphenylene ether compound (B). A phosphorus-modified epoxy resin (P) is included in at least one selected from the polyfunctional epoxy resin (A), the epoxy resin (D) and a component other than the (A), (B) and (C) above. The phosphorus content is 1.5 to 4.5 mass % as a percentage of the resin solids in the epoxy resin composition.
    Type: Grant
    Filed: February 2, 2010
    Date of Patent: June 4, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Hidetaka Kakiuchi, Yoshihiko Nakamura, Shunji Araki, Yuki Miyoshi
  • Patent number: 9564507
    Abstract: A semiconductor device is disclosed. The semiconductor device includes: a substrate; a first tensile dielectric layer on the substrate; a metal gate in the first tensile dielectric layer; a second tensile dielectric layer on the first tensile dielectric layer; and a contact plug in the first tensile dielectric layer and the second tensile dielectric layer. Preferably, the top surface of the contact plug is even with the top surface of the second tensile dielectric layer, and a carbon content of the second tensile dielectric layer is greater than the carbon content of the first tensile dielectric layer.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: February 7, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Yu-Cheng Lin, Hui-Shen Shih
  • Patent number: 8987019
    Abstract: A method of manufacturing an opto-electric device is disclosed, comprising the steps of providing a substrate (10), overlying a first main side of the substrate with an electrically interconnected open shunting structure (20), embedding the electrically interconnected open shunting structure in a transparent layer (30), removing the substrate from the embedded electrically interconnected open shunting structure, depositing a functional layer structure (40) over a free surface (31) formed after removal of the substrate.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 24, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Antonius Maria Bernardus van Mol, Joanne Sarah Wilson, Chia-Chen Fan, Herbert Lifka, Edward Willem Albert Young, Hieronymus A.J.M. Andriessen
  • Patent number: 8921983
    Abstract: A semiconductor device includes a first semiconductor die. A plurality of conductive vias is formed around the first semiconductor die. A first conductive layer is formed over a first surface of the first semiconductor die and electrically connects to the plurality of conductive vias. A second conductive layer is formed over a second surface of the first semiconductor die opposite the first surface and electrically connects to the plurality of conductive vias. A first passivation layer is formed over the first surface and includes openings that expose the first conductive layer. A second passivation layer is formed over the second surface and includes openings that expose the second conductive layer. Bonding pads are formed within the openings in the first and second passivation layers and are electrically connected to the first and second conductive layers. An interconnect structure is disposed within the openings in the first and second passivation layers.
    Type: Grant
    Filed: September 18, 2011
    Date of Patent: December 30, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Lionel Chien Hui Tay, Henry D. Bathan, Zigmund R. Camacho
  • Patent number: 8853694
    Abstract: Provided are a chip on film (COF) package and semiconductor having the same. The COF package can include a flexible film having first and second surfaces opposite to and facing each other and including a conductive via penetrating from the first surface to the second surface, first and second conductive patterns respectively is on the first surface and the second surface and electrically connected to each other through the conductive via, an integrated circuit (IC) chip is on the first surface and electrically connected to the first conductive pattern, a test pad overlaps the conductive via and is electrically connected to at least one of the first conductive pattern and the second conductive pattern, and an external connection pattern is on the second surface spaced apart from the conductive via and electrically connected to the second conductive pattern.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: October 7, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sang-Uk Han, Jeong-Kyu Ha, Young-Shin Kwon, Seung-Hwan Kim, Kwan-Jai Lee
  • Patent number: 8823187
    Abstract: A semiconductor package includes a semiconductor chip, a first insulating layer formed to cover the semiconductor chip, a wiring structure formed on the first insulating layer. The wiring structure has an alternately layered configuration including wiring layers electrically connected to the semiconductor chip and interlayer insulating layers each located between one of the wiring layers and another. The interlayer insulating layers include an outermost interlayer insulating layer located farthest from a surface of the first insulating layer. A groove formed in the outermost interlayer insulating layer passes through the outermost interlayer insulating layer in a thickness direction.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: September 2, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Noriyoshi Shimizu, Akio Rokugawa, Osamu Inoue
  • Patent number: 8779561
    Abstract: Disclosed herein is a Light Emitting Diode (LED) backlight unit without a Printed Circuit board (PCB). The LED backlight unit includes a chassis, insulating resin layer, and one or more light source modules. The insulating resin layer is formed on the chassis. The circuit patterns are formed on the insulating resin layer. The light source modules are mounted on the insulating resin layer and are electrically connected to the circuit patterns. The insulating resin layer has a thickness of 200 ?m or less, and is formed by laminating solid film insulating resin on the chassis or by applying liquid insulating resin to the chassis using a molding method employing spin coating or blade coating. Furthermore, the circuit patterns are formed by filling the engraved circuit patterns of the insulating resin layer with metal material.
    Type: Grant
    Filed: May 13, 2010
    Date of Patent: July 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Gi Ho Jeong, Si Young Yang, Jae Wook Kwon, Jeong Hoon Park, Hyun Ju Yi, Choon Keun Lee
  • Patent number: 8766432
    Abstract: Methods and resulting devices are disclosed related to attaching a die to a leadframe. One such method includes initially bonding a carrier pad which is pre-coated with a thermosetting first adhesive to the leadframe. The carrier pad can be electrically non-conductive. The first adhesive can be raised to its thermosetting cure temperature by heating the leadframe to a temperature just above the thermosetting cure temperature of the first adhesive. A thermosetting second adhesive which is liquid at room temperature can be applied to a second major surface of the carrier pad, and the die can be placed on the second adhesive and aligned with the leadframe. The second adhesive can be raised to its thermosetting cure temperature to bond the die to the carrier pad, and in turn form a bonded assembly.
    Type: Grant
    Filed: January 5, 2012
    Date of Patent: July 1, 2014
    Assignee: Analog Devices, Inc.
    Inventor: Garrett Griffin
  • Patent number: 8742568
    Abstract: A circuit board (1) exhibits an average coefficient of thermal expansion (A) of the first insulating layer (21) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point of equal to or higher than 3 ppm/degrees C. and equal to or lower than 30 ppm/degrees C. Further, an average coefficient of thermal expansion (B) of the second insulating layer (23) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point is equivalent to an average coefficient of thermal expansion (C) of the third insulating layer (25) in the direction along the substrate surface in a temperature range from 25 degrees C. to its glass transition point. (B) and (C) are larger than (A), and a difference between (A) and (B) and a difference between (A) and (C) are equal to or higher than 5 ppm/degrees C. and equal to or lower than 35 ppm/degrees C.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: June 3, 2014
    Assignee: Sumitomo Bakelite Company, Ltd.
    Inventors: Masayoshi Kondo, Natsuki Makino, Daisuke Fujiwara, Yuka Ito
  • Patent number: 8716853
    Abstract: A semiconductor device is manufactured by, first, providing a wafer, designated with a saw street guide, and having a bond pad formed on an active surface of the wafer. The wafer is taped with a dicing tape. The wafer is singulated along the saw street guide into a plurality of dies having a plurality of gaps between each of the plurality of dies. The dicing tape is stretched to expand the plurality of gaps to a predetermined distance. An organic material is deposited into each of the plurality of gaps. A top surface of the organic material is substantially coplanar with a top surface of a first die of the plurality of dies. A redistribution layer is patterned over a portion of the organic material. An under bump metallization (UBM) is deposited over the organic material in electrical communication, through the redistribution layer, with the bond pad.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: May 6, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Heap Hoe Kuan
  • Patent number: 8686574
    Abstract: A semiconductor device includes a wiring board that has a conductive pattern formed on at least one principal surface, and an IC chip that is mounted on the wiring board. The IC chip includes a plurality of electrodes to make conductor connection with the wiring board. The conductive pattern includes a lead line pattern and a heat dissipation pattern. The lead line pattern is connected with at least one of the plurality of electrodes through a conductor. The heat dissipation pattern is physically spaced from the IC chip and the lead line pattern and has a larger surface area than the lead line pattern. Further, the lead line pattern and the heat dissipation pattern are placed opposite to each other with a gap therebetween, and their opposite parts respectively have interdigitated shapes and are arranged with the respective interdigitated shapes engaging with each other with the gap therebetween.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: April 1, 2014
    Assignee: Renesas Electronics Corporation
    Inventor: Hidenori Egawa
  • Patent number: 8629556
    Abstract: The semiconductor device 1 includes a substrate 3, a semiconductor chip 4 mounted on the substrate 3, the substrate 3, a bump 5 connecting the substrate 3 and the semiconductor chip 4, and an underfill 6 filling in around the bump 5. In the case of a bump 5 composed of a high-melting-point solder having a melting point of 230° C. or more, the underfill 6 is composed of a resin material having an elastic modulus in the range of 30 MPa to 3000 MPa. In the case of a bump 5 composed of a lead-free solder, the underfill 6 is composed of a resin material having an elastic modulus in the range of 150 MPa to 800 MPa. An insulating layer 311 of buildup layers 31 of the substrate 3 has a linear expansion coefficient of 35 ppm/° C. or less in the in-plane direction of the substrate at temperatures in the range of 25° C. to the glass transition temperature.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: January 14, 2014
    Assignee: Sumitomo Bakelite Co., Ltd.
    Inventors: Mitsuo Sugino, Takeshi Hosomi, Masahiro Wada, Masataka Arai
  • Patent number: 8610257
    Abstract: A semiconductor device and method for producing such a device is disclosed. One embodiment provides a semiconductor functional wafer having a first and second main surface. Component production processes are performed for producing a component functional region at the first main surface, wherein the component production processes produce an end state that is stable up to at least a first temperature. A carrier substrate is fitted to the first main surface. Access openings are produced to the first main surface. At least one further component production process is performed for producing patterned component functional regions at the first main surface of the functional wafer in the access openings. The end state produced in this process is stable up to a second temperature, which is less than the first temperature.
    Type: Grant
    Filed: October 10, 2011
    Date of Patent: December 17, 2013
    Assignee: Infineon Technologies AG
    Inventors: Friedrich Kroener, Francisco Javier Santos Rodriguez, Carsten von Koblinski
  • Patent number: 8384230
    Abstract: A semiconductor device includes a wiring board that has a conductive pattern formed on at least one principal surface, and an IC chip that is mounted on the wiring board. The IC chip includes a plurality of electrodes to make conductor connection with the wiring board. The conductive pattern includes a lead line pattern and a heat dissipation pattern. The lead line pattern is connected with at least one of the plurality of electrodes through a conductor. The heat dissipation pattern is physically spaced from the IC chip and the lead line pattern and has a larger surface area than the lead line pattern. Further, the lead line pattern and the heat dissipation pattern are placed opposite to each other with a gap therebetween, and their opposite parts respectively have interdigitated shapes and are arranged with the respective interdigitated shapes engaging with each other with the gap therebetween.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: February 26, 2013
    Assignee: Renesas Electronics Corporation
    Inventor: Hidenori Egawa
  • Patent number: 8217515
    Abstract: A semiconductor mounting substrate according to the present invention comprises: a substrate; a semiconductor device, mounted on this substrate; solder bumps, which connect the semiconductor device and the substrate; a first resin, filled in a space between the semiconductor device and the substrate; and electronic components, mounted on a face side of the semiconductor device where the semiconductor device is mounted, wherein bond strength reinforcing resin section is provided at least between a side face in the vicinity of a corner part of the semiconductor device and a substrate surface of the substrate in a position corresponding to the corner part.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: July 10, 2012
    Assignee: Panasonic Corporation
    Inventors: Junichi Kimura, Hideki Niimi, Yuji Fuwa, Tsuyoshi Sakaue
  • Patent number: 8097898
    Abstract: The outer peripheral portion of a substrate is provided with a first peripheral edge and a second peripheral edge. The first peripheral edge is provided on the edge portion of a first upper surface of the substrate on which a light-emitting diode element is mounted. The second peripheral edge is formed either on an extension of an imaginary line connecting an edge of the light-emitting facet of the light-emitting diode element and the first peripheral edge or inwardly of the extension. The second peripheral edge is located at a position where the first peripheral edge blocks direct light from the light-emitting diode element. This configuration prevents the second upper surface of the substrate provided between the first peripheral edge and the second peripheral edge from becoming deteriorated due to the direct light.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: January 17, 2012
    Assignee: Citizen Electronics Co., Ltd.
    Inventor: Nodoka Oishi
  • Patent number: 8084777
    Abstract: An apparatus having a substrate, an LED light source attached to the substrate, an electrical connector attached to the substrate and electrically connected to the LED light source, a potting material on the substrate and covering at least a portion of the electrical connector; and a barrier separating the potting material from the LED light source, the barrier having a height that exceeds the thickness of the potting material on the substrate.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: December 27, 2011
    Assignee: Bridgelux, Inc.
    Inventor: Jason Posselt
  • Patent number: 8058667
    Abstract: An LED leadframe package with surface tension function to enable the production of LED package with convex lens shape by using dispensing method is disclosed. The LED leadframe package of the invention is a PPA supported package house for LED packaging with metal base, four identical metal electrodes, and PPA plastic to fix the metal electrodes and the heat dissipation base together, four ring-alike structures with a sharp edge and with a tilted inner surface, and three ring-alike grooves formed between sharp edge ring-alike structures.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: November 15, 2011
    Assignee: Nepes LED Corporation
    Inventors: Nguyen The Tran, Yongzhi He, Frank Shi
  • Publication number: 20110156243
    Abstract: A semiconductor package is provided. The semiconductor package includes an organic substrate, a stiffness layer, and a chip subassembly. The stiffness layer is formed on the organic substrate. The chip subassembly is disposed on the stiffness layer. The chip subassembly includes at least a first chip, a second chip, and a third chip. The second chip is disposed between the first chip and the third chip in a stacked orientation. The first chip, the second chip, and the third chip have the function of proximity communication.
    Type: Application
    Filed: December 31, 2009
    Publication date: June 30, 2011
    Inventors: Hsiao-Chuan CHANG, Tsung-Yueh TSAI, Yi-Shao LAI, Chang-Lin YEH, Ming-Hsiang CHENG
  • Patent number: 7932607
    Abstract: A composite conductive film and a semiconductor package using such film are provided. The composite conductive film is formed of a polymer-matrix and a plurality of nano-sized conductive lines is provided. The composite conductive film has low resistance, to connect between a fine-pitch chip and a chip in a low temperature and low pressure condition. The conductive lines are parally arranged and spaced apart from each other, to provide anisotropic conductivity.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 26, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Rouh-Huey Uang, Yu-Chih Chen
  • Patent number: 7919845
    Abstract: Formation of a hybrid integrated circuit device is described. A design for the integrated circuit is obtained and separated into at least two portions responsive to component sizes. A first die is formed for a first portion of the hybrid integrated circuit device using at least in part a first minimum dimension lithography. A second die is formed for a second portion of the device using at least in part a second minimum dimension lithography, where the second die has the second minimum dimension lithography as a smallest lithography used for the forming of the second die. The first die and the second die are attached to one another via coupling interconnects respectively thereof to provide the hybrid integrated circuit device.
    Type: Grant
    Filed: December 20, 2007
    Date of Patent: April 5, 2011
    Assignee: Xilinx, Inc.
    Inventors: James Karp, Steven P. Young, Bernard J. New, Scott S. Nance, Patrick J. Crotty
  • Patent number: 7847384
    Abstract: A semiconductor package 100 is constructed of a semiconductor chip 110, a sealing resin 106 for sealing this semiconductor chip 110, and wiring 105 formed inside the sealing resin 106. And, the wiring 105 is constructed of pattern wiring 105b connected to the semiconductor chip 110 and also formed so as to be exposed to a lower surface 106b of the sealing resin 106, and a post part 105a formed so as to extend in a thickness direction of the sealing resin 106, the post part in which one end is connected to the pattern wiring 105b and also the other end is formed so as to be exposed to an upper surface 106a of the sealing resin 106.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: December 7, 2010
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Tsuyoshi Kobayashi, Tetsuya Koyama, Takaharu Yamano
  • Patent number: 7816782
    Abstract: A wiring substrate for mounting semiconductors is provided with an insulation film, wires formed in the insulation film, and a plurality of electrode pads that electrically connect to the wires through vias. The electrode pads are provided to have their surfaces exposed to both of the front surface and the rear surface of the insulation film, and at least a part of the side surface of the electrode pads is buried in the insulation film. The insulation film is formed by forming electrode pads on the respective two metallic plates, thereafter, laminating an insulation layer and wires on the respective metallic plates to cover the electrode pad, and adhering the insulation layers to each other for integration, and thereafter, removing the metallic plates.
    Type: Grant
    Filed: July 6, 2005
    Date of Patent: October 19, 2010
    Assignees: NEC Corporation, NEC Electronics Corporation
    Inventors: Hideya Murai, Tadanori Shimoto, Takuo Funaya, Katsumi Kikuchi, Shintaro Yamamichi, Kazuhiro Baba, Hirokazu Honda, Keiichiro Kata, Kouji Matsui, Shinichi Miyazaki
  • Patent number: 7816783
    Abstract: On a surface of a resin base material (11), a first resin coating film (19) having a larger thickness and a larger area than a second resin coating film (20) formed on the other surface of the resin base material (11) is continuously formed. The second resin coating film (20) is formed so as to be separated into a plurality of portions.
    Type: Grant
    Filed: July 25, 2007
    Date of Patent: October 19, 2010
    Assignee: Panasonic Corporation
    Inventor: Takeshi Kawabata
  • Patent number: 7759788
    Abstract: A highly reliable semiconductor device which is not damaged by local pressing force from the outside and in which unevenness of a portion where an antenna and an element overlap with each other is reduced. The semiconductor device includes a chip and an antenna. The chip includes a semiconductor element layer including a thin film transistor; a conductive resin electrically connected to the semiconductor element layer; and a sealing layer. The sealing layer in which a fiber body is impregnated with an organic resin covers the semiconductor element layer and the conductive resin, and has a thickness of 10 to 100 ?m. The antenna has a depressed portion and is electrically connected to the semiconductor element layer through the conductive resin. The chip is embedded inside the depressed portion. The thickness of the chip is equal to the depth of the depressed portion.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: July 20, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd
    Inventors: Tomoyuki Aoki, Takuya Tsurume, Hiroki Adachi, Hisashi Ohtani
  • Patent number: 7759161
    Abstract: In order to implement a high-density high-performance semiconductor system small in size, there is provided a method for implementing three-dimensional connection between a plurality of semiconductor chips differing from each other with the shortest metal interconnect length, using penetration electrodes, thereby enabling a fast operation at a low noise level, the method being a three-dimensional connection method very low in cost, and short in TAT in comparison with the known example, capable of bonding at an ordinary temperature, and excellent in connection reliability.
    Type: Grant
    Filed: January 27, 2006
    Date of Patent: July 20, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Naotaka Tanaka, Yasuhiro Yoshimura, Takahiro Naito, Takashi Akazawa
  • Patent number: 7740376
    Abstract: A flexible light emitting module includes: a flexible substrate; and a flexible multi-layer structure formed on the flexible substrate, and including a plurality of light emitting bare chips that are disposed on the same level and that cooperatively define a spacing thereamong, a dielectric material that fills the spacing and that cooperates with the bare chips to form a light emitting layer, and first and second conductive layers sandwiching and adapted to connect the light emitting layer to a power source.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: June 22, 2010
    Inventors: Dong Sing Wuu, Ray-Hua Horng, Cheng-Chung Chiang, Wen-Chun Chen
  • Patent number: 7679172
    Abstract: A semiconductor package without a chip carrier includes an insulating structure having an opening; an electroplated die pad provided in the opening; a chip attached to the electroplated die pad by a thermally conductive adhesive; a plurality of electrical contacts formed around the electroplated die pad, wherein at least one of the electrical contacts is provided on a top surface of the insulating structure, and the chip is electrically connected to the electrical contacts; and an encapsulant for encapsulating the chip, the insulating structure and the electrical contacts, wherein bottom surfaces of the insulating structure, the electroplated die pad and the electrical contacts, except the at least one electrical contact provided on the top surface of the insulating structure, are exposed from the encapsulant and are flush with a bottom surface of the encapsulant. A fabrication method of the semiconductor package is also provided.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: March 16, 2010
    Assignee: Siliconware Precision Industries Co., Ltd.
    Inventors: Chien-Ping Huang, Fu-Di Tang, Yuan-Chun Li
  • Publication number: 20100059863
    Abstract: The present invention provides stretchable, and optionally printable, semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed. Stretchable semiconductors and electronic circuits of the present invention preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention may be adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.
    Type: Application
    Filed: March 17, 2009
    Publication date: March 11, 2010
    Applicant: The Board of Trustees of the University of Illinois
    Inventors: John A. ROGERS, Dahl-Young KHANG, Yugang SUN
  • Patent number: 7671464
    Abstract: A wiring board used for mounting an LED bare chip capable of firmly bonding the LED bare chip and improving yield. In a printed wiring board 2, a distance D between wiring patterns 81 and 85 disposed so as to oppose each other is the smallest at a position nearest to a center point (G) of an LED chip 14 disposed at a designed location, and increases with an increasing distance from the point G. In addition, pattern edges 83 and 87 of the wiring patterns 81 and 85 recede in the direction of widening the distance D as a distance from the center point G increases with respect to electrode edges 148 and 149 of the LED chip 14.
    Type: Grant
    Filed: June 15, 2007
    Date of Patent: March 2, 2010
    Assignee: Panasonic Corporation
    Inventors: Tetsushi Tamura, Tatsumi Setomoto, Nobuyuki Matsui, Masanori Shimizu, Yoshihisa Yamashita
  • Patent number: 7649198
    Abstract: The invention provides a method for fabricating a nano-array comprising the following steps. A template with a plurality of nano-holes is provided. A polymer is embossed by the template to integrally form a plurality of nano-protrusions thereon, and demolding to reveal the nano-protrusions. The nano-protrusion has a concave or convex top surface.
    Type: Grant
    Filed: August 25, 2006
    Date of Patent: January 19, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Chih-Chiang Chao, Po-Ling Shiao, Mei-Chun Lai
  • Patent number: 7649272
    Abstract: An electrical component is placed on a substrate. At least one film comprising a plastic material is connected to the component and to the substrate in such a way that a surface contour defined by the component and the substrate is represent is represented in a surface contour of the part of the film. Said film is laminated onto the component and the substrate in such a way that the film follows the topology of the arrangement consisting of the component and the substrate. Said film is in contact with the component and the substrate in a positive and non-positive manner, and comprises a composite material containing a filler that is different to the plastic material. The processability and electrical properties of the film are influenced by the filler or the composite material obtained thereby. In this way, other functions can be integrated into the film. Said component is, for example, a power semiconductor component. An electrically insulating and thermoconductive film is used, for example.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: January 19, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventors: Franz Auerbach, Karl Weidner
  • Patent number: 7638854
    Abstract: A semiconductor device is provided that includes wiring patterns on a substrate formed of an organic insulating film, and a semiconductor chip mounted on the substrate. A liquid crystal display panel and a PW board are electrically connected to each other with an anisotropic conductive adhesive. At least one surface of the insulating film is treated with a silicon coupling material. The silicon coupling material contains silicon (Si) at a surface element density of 0.5 atomic percent to 12.0 atomic percent on a surface of the insulating film.
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: December 29, 2009
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yasuhiko Tanaka, Kenji Toyosawa
  • Patent number: 7635914
    Abstract: In a method and system for fabricating a semiconductor device (100) having a package-on-package structure, a base laminate substrate (BLS) (110) is formed to include a base center portion (112) and a peripheral portion (114) separated by a barrier element (120). The barrier element (120) forms a peripheral wall (118) to surround the base center portion (112). A frame shaped top laminate substrate (TLS) (130) is disposed over the peripheral portion (114) of the BLS (110). The TLS (130) has an open top center portion (132) matching the base center portion (112) surrounded by the peripheral wall (118) to form a cavity (140). A plurality of conductive bumps (150) each disposed between a top contact pad (134) of the TLS and a base contact pad (116) of the peripheral portion (114) of the BLS (110) are formed to provide electrical and mechanical coupling therebetween. The barrier element (120) forms a seal between the cavity (140) and the plurality of conductive bumps (150).
    Type: Grant
    Filed: May 17, 2007
    Date of Patent: December 22, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Prema Palaniappan, Masood Murtuza, Satyendra Singh Chauhan
  • Patent number: 7633142
    Abstract: An IC package is disclosed that comprises a core region disposed between upper and lower build-up layer regions. In one embodiment, the core region comprises a low modulus material. In an alternative embodiment the core region comprises a medium modulus material. In an alternative embodiment, the core material is selected based upon considerations such as it modulus, its coefficient of thermal expansion, and/or the resulting total accumulated strain. In an alternative embodiment, boundaries with respect to the softness of the core material are established be considering the reflective density in opposing conductive build-up layers above and below the core region.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: December 15, 2009
    Assignee: Intel Corporation
    Inventors: Mitul B. Modi, Patricia A. Brusso, Ruben Cadena, Carolyn R. McCormick, Sankara J. Subramanian
  • Patent number: 7605474
    Abstract: A composite conductive film formed of a polymer-matrix and a plurality of conductive lines less than micro-sized and its fabricating method are provided. The conductive lines are arranged parallel and spaced apart from each other so as to provide anisotropic conductivity. The present conductive film can serve as an electrical connection between a fine-pitch chip and a substrate. Additionally, an adhesive layer is formed on two opposite sides of the conductive film along its conductive direction to increase adhesive areas. The strength and reliability of the package using the conductive film are thus enhanced.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: October 20, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Ruoh Huey Uang, Yu Chih Chen, Ren Jen Lin, Syh Yuh Cheng
  • Patent number: 7598609
    Abstract: A composite conductive film formed of a polymer-matrix and a plurality of conductive lines less than micro-sized and its fabricating method are provided. The conductive lines are arranged parallel and spaced apart from each other so as to provide anisotropic conductivity. The present conductive film can serve as an electrical connection between a fine-pitch chip and a substrate. Additionally, an adhesive layer is formed on two opposite sides of the conductive film along its conductive direction to increase adhesive areas. The strength and reliability of the package using the conductive film are thus enhanced.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: October 6, 2009
    Assignee: Industrial Technology Research Institute
    Inventors: Ruoh Huey Uang, Yu Chih Chen, Ren Jay Lin, Syh Yuh Cheng
  • Patent number: 7579215
    Abstract: A method for fabricating a low cost integrated circuit package (600) includes separating a processed silicon wafer into a plurality of individual die (601) and then positioning the die (603) on a secondary substrate in a face down position for allowing an increased die I/O connection area. The die is covered (605) with one or more epoxy materials to form a group of embedded die packages. One or more pads on the die are then exposed (615) and subsequently connected (617) to an I/O connection in a die I/O connection area. Each of the die are then separated (619) forming singular embedded die packages from the secondary substrate. The method provides a manufacturing process to form a low cost, very high density integrated circuit package using a combination of both wafer scale packaging and wafer level packaging processes.
    Type: Grant
    Filed: March 30, 2007
    Date of Patent: August 25, 2009
    Assignee: Motorola, Inc.
    Inventor: Thomas J. Swirbel
  • Patent number: 7521271
    Abstract: A method of manufacturing a transponder (1) where a transponder IC (2) comprising two IC contacts (7, 8) is brought into communication-capable connection, via each time one of the IC contacts (7, 8), with one of two transmission element strips (13, 14) provided on a tape-like carrier (11) of an intermediate product (12), the intermediate product (12) then being cut through along cutting zones (16) extending perpendicularly to the longitudinal direction of the carrier and the transponder IC (2) being connected to the portion of the intermediate product (12) located between two cutting zones (16).
    Type: Grant
    Filed: February 3, 2003
    Date of Patent: April 21, 2009
    Assignee: NXP B.V.
    Inventors: Christian Brugger, Reinhard Fritz
  • Publication number: 20090057875
    Abstract: A highly reliable semiconductor device which is not damaged by local pressing force from the outside and in which unevenness of a portion where an antenna and an element overlap with each other is reduced. The semiconductor device includes a chip and an antenna. The chip includes a semiconductor element layer including a thin film transistor; a conductive resin electrically connected to the semiconductor element layer; and a sealing layer. The sealing layer in which a fiber body is impregnated with an organic resin covers the semiconductor element layer and the conductive resin, and has a thickness of 10 to 100 ?m. The antenna has a depressed portion and is electrically connected to the semiconductor element layer through the conductive resin. The chip is embedded inside the depressed portion. The thickness of the chip is equal to the depth of the depressed portion.
    Type: Application
    Filed: August 29, 2008
    Publication date: March 5, 2009
    Applicant: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Tomoyuki Aoki, Takuya Tsurume, Hiroki Adachi, Hisashi Ohtani
  • Publication number: 20080318055
    Abstract: An electronic component includes a base insulative layer having a first surface and a second surface; an electronic device having a first surface and a second surface, and the electronic device being secured to the base insulative layer; an adhesive layer disposed between the first surface of the electronic device and the second surface of the base insulative layer; and a removable layer disposed between the first surface of the electronic device and the second surface of the base insulative layer. The base insulative layer secures to the electronic device through the removable layer. The removable layer is capable of releasing the base insulative layer from the electronic device. The removal may be done without damage to a predetermined part of the electronic component.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raymond Albert Fillion, David Richard Esler, Jeffrey Scott Erlbaum, Ryan Christopher Mills, Charles Gerard Woychik
  • Publication number: 20080318054
    Abstract: An electronic component includes a base insulative layer having a first surface and a second surface; an electronic device having a first surface and a second surface, and the electronic device being secured to the base insulative layer; an adhesive layer disposed between the first surface of the electronic device and the second surface of the base insulative layer; and a removable layer disposed between the first surface of the electronic device and the second surface of the base insulative layer. The base insulative layer secures to the electronic device through the removable layer. The removable layer releases the base insulative layer from the electronic device at a sufficiently low temperature.
    Type: Application
    Filed: June 21, 2007
    Publication date: December 25, 2008
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Raymond Albert Fillion, Ryan Christopher Mills
  • Publication number: 20080283992
    Abstract: In a method and system for fabricating a semiconductor device (100) having a package-on-package structure, a base laminate substrate (BLS) (110) is formed to include a base center portion (112) and a peripheral portion (114) separated by a barrier element (120). The barrier element (120) forms a peripheral wall (118) to surround the base center portion (112). A frame shaped top laminate substrate (TLS) (130) is disposed over the peripheral portion (114) of the BLS (110). The TLS (130) has an open top center portion (132) matching the base center portion (112) surrounded by the peripheral wall (118) to form a cavity (140). A plurality of conductive bumps (150) each disposed between a top contact pad (134) of the TLS and a base contact pad (116) of the peripheral portion (114) of the BLS (110) are formed to provide electrical and mechanical coupling therebetween. The barrier element (120) forms a seal between the cavity (140) and the plurality of conductive bumps (150).
    Type: Application
    Filed: May 17, 2007
    Publication date: November 20, 2008
    Applicant: Texas Instruments Incorporated
    Inventors: Prema Palaniappan, Masood Murtuza, Satyendra Singh Chauhan
  • Patent number: 7423336
    Abstract: A rerouting element for a semiconductor device that includes a dielectric film that carries conductive vias, conductive elements, and contact pads. The conductive vias are positioned at locations that correspond to the locations of bond pads of a semiconductor device with which the rerouting element is to be used. The conductive elements, which communicate with corresponding conductive vias, reroute the bond pad locations to corresponding contact pad locations adjacent to one peripheral edge or two adjacent peripheral edges of the rerouted semiconductor device. The rerouting element is particularly useful for rerouting centrally located bond pads of a semiconductor device, as well as for rerouting the peripheral locations of bond pads of a semiconductor device to one or two adjacent peripheral edges thereof. Methods for designing and using the rerouting element are also disclosed, as are semiconductor device assemblies including one or more rerouting elements.
    Type: Grant
    Filed: April 8, 2002
    Date of Patent: September 9, 2008
    Assignee: Micron Technology, Inc.
    Inventors: David J. Corisis, Jerry M. Brooks, Matt E. Schwab, Tracy V. Reynolds
  • Publication number: 20080211086
    Abstract: There is disclosed a fixing method of an electronic component or the like in which when the electronic component and a resin layer are fixed, warp and bend of the electronic component can be inhibited. During manufacturing of a semiconductor-embedded substrate 200 in which a semiconductor device 220 is embedded, after the semiconductor device 220 is disposed on an unhardened resin layer 212, this device is stored in a container 31 of a pressurizing and heating unit 3, and the semiconductor device 220 is isotropically pressurized using an internal gas in the container 31 as a pressure medium, whereby the semiconductor device 220 is pressed to the unhardened resin layer 212, and the resin layer 212 is heated to harden. In consequence, the semiconductor device 220 is fixed and mounted on the resin layer 212 without being warped or bent.
    Type: Application
    Filed: November 28, 2007
    Publication date: September 4, 2008
    Applicant: TDK CORPORATION
    Inventor: Takaaki Morita
  • Patent number: 7378721
    Abstract: A sensor package apparatus includes a lead frame substrate that supports one or more electrical components, which are connected to and located on the lead frame substrate. A plurality of wire bonds are also provided, which electrically connect the electrical components to the lead frame substrate, wherein the lead frame substrate is encapsulated by a thermoset plastic to protect the plurality of wire bonds and at least one electrical component, thereby providing a sensor package apparatus comprising the lead frame substrate, the electrical component(s), and the wire bonds, while eliminating a need for a Printed Circuit Board (PCB) or a ceramic substrate in place of the lead frame substrate as a part of the sensor package apparatus. A conductive epoxy can also be provided for maintaining a connection of the electrical component(s) to the lead frame substrate. The electrical components can constitute, for example, an IC chip and/or a sensing element (e.g., a magnetoresistive component) or sense die.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: May 27, 2008
    Assignee: Honeywell International Inc.
    Inventors: Lawrence E. Frazee, Wayne A. Lamb, John S. Patin, Peter A. Schelonka, Joel D. Stolfus
  • Patent number: 7365414
    Abstract: Dielectric materials comprising release agents are described. Also described are a process for improving the proccessability of dielectric materials during hot embossing, substrates prepared by hot embossing, and integrated-circuit packages comprising the improved substrate.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: April 29, 2008
    Assignee: Intel Corporation
    Inventors: Paul A. Koning, James C Matayabas, Jr.