Geometry Or Layout Of Interconnection Structure (epo) Patents (Class 257/E23.175)
  • Patent number: 9041216
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a lower conductive feature in a lower low-k (LK) dielectric layer; a first etch stop layer (ESL) over the lower conductive feature, wherein the first ESL comprises a metal compound; an upper LK dielectric layer over the first ESL; and an upper conductive feature in the upper LK dielectric layer, wherein the upper conductive feature extends through the first ESL and connected to the lower conductive feature. The interconnect structure may further include a second ESL between the upper LK dielectric layer and the first ESL, or between the first ESL and the lower conductive feature, wherein the second ESL comprises a silicon compound.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 26, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Su-Jen Sung, Yi-Nien Su
  • Patent number: 8999842
    Abstract: A method of manufacturing a semiconductor device with a cap layer for a copper interconnect structure formed in a dielectric layer is provided. In an embodiment, a conductive material is embedded within a dielectric layer, the conductive material comprising a first material and having either a recess, a convex surface, or is planar. The conductive material is silicided to form an alloy layer. The alloy layer comprises the first material and a second material of germanium, arsenic, tungsten, or gallium.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hui-Lin Chang, Hung Chun Tsai, Yung-Cheng Lu, Syun-Ming Jang
  • Patent number: 8946905
    Abstract: An integrated circuit (IC) having a concentric arrangement of stacked vias is disclosed. The IC includes first and second pluralities of signal lines on first and second metal layers, respectively. The second metal layer is arranged between the first metal layer and a silicon layer. The IC also includes a via structure implemented in a predefined area, and connects each of the first and second pluralities of signal lines to circuitry in the silicon layer through respective first and second pluralities of vias. Each via of the first and second pluralities has a center point that extends along a vertical axis from its respective metal layer to the silicon layer. Centers of each of the second plurality of vias are closer to a perimeter of the predefined area than respective centers of any of the first plurality of vias.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: February 3, 2015
    Assignee: Oracle International Corporation
    Inventor: Robert P. Masleid
  • Patent number: 8937376
    Abstract: Semiconductor packages including a die pad, at least one connecting bar, at least one supporting portion, a plurality of leads, a semiconductor chip, a heat sink and a molding compound. The connecting bar connects the die pad and the supporting portion. The leads are electrically isolated from each other and the die pad. The semiconductor chip is disposed on the die pad and electrically connected to the leads. The heat sink is supported by the supporting portion. The molding compound encapsulates the semiconductor chip and the heat sink. Heat from the semiconductor chip is efficiently dissipated from the die pad through the connecting bar, through the supporting portion, and through the heat sink.
    Type: Grant
    Filed: April 16, 2012
    Date of Patent: January 20, 2015
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventor: Fu-Yung Tsai
  • Patent number: 8866301
    Abstract: A package system includes a first integrated circuit disposed over an interposer. The interposer includes at least one molding compound layer including a plurality of electrical connection structures through the at least one molding compound layer. A first interconnect structure is disposed over a first surface of the at least one molding compound layer and electrically coupled with the plurality of electrical connection structures. The first integrated circuit is electrically coupled with the first interconnect structure.
    Type: Grant
    Filed: May 18, 2010
    Date of Patent: October 21, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yung-Chi Lin, Jing-Cheng Lin, Chen-Hua Yu
  • Patent number: 8828862
    Abstract: A method and structure is disclosed whereby multiple interconnect layers having effective air gaps positioned in regions most susceptible to capacitive coupling can be formed. The method includes providing a layer of conductive features, the layer including at least two line members disposed on a substrate and spaced from one another by less than or equal to an effective distance, and at least one such line member also having a via member extending away from the substrate, depositing a poorly conformal dielectric coating to form an air gap between such line members, and exposing a top end of the via.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: David V. Horak, Elbert Huang, Charles W. Koburger, III, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8786099
    Abstract: A wiring substrate includes: a substrate body made of an inorganic material; a first electrode portion, having a rectangular plane shape, which penetrates through the substrate body in a thickness direction of the substrate body; a second electrode portion, having a rectangular plane shape, which penetrates through the substrate body in the thickness direction and faces the first electrode portion at a prescribed interval; and a signal electrode, which is provided between the first electrode portion and the second electrode portion and penetrates through the substrate body in the thickness direction, wherein one of the first electrode portion and the second electrode portion is a ground electrode and the other is a power electrode.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: July 22, 2014
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventor: Tomoharu Fujii
  • Patent number: 8772838
    Abstract: A semiconductor layout structure includes multiple active blocks which are disposed on a substrate, parallel with one another and extending along a first direction, multiple first shallow trench isolations which are disposed on a substrate, parallel with one another and respectively disposed on the multiple active blocks, and multiple second shallow trench isolations which are disposed on a substrate, cutting through multiple active blocks and extending along a second direction. The first direction has an angle about 1 degree to about 53 degrees to the second direction.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 8, 2014
    Assignee: Inotera Memories, Inc.
    Inventors: Tzung-Han Lee, Chung-Yuan Lee
  • Patent number: 8759958
    Abstract: A semiconductor package includes a first package and a second package, a connection terminal disposed between the first and second packages and including a first solder ball and a second solder ball that are vertically stacked, a solder passivation layer with which a surface of at least one of the first and second solder balls is coated, and a ring-shaped short prevention part surrounding a coupling portion between the first and second solder balls.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: June 24, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dong-Ki Ho, Boseong Kim
  • Patent number: 8753900
    Abstract: Methods and apparatus for routing signal paths in an integrated circuit. One or more signal routing paths for transferring signals of the integrated circuit may be determined. A dummy fill pattern for the integrated circuit may be determined based on the one or more metal density specifications and at least one design rule for reducing cross coupling capacitance between the dummy fill pattern and the routing paths. The signal routing paths and/or the dummy fill pattern may be incrementally optimized to meet one or more timing requirements of the integrated circuit.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: June 17, 2014
    Assignee: International Business Machines Corporation
    Inventors: Karan B. Koti, Veena Prabhu
  • Patent number: 8735279
    Abstract: A method and structure is disclosed whereby multiple interconnect layers having effective air gaps positioned in regions most susceptible to capacitive coupling can be formed. The method includes providing a layer of conductive features, the layer including at least two line members disposed on a substrate and spaced from one another by less than or equal to an effective distance, and at least one such line member also having a via member extending away from the substrate, depositing a poorly conformal dielectric coating to form an air gap between such line members, and exposing a top end of the via.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: David V Horak, Elbert Huang, Charles W Koburger, Shom Ponoth, Chih-Chao Yang
  • Patent number: 8736072
    Abstract: A semiconductor circuit pattern includes an angled conductive pattern having a line portion and a pad portion at an end of the line portion extending normal to the line portion on a first side of the line portion. The pad portion has a width greater than a width of the line portion. A spacing has a first portion adjacent the first side of the pad portion, and a second portion adjacent a second side of the pad portion opposite the first side. The first portion of the spacing has a width greater than the width of the second portion of the spacing.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: May 27, 2014
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Ching Wang, Chan-Kang Kuo, Ting-Yu Yen, Hsing-Wang Chen, Chun-Shiang Chang, Yen-Shen Chen
  • Patent number: 8710677
    Abstract: A multi-chip package may include a package substrate, a first semiconductor chip, a second semiconductor chip and a supporting member. The first semiconductor chip may be arranged on an upper surface of the package substrate. The first semiconductor chip may be electrically connected with the package substrate. The second semiconductor chip may be arranged on an upper surface of the first semiconductor chip. The second semiconductor chip may be electrically connected with the first semiconductor chip. The second semiconductor chip may have a protrusion overhanging an area beyond a side surface of the first semiconductor chip. The supporting member may be interposed between the protrusion of the second semiconductor chip and the package substrate to prevent a deflection of the protrusion.
    Type: Grant
    Filed: August 4, 2012
    Date of Patent: April 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hee-Jin Lee, Woo-Dong Lee
  • Patent number: 8698314
    Abstract: A semiconductor device of the invention include a rectangular semiconductor element mounted on a substrate formed with an external input terminal, an external output terminal, and a plurality of wiring patterns connected to each of the external input terminal and the external output terminal. The semiconductor element comprises, a plurality of first electrodes formed along a first edge of a surface thereof, a plurality of second electrodes formed along an edge opposite to the first edge of the surface, a plurality of third electrodes formed in the neighborhood of a functional block, and an internal wiring for connecting the first electrodes and the third electrodes. The substrate comprises, a first wiring pattern for connecting the external input terminal and the first electrodes, a second wiring pattern for connecting the external output terminal and the second electrodes, and a third wiring pattern for connecting the first electrodes and the third electrodes.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: April 15, 2014
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Akira Nakayama
  • Patent number: 8669651
    Abstract: A device includes a package substrate including a first non-reflowable metal bump extending over a top surface of the package substrate; a die over and bonded to the package substrate; and a package component over the die and bonded to the package substrate. The package component includes a second non-reflowable metal bump extending below a bottom surface of the package component. The package component is selected from the group consisting essentially of a device die, an additional package substrate, and combinations thereof. A solder bump bonds the first non-reflowable metal bump to the second non-reflowable metal bump.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: March 11, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung-Ying Yang, Chao-Wen Shih, Hao-Yi Tsai, Hsien-Wei Chen, Mirng-Ji Lii, Tzuan-Horng Liu
  • Patent number: 8670245
    Abstract: A system and method is provided for transmitting a signal to a plurality of slave devices (e.g., memory devices, etc.) via a communication circuit having a plurality of segments that are substantially equal in length and/or impedance. Specifically, according to one embodiment of the invention, an electronic system includes a processor, a plurality of memory devices, and a communication circuit (i.e., a bus) having a central node and a plurality of segments. Specifically, the plurality of segments are used to connect the plurality of devices (e.g., the processor, the plurality of memory devices) to the central node. For example, the processor is connected to the central node via a primary segment, the first memory device (M0) is connected to the central node via a first segment, etc. In one embodiment of the invention, the plurality of segments are substantially equal in length. In other words, the central node is substantially electrically-equidistant from each memory device.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: March 11, 2014
    Assignee: QUALCOMM Incorporated
    Inventor: Quang Nguyen
  • Patent number: 8643175
    Abstract: A multi-channel package has at least four channels and includes a package substrate having a first surface and a second surface, semiconductor chips mounted on the first surface of the package substrate, and external connection terminals disposed on the second surface of the package substrate and electrically connected to the semiconductor chips by the at least four channels. Each channel is dedicated to one or a group of the chips. An electronic system includes a main board, at least one such multi-channel package mounted on the main board, and a controller package that is mounted on the main board, has 4n channels (wherein n?2) and controls the at least one multi-channel package.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: February 4, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kil-Soo Kim, Sun-Pil Youn
  • Patent number: 8642465
    Abstract: Reliable electrical contact is made with electronic components and effective electrical isolation is produced between the top and bottom of the electronic components. An electronic component is arranged inside a window in a first layer on a substrate. Next, a second layer is put on such that contact areas on the component and contact points on the first layer are freely accessible. Electrical contacts and electrical connecting lines are produced by electrodeposition. The second layer is used to produce bridges over an interval range between the electronic component and the first layer. The bridges have connecting lines formed on them. The second layer can be removed again. Radio-frequency modules can be produced in compact fashion and can be combined with audio-frequency components.
    Type: Grant
    Filed: December 21, 2006
    Date of Patent: February 4, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Gernot Schimetta, Maximilian Tschemitz
  • Patent number: 8623700
    Abstract: The present invention provides a quilt packaging system for microchip, a method for making such a quilt packaging system, microchips that may be used in a such a quilt packaging system, and methods for making such microchips.
    Type: Grant
    Filed: November 15, 2006
    Date of Patent: January 7, 2014
    Assignee: University of Notre Dame du Lac
    Inventors: Gary H. Bernstein, Patrick Fay, Wolfgang Porod, Qing Liu
  • Patent number: 8614509
    Abstract: A method for manufacturing a semiconductor device is disclosed, which reduces a step difference between a peripheral region and a cell region. In the semiconductor device, a metal contact of the peripheral region is configured in a multi-layered structure. Prior to forming a bit line and a storage node contact in the cell region, a contact and a line are formed in the peripheral region, such that a step difference between the cell region and the peripheral region is reduced, resulting in a reduction in parasitic capacitance between lines.
    Type: Grant
    Filed: September 27, 2012
    Date of Patent: December 24, 2013
    Assignee: SK Hynix Inc.
    Inventor: Jung Nam Kim
  • Patent number: 8558368
    Abstract: Embodiments of the present invention relate to an improved package for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are oriented side-by-side, rather than end-to-end, in a die package. This configuration reduces the total switch resistance for a given die area, often reducing the resistance enough to avoid the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package and removes the potential failure modes associated with the manufacture of backmetal. Embodiments of the present invention may also allow for more pin connections and an increased pin pitch. This results in redundant connections for higher current connections, thereby reducing electrical and thermal resistance and minimizing the costs of manufacture or implementation of the die package.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: October 15, 2013
    Assignee: GEM Services, Inc.
    Inventors: Anthony Chia, Liming Wong, Hongbo Yang, Anthony C. Tsui, Hui Teng, Ming Zhou
  • Patent number: 8552559
    Abstract: A new interconnection scheme is described, comprising both coarse and fine line interconnection schemes in an IC chip. The coarse metal interconnection, typically formed by selective electroplating technology, is located on top of the fine line interconnection scheme. It is especially useful for long distance lines, clock, power and ground buses, and other applications such as high Q inductors and bypass lines. The fine line interconnections are more appropriate to be used for local interconnections. The combined structure of coarse and fine line interconnections forms a new interconnection scheme that not only enhances IC speed, but also lowers power consumption.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: October 8, 2013
    Assignee: Megica Corporation
    Inventors: Mou-Shiung Lin, Chiu-Ming Chou, Chien-Kang Chou
  • Patent number: 8546194
    Abstract: A method of manufacture of an integrated circuit packaging system includes: providing a base carrier; forming a conductive post on the base carrier, the conductive post having a top protrusion with a protrusion top side; mounting a base integrated circuit over the base carrier; and forming a base encapsulation over the base integrated circuit, the base encapsulation having an encapsulation top side and an encapsulation recess with the conductive post partially exposed within the encapsulation recess, the encapsulation top side above the protrusion top side.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: October 1, 2013
    Assignee: Stats Chippac Ltd.
    Inventors: JoonYoung Choi, YongHyuk Jeong, DaeSik Choi
  • Patent number: 8502375
    Abstract: A semiconductor die and semiconductor package formed therefrom, and methods of fabricating the semiconductor die and package, are disclosed. The semiconductor die includes an edge formed with a plurality of corrugations defined by protrusions between recesses. Bond pads may be formed on the protrusions. The semiconductor die formed in this manner may be stacked in the semiconductor package in staggered pairs so that the die bond pads on the protrusions of a lower die are positioned in the recesses of the upper die.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: August 6, 2013
    Assignee: SanDisk Technologies Inc.
    Inventors: Chih-Chin Liao, Cheeman Yu
  • Patent number: 8492263
    Abstract: Protection of a solder ball joint is disclosed in which the solder ball joint is located below the surface level of the encapsulating buffer layer. The buffering layer is etched to expose one or more electrode posts, each of which may be made up of a single column or multiple columns. A top layer resulting either from a top conductive cap or a plating layer around the electrode posts also lies below the buffer layer. When the solder ball is placed onto the posts, the solder/ball joint is protected in a position below the surface of the buffer layer, while still maintaining an electrical connection between the various solder balls and their associated or capping/plating material, electrode posts, wiring layers, and circuit layers. Therefore, the entire ball joint is protected from direct stress.
    Type: Grant
    Filed: November 16, 2007
    Date of Patent: July 23, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung Yu Wang, Chien-Hsiun Lee, Pei-Haw Tsao, Kuo-Chin Chang, Chung-Yi Lin, Bill Kiang
  • Patent number: 8476763
    Abstract: Methods of forming conductive pattern structures form an insulating interlayer on a substrate that is partially etched to form a first trench extending to both end portions of a cell block. The insulating interlayer is also partially etched to form a second trench adjacent to the first trench, and a third trench extending to the both end portions of the cell block. The second trench has a disconnected shape at a middle portion of the cell block. A seed copper layer is formed on the insulating interlayer. Inner portions of the first, second and third trenches are electroplated with a copper layer. The copper layer is polished to expose the insulating interlayer to form first and second conductive patterns in the first and second trenches, respectively, and a first dummy conductive pattern in the third trench. Related conductive pattern structures are also described.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: July 2, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hei-Seung Kim, In-Sun Park, Gil-Heyun Choi, Ji-Soon Park, Jong-Myeong Lee, Jong-Won Hong
  • Publication number: 20130154114
    Abstract: A semiconductor circuit pattern includes an angled conductive pattern having a line portion and a pad portion at an end of the line portion extending normal to the line portion on a first side of the line portion. The pad portion has a width greater than a width of the line portion. A spacing has a first portion adjacent the first side of the pad portion, and a second portion adjacent a second side of the pad portion opposite the first side. The first portion of the spacing has a width greater than the width of the second portion of the spacing.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Ching WANG, Chan-Kang KUO, Ting-Yu YEN, Hsing-Wang CHEN, Chun-Shiang CHANG, Yen-Shen CHEN
  • Publication number: 20130146991
    Abstract: A device includes a first power semiconductor chip with a first contact pad and a second contact pad on a first face and a third contact pad on the second face. The device further includes a second power semiconductor chip with a first contact pad and a second contact pad on a first face and a third contact pad on the second face. The first and second power semiconductor chips are arranged one above another, and the first face of the first power semiconductor chip faces in the direction of the first face of the second power semiconductor chip. In addition, the first power semiconductor chip is located laterally at least partially outside of the outline of the second power semiconductor chip.
    Type: Application
    Filed: December 8, 2011
    Publication date: June 13, 2013
    Applicant: Infineon Technologies AG
    Inventors: Ralf Otremba, Josef Hoeglauer, Joachim Mahler, Johannes Lodermeyer
  • Patent number: 8450843
    Abstract: The semiconductor device comprises a semiconductor chip and a printed wiring board having a recess in which the semiconductor chip is housed face-down, wherein the printed wiring board comprises multiple wiring layers below a circuit surface of the semiconductor chip on which connection terminals are formed, and the multiple wiring layers include a first wiring layer for forming signal wires, a second wiring layer for forming a ground plane, and a third wiring layer for forming power wires and power BGA and ground BGA pads in sequence from the circuit surface.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: May 28, 2013
    Assignee: NEC Corporation
    Inventors: Hideki Sasaki, Daisuke Ohshima, Takuo Funaya
  • Patent number: 8436477
    Abstract: A microelectronic package can include a microelectronic element having a face and a plurality of element contacts thereon, a substrate having first and second surfaces, and terminals on the second surface configured for connecting the package with an external component. The microelectronic element can include a plurality of stacked electrically interconnected semiconductor chips. The substrate can have contacts facing the element contacts of the microelectronic element and joined thereto. The terminals can include first terminals arranged at positions within first and second parallel grids. The first terminals of each grid can be configured to carry address information usable by circuitry within the microelectronic package to determine an addressable memory location from among all the available addressable memory locations within the microelectronic element.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: May 7, 2013
    Assignee: Invensas Corporation
    Inventors: Richard Dewitt Crisp, Wael Zohni, Belgacem Haba, Frank Lambrecht
  • Patent number: 8420528
    Abstract: Wirings mainly containing copper are formed on an insulating film on a substrate. Then, after forming insulating films for reservoir pattern and a barrier insulating film, an insulating film for suppressing or preventing diffusion of copper is formed on upper and side surfaces of the wirings, the insulating film on the substrate, and the barrier insulating film. Here, thickness of the insulating film for suppressing or preventing diffusion of copper at the bottom of a narrow inter-wiring space is made smaller than that on the wirings, thereby efficiently reducing wiring capacitance of narrow-line pitches. Then, first and second low dielectric constant insulating films are formed. Here, a deposition rate of the first insulating film at an upper portion of the side surfaces of facing wirings is made higher than that at a lower portion thereof, thereby forming air gaps. Finally, the second insulating film is planarized by interlayer CMP.
    Type: Grant
    Filed: October 24, 2009
    Date of Patent: April 16, 2013
    Assignee: Hitachi, Ltd.
    Inventor: Junji Noguchi
  • Publication number: 20130069217
    Abstract: According to one embodiment, a semiconductor device includes a substrate, a semiconductor chip mounted on the substrate, an electrode electrically connected to the semiconductor chip, an electrode terminal having a first terminal at one end portion and a second terminal at the other end portion, and a case covering the substrate, the electrode, the first terminal and the second terminal, wherein the first terminal and the second terminal are bended to direct to a center portion and to be opposed each other in the case, and the first terminal and the second terminal are close to each other to be soldered with the electrode.
    Type: Application
    Filed: March 15, 2012
    Publication date: March 21, 2013
    Applicant: Kabushiki Kaisha Toshiba
    Inventor: Junichi NAKAO
  • Patent number: 8373273
    Abstract: Methods of forming integrated circuit devices include forming an interlayer insulating layer having a trench therein, on a substrate and forming an electrical interconnect (e.g., Cu damascene interconnect) in the trench. An upper surface of the interlayer insulating layer is recessed to expose sidewalls of the electrical interconnect. An electrically insulating first capping pattern is formed on the recessed upper surface of the interlayer insulating layer and on the exposed sidewalls of the electrical interconnect, but is removed from an upper surface of the electrical interconnect. A metal diffusion barrier layer is formed on an upper surface of the electrical interconnect, however, the first capping pattern is used to block formation of the metal diffusion barrier layer on the sidewalls of the electrical interconnect. This metal diffusion barrier layer may be formed using an electroless plating technique.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: February 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hyeok-Sang Oh, Woo-Jin Jang, Bum-Ki Moon, Ji-Hong Choi, Minseok Oh, Tien-Jen Cheng
  • Publication number: 20130027113
    Abstract: A semiconductor chip includes a power transistor circuit with a plurality of active transistor cells. A first load electrode and a control electrode are arranged on a first face of the semiconductor chip, wherein the first load electrode includes a first metal layer. A second load electrode is arranged on a second face of the semiconductor chip. A second metal layer is arranged over the first metal layer, wherein the second metal layer is electrically insulated from the power transistor circuit and the second metal layer is arranged over an area of the power transistor circuit that comprises at least one of the plurality of active transistor cells.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Applicant: Infineon Technologies AG
    Inventors: Ralf Otremba, Josef Hoeglauer, Juergen Schredl, Xaver Schloegel
  • Patent number: 8361898
    Abstract: A bonding pad structure for an optoelectronic device. The bonding pad structure includes a carrier substrate having a bonding pad region and an optoelectronic device region. An insulating layer is disposed on the carrier substrate, having an opening corresponding to the bonding pad region. A bonding pad is embedded in the insulating layer under the opening to expose the top surface thereof. A device substrate is disposed on the insulating layer corresponding to the optoelectronic device region. A cap layer covers the device substrate and the insulating layer excluding the opening. A conductive buffer layer is disposed in the opening to directly contact the bonding pad. The invention also discloses a method for fabricating the same.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: January 29, 2013
    Assignee: VisEra Technologies Company Limited
    Inventors: Kai-Chih Wang, Fang-Chang Liu
  • Patent number: 8350385
    Abstract: The present invention relates to a stress buffering package (49) for a semiconductor component, with a semiconductor substrate (52); an I/O pad (54), electrically connected to the semiconductor substrate (52); a stress buffering element (74) for absorbing stresses, electrically connected to the I/O pad (54); an underbump metallization (70), electrically connected to the stress buffering element (74); a solder ball (60), electrically connected to the underbump metallization (70); a metal element (61) between the solder ball (60) and the semiconductor substrate (52); a passivation layer (56, 58), which protects the semiconductor substrate (52) and the metal element (61) and which at least partially exposes the I/O pad (54); characterized in that a roughness of an interface between the stress buffering element (74) and the passivation layer (56, 58) is lower than a roughness of an interface between the metal element (61) and the passivation layer (56, 58).
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: January 8, 2013
    Assignee: NXP B.V.
    Inventor: Hendrik Hochstenbach
  • Patent number: 8344514
    Abstract: A conductive via of a semiconductor device includes a relatively small diameter portion extending into an active surface of a fabrication substrate and a corresponding, relatively large diameter portion that extends into a back side of the fabrication substrate. This type of conductive via may be fabricated by forming the relatively small diameter portion before or during BEOL processing, while the large diameter portion of each conductive via may be fabricated after BEOL processing is complete. Electronic devices that include one or more semiconductor devices with such conductive vias are also disclosed.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: January 1, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Chad A. Cobbley, Jonathon G. Greenwood
  • Patent number: 8334599
    Abstract: An electronic device provides a stack of semiconductor chips. A redistribution layer of a first semiconductor chip is arranged at the bottom of the stack. The redistribution layer of the first semiconductor chip comprises external pads.
    Type: Grant
    Filed: August 21, 2008
    Date of Patent: December 18, 2012
    Assignee: Qimonda AG
    Inventors: Michael Bruennert, Ullrich Menczigar, Christian Mueller, Sitt Tontosirin, Hermann Ruckerbauer
  • Patent number: 8330275
    Abstract: A cap layer for a copper interconnect structure formed in a first dielectric layer is provided. In an embodiment, a conductive layer is located within a dielectric layer and a top surface of the conductive layer has either a recess, a convex surface, or is planar. An alloy layer overlies the conductive layer and is a silicide alloy having a first material from the conductive layer and a second material of germanium, arsenic, tungsten, or gallium.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hui-Lin Chang, Hung Chun Tsai, Yung-Cheng Lu, Syun-Ming Jang
  • Patent number: 8318610
    Abstract: Provided is a thin film device and an associated method of making a thin film device. For example, fabrication of an inverter thin film device is described. Moreover, a parallel spaced electrically conductive strips are provided upon a substrate. A functional material is deposited upon the conductive strips. A 3D structure is then provided upon the functional material, the 3D structure having a plurality of different heights, at least one height defining a first portion of the conductive strips to be bundled. The 3D structure and functional material are then etched to define a TFD disposed above the first portion of the conductive strips. The first portion of the conductive strips is bundled adjacent to the TFD.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: November 27, 2012
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Ping Mei, Hao Luo, Carl Taussig
  • Publication number: 20120241946
    Abstract: A semiconductor device has a semiconductor die with a plurality of bumps formed over contact pads on a surface of the semiconductor die. The bumps can have a fusible portion and non-fusible portion. A plurality of conductive traces is formed over a substrate with interconnect sites having a width greater than 20% and less than 80% of a width of a contact interface between the bumps and contact pads. The bumps are bonded to the interconnect sites so that the bumps cover a top surface and side surface of the interconnect sites. An encapsulant is deposited around the bumps between the semiconductor die and substrate. The conductive traces have a pitch as determined by minimum spacing between adjacent conductive traces that can be placed on the substrate and the width of the interconnect site provides a routing density equal to the pitch of the conductive traces.
    Type: Application
    Filed: December 6, 2010
    Publication date: September 27, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventor: Rajendra D. Pendse
  • Patent number: 8258014
    Abstract: According to an embodiment of a method of manufacturing a power transistor module, the method includes mechanically fastening a first terminal, a second terminal and at least two different DC bias terminals to an electrically conductive flange; connecting the flange to a source of a power transistor device; electrically connecting the first terminal to a gate of the power transistor device; electrically connecting the second terminal to a drain of the power transistor device; mechanically fastening a bus bar to the flange which extends between and connects the DC bias terminals; and electrically connecting the bus bar to the drain via one or more RF grounded connections.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: September 4, 2012
    Assignee: Infineon Technologies AG
    Inventors: Cynthia Blair, Donald Fowlkes
  • Publication number: 20120211881
    Abstract: A flip chip semiconductor device has a substrate with a plurality of active devices formed thereon. A contact pad is formed on the substrate in electrical contact with the plurality of active devices. A passivation layer is formed over the substrate and intermediate conduction layer. An adhesive layer is formed over the passivation layer. A barrier layer is formed over the adhesive layer. A wetting layer is formed over the barrier layer. The barrier layer and wetting layer in a first region are removed, while the barrier layer, wetting layer, and adhesive layer in a second region are maintained. The adhesive layer over the passivation layer in the first region are maintained until the solder bumps are formed. By keeping the adhesive layer over the passivation layer until after formation of the solder bumps, less cracking occurs in the passivation layer.
    Type: Application
    Filed: April 20, 2010
    Publication date: August 23, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Yaojian Lin, Haijing Cao, Qing Zhang
  • Publication number: 20120199963
    Abstract: A semiconductor package-on-package (PoP) device includes a first die incorporating a through-hole via (THV) disposed along a peripheral surface of the first die. The first die is disposed over a substrate or leadframe structure. A first semiconductor package is electrically connected to the THV of the first die, or electrically connected to the substrate or leadframe structure. An encapsulant is formed over a portion of the first die and the first semiconductor package.
    Type: Application
    Filed: April 9, 2010
    Publication date: August 9, 2012
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Byung Tai Do, Heap Hoe Kuan, Seng Guan Chow
  • Patent number: 8237291
    Abstract: A stack package includes a substrate having an upper surface and a lower surface which faces away from the upper surface, a lower stack group, an upper stack group, and connection members. The lower stack group is attached to the upper surface of the substrate and includes at least two semiconductor chips which are stacked in a face-up type to form on or more steps. The upper stack group is disposed over the lower stack group and includes at least two semiconductor chips which are stacked in a face-down type in such a way as to form one or more steps whose direction mirrors the direction of the at least one step of the lower stack group. The connection members electrically connect the semiconductor chips of the lower and upper stack groups to the substrate.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: August 7, 2012
    Assignee: Hynix Semiconductor Inc.
    Inventor: Seong Cheol Kim
  • Patent number: 8203213
    Abstract: Methods for packaging microelectronic devices and microelectronic devices formed using such methods are disclosed herein. One aspect of the invention is directed toward a method for packaging a microelectronic device that includes coupling an active side of a microelectronic die to a surface of a support member. The microelectronic die can have a backside opposite the active side, a peripheral side extending at least part way between the active side and the backside, and at least one through-wafer interconnect. The method can further include applying an encapsulant to cover a portion of the surface of the support member so that a portion of the encapsulant is laterally adjacent to the peripheral side, removing material from a backside of the microelectronic die to expose a portion of at least one through-wafer interconnect, and applying a redistribution structure to the backside of the microelectronic die.
    Type: Grant
    Filed: June 29, 2010
    Date of Patent: June 19, 2012
    Assignee: Micron Technology, Inc.
    Inventors: Choon Kuan Lee, Chin Hui Chong, David J. Corisis
  • Patent number: 8193639
    Abstract: An integrated circuit structure includes a semiconductor chip, a metal pad at a major surface of the semiconductor chip, and an under-bump metallurgy (UBM) over and contacting the metal pad. A metal bump is formed over and electrically connected to the UBM. A dummy pattern is formed at a same level, and formed of a same metallic material, as the metal pad.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: June 5, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tzuan-Horng Liu, Shang-Yun Hou, Shin-Puu Jeng, Wei-Cheng Wu, Hsiu-Ping Wei, Chih-Hua Chen, Chen-Cheng Kuo, Chen-Shien Chen, Ming Hung Tseng
  • Patent number: 8183090
    Abstract: To reduce connection defects between a circuit substrate provided on a core substrate and a circuit to be mounted thereon, thereby improving reliability as a multilayered device mounting substrate. The device mounting substrate includes: a first circuit substrate composed of a substrate, an insulating layer formed on this substrate, and a first conductive layer (including conductive parts) formed on this insulating layer; and a second circuit substrate mounted on the first circuit substrate, being composed of a base, a second conductive layer (including conductive parts) formed on the bottom of the base, and a third conductive layer (including conductive parts) formed on the top of the base. Here, the first and second circuit substrates are bonded by pressure so that the first and second conductive parts are laminated and embedded together into the insulating layer.
    Type: Grant
    Filed: August 13, 2010
    Date of Patent: May 22, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Mayumi Nakasato, Hideki Mizuhara, Takaya Kusabe, Sadamichi Takakusaki
  • Patent number: 8154132
    Abstract: A semiconductor device of the invention include a rectangular semiconductor element mounted on a substrate formed with an external input terminal, an external output terminal, and a plurality of wiring patterns connected to each of the external input terminal and the external output terminal. The semiconductor element comprises, a plurality of first electrodes formed along a first edge of a surface thereof, a plurality of second electrodes formed along an edge opposite to the first edge of the surface, a plurality of third electrodes formed in the neighborhood of a functional block, and an internal wiring for connecting the first electrodes and the third electrodes. The substrate comprises, a first wiring pattern for connecting the external input terminal and the first electrodes, a second wiring pattern for connecting the external output terminal and the second electrodes, and a third wiring pattern for connecting the first electrodes and the third electrodes.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 10, 2012
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Akira Nakayama
  • Publication number: 20120032311
    Abstract: An in-situ process is described incorporating plasma enhanced chemical vapor deposition comprising flowing at least one of a Si, Si+C, B, Si+B, Si+B+C, and B+C containing precursor, and a N containing precursors at first times and removing the N precursor at second times and starting the flow of an oxidant gas and a porogen gas into the chamber. A dielectric layer is described comprising a network having inorganic random three dimensional covalent bonding throughout the network which contains at least one SiCN, SiCNH, SiN, SiNH, BN, BNH, CBN, CBNH, BSiN, BSiNH, SiCBN and SiCBNH as a first component and a low k dielectric as a second component adjacent thereto.
    Type: Application
    Filed: August 9, 2010
    Publication date: February 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen M. Gates, Alfred Grill, Son V. Nguyen, Satyanarayana V. Nitta