Protection Against Mechanical Damage (epo) Patents (Class 257/E23.194)
  • Patent number: 7968984
    Abstract: An apparatus for coupling a plurality of surface mounted semiconductor device packages to a circuit board is provided. Each package including a semiconductor device die and a metal clip including a flat web portion having a bottom surface and at least one peripheral rim portion extending from an edge of said flat web portion, said bottom surface having solderable planar metal electrodes or pads on its bottom surface, the contact pads being formed in plurality of layouts having one or more columns and one or more rows. The apparatus including a circuit board contact pattern including one or more columns and one or more rows of contacts, a number of rows being equal to a largest number of contact pad rows in the plurality of contact pad layouts, a number of columns being equal to a largest number of contact pad columns in the plurality of contact pad layouts. The circuit board contact pattern is usable by all of the plurality of the contact pad layouts of the plurality of semiconductor device packages.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: June 28, 2011
    Assignee: International Rectifier Corporation
    Inventors: Martin Standing, Andrew Neil Sawle
  • Publication number: 20110147904
    Abstract: This invention provides a semiconductor device with increased moisture resistance. The semiconductor device includes: a semiconductor substrate; an optical element provided in a front surface of the semiconductor substrate; a light-transmissive substrate provided above the front surface of the semiconductor substrate; an adhesive layer provided between the front surface of the semiconductor substrate and a front surface of the light-transmissive substrate, and fixing the light-transmissive substrate to the semiconductor substrate; and an insulating film covering a lateral surface of said adhesive layer which is not in contact with the light-transmissive substrate and the semiconductor substrate.
    Type: Application
    Filed: March 1, 2011
    Publication date: June 23, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Hikari SANO
  • Publication number: 20110140245
    Abstract: A semiconductor product comprises a semiconductor substrate having a top surface and a bottom surface including a semiconductor chip. The semiconductor substrate has a top surface and a perimeter. A barrier is formed in the chip within the perimeter. An Ultra Deep Isolation Trench (UDIT) is cut in the top surface of the chip extending down therein between the perimeter and the barrier. A ILD structure with low-k pSICOH dielectric and hard mask layers is formed over the substrate prior to forming the barrier and the UDIT. The ILD structure interconnection structures can be recessed down to the substrate aside from the UDIT.
    Type: Application
    Filed: February 19, 2011
    Publication date: June 16, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: MICHAEL W. LANE, Xiao Hu Liu, Thomas M. Shaw, Mukta G. Farooq, Robert Hannon, Ian D.W. Melville
  • Publication number: 20110121466
    Abstract: An integrated circuit package system includes: a semiconductor chip; a stress-relieving layer on the semiconductor chip; an adhesion layer on the stress relieving layer; and electrical interconnects bonded to the adhesion layer.
    Type: Application
    Filed: February 8, 2011
    Publication date: May 26, 2011
    Inventors: Byung Tai Do, Il Kwon Shim, Antonio B. Dimaano, JR., Heap Hoe Kuan
  • Publication number: 20110115072
    Abstract: There is provided a UV energy curable tape comprising an adhesive material including a UV energy curable oligomer, a UV energy initiator, and a material which emits optical light when the tape composition is substantially fully cured. A semiconductor chip made using the tape is also provided.
    Type: Application
    Filed: January 21, 2011
    Publication date: May 19, 2011
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Timothy C. Krywanczyk, Donald W. Brouillette, Steven A. Martel, Matthew R. Whalen
  • Publication number: 20110115058
    Abstract: An apparatus that comprises a device on a substrate and a crack stop in the substrate. Methods of forming a device are also disclosed. The methods may include providing a device, such as a semiconductor device, on a substrate having a first thickness, reducing the thickness of the substrate to a second thickness, and providing a crack stop in the substrate. Reducing the thickness of the substrate may include mounting the substrate to a carrier substrate for support and then removing the carrier substrate. The crack stop may prevent a crack from reaching the device.
    Type: Application
    Filed: November 17, 2009
    Publication date: May 19, 2011
    Inventors: Van Allen Mieczkowski, Daniel James Namishia
  • Patent number: 7932590
    Abstract: An apparatus and a method for producing three-dimensional integrated circuit packages. In one embodiment, an electronics package with at least two dice are stacked one atop another is disclosed. A top die is of smaller size compared with a bottom die such that after a die attach operation, wire-bond pads of the bottom die will be exposed for a subsequent wire bonding operation. The bottom die contains contact pads on the front side that couple with one or more passive components fabricated on the back side of the top die to complete the circuit. In another exemplary embodiment, a method to form one or more three-dimensional passive components in a stacked-die package is disclosed wherein partial inductor elements are fabricated on the front side of the bottom die and the back side of the top die. The top and bottom elements are coupled together completing the passive component.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: April 26, 2011
    Assignee: Atmel Corporation
    Inventor: Ken M. Lam
  • Publication number: 20110084376
    Abstract: A protective modular package assembly with one or more subassemblies, each having a base element, a sidewall element coupled to the base element, and a semiconductor device disposed within and coupled to the sidewall element and the base element; a protective modular package cover having fastening sections located at opposing ends of the cover, torque elements disposed on the opposing ends and configured to fasten the cover to a core, and subassembly receiving sections disposed between the fastening sections with each subassembly receiving section operable to receive a subassembly and having a cross member along the underside of the cover; and an adhesive layer configured to affix subassemblies to respective subassembly receiving sections. The torque elements are configured to transfer a downward clamping force generated at the fastening elements to a top surface of the subassemblies via the cross member of each of the one or more subassembly receiving sections.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 14, 2011
    Applicants: STMICROELECTRONICS, INC., RJR POLYMERS, INC.
    Inventors: Craig J. Rotay, John Ni, David Lam, David Lee DeWire, John W. Roman, Richard J. Ross
  • Publication number: 20110079908
    Abstract: Disclosed is a stress buffer structure intended to be disposed adjacent a face of a semiconductor substrate. The stress buffer structure includes at least one polymer layer formed on the face of the semiconductor substrate and a plurality of metal plates disposed over the polymer layer, wherein the metal plates is physically and electrically isolated from the bond pads of the semiconductor substrate. The disclosed stress buffer structure provides protection to semiconductor components that are sensitive to stress. Also disclosed are semiconductor packages having the disclosed stress buffer structure and the methods of making the semiconductor packages.
    Type: Application
    Filed: September 28, 2010
    Publication date: April 7, 2011
    Applicant: Unisem Advanced Technologies Sdn. Bhd.
    Inventors: Siong Cho Lau, May Nee Lim, Soi Yoke See Thoh, Wai Nam Leong
  • Patent number: 7919833
    Abstract: There are provided a semiconductor package comprising: a semiconductor substrate including an integrated circuit unit, and a crack-propagation preventing unit at least partially formed around a peripheral of the integrated circuit unit of the semiconductor substrate and filled with a heterogeneous material different from a material of the semiconductor substrate, and a method of fabricating the semiconductor package, comprising: at least partially forming a trench around the peripheral of the integrated circuit unit of the semiconductor substrate, and filling the trench with a heterogeneous material different from that of the semiconductor substrate. In accordance with the present invention, the structural and mechanical strength and durability of the semiconductor package, specifically, the wafer level semiconductor package, are improved and the reliability of the product is significantly improved.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: April 5, 2011
    Assignee: Nepes Corporation
    Inventor: Yun Mook Park
  • Patent number: 7915079
    Abstract: A layered chip package includes a main body, and wiring disposed on at least one side surface of the main body. The main body includes a plurality of layer portions stacked. In a method of manufacturing the layered chip package, a plurality of structures are initially formed. Each structure includes at least one main-body-forming portion that is to be the main body and that has a pre-wiring surface. Next, the plurality of structures are surrounded with a jig and thereby aligned so that their pre-wiring surfaces face upward. The jig has a top surface that is lower in level than the pre-wiring surfaces. Next, a resin layer covering the jig and the structures is formed using a resin film. Next, the resin layer is polished until the pre-wiring surfaces are exposed. Next, the wiring is formed on the pre-wiring surfaces simultaneously. Next, the main-body-forming portions are separated from each other.
    Type: Grant
    Filed: February 4, 2010
    Date of Patent: March 29, 2011
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Atsushi Iijima
  • Publication number: 20110068435
    Abstract: Various die crack deflection structures and methods of making the same are disclosed. In one aspect, a method of manufacturing is provided that includes fabricating a semiconductor chip including an outer edge, a first side and a second side opposite to the first side. A deflection structure is fabricated in the semiconductor chip. The deflection structure includes a sloped profile to deflect a crack propagating in the semiconductor chip toward the first side or the second side of the semiconductor chip.
    Type: Application
    Filed: September 18, 2009
    Publication date: March 24, 2011
    Inventor: Russell Hudson
  • Publication number: 20110042733
    Abstract: A semiconductor device includes a plurality of first electrodes standing over a substrate, and a supporter that supports the plurality of first electrodes in standing. The supporter includes a stack of first and second supporting films. The first supporting film has a compressive stress. The second supporting film has a tensile stress.
    Type: Application
    Filed: August 17, 2010
    Publication date: February 24, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Kazushi Komeda, Takashi Miyajima, Shigeru Sugioka, Takashi Miyamura
  • Publication number: 20110031603
    Abstract: Methods are provided for fabricating a semiconductor device. In accordance with an exemplary embodiment, a method comprises the steps of providing a semiconductor die having a conductive terminal, forming an insulating layer overlying the semiconductor die, and forming a cavity in the insulating layer which exposes the conductive terminal. The method also comprises forming a first stress-relief layer in the cavity, forming an interconnecting structure having a first end electrically coupled to the first stress-relief layer, and having a second end, and electrically and physically coupling the second end of the interconnecting structure to a packaging substrate.
    Type: Application
    Filed: August 10, 2009
    Publication date: February 10, 2011
    Applicant: GLOBALFOUNDRIES INC.
    Inventors: Michael SU, Frank KUCHENMEISTER, Lei FU
  • Publication number: 20110024894
    Abstract: An embodiment provides a chip package including a substrate, a cavity extending downward from an upper surface of the substrate, a metal layer overlying the substrate and conformally covering a sidewall and a bottom portion of the cavity, a chip having an upper surface and located on the metal layer in the cavity, wherein the upper surface is not lower than an upper surface of the metal layer outside of the cavity, and the protective layer covering the chip.
    Type: Application
    Filed: March 24, 2010
    Publication date: February 3, 2011
    Inventors: Baw-Ching PERNG, Chun-Lung Huang
  • Publication number: 20110006405
    Abstract: A semiconductor device includes a substrate, an electronic component and a resin member. The substrate has a first electrode. The electronic component is provided on the substrate, and has a second electrode electrically connected to the first electrode. The resin member alleviates an external stress to the second electrode of the electronic component. The resin member is disposed on the substrate at a region separated from the electronic component.
    Type: Application
    Filed: June 18, 2010
    Publication date: January 13, 2011
    Applicant: FUJITSU LIMITED
    Inventors: Keiichi YAMAMOTO, Takashi FUKUDA
  • Patent number: 7868432
    Abstract: A multi-chip module suitable for use in a battery protection circuit. The multi-chip module includes an integrated circuit chip, a first power transistor, a second power transistor, a first connection structure electrically coupling the integrated circuit chip to the first power transistor, a second connection structure electrically coupling the integrated circuit chip to the second power transistor, and a leadframe structure comprising a first lead, a second lead, a third lead and a fourth lead, wherein the integrated circuit chip, the first power transistor, and the second power transistor are mounted on the leadframe structure. A molding material covers at least part of the integrated circuit chip, the first power transistor, the second power transistor, the first connection structure, and the second connection structure.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: January 11, 2011
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Jeongil Lee, Myoungho Lee, Bigildis Dosdos, Charles Suico, Lee Man Fai Edwin, David Chong Sook Lim, Adriano M. Vilas-Boas
  • Patent number: 7859067
    Abstract: There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
    Type: Grant
    Filed: September 18, 2007
    Date of Patent: December 28, 2010
    Assignee: Robert Bosch GmbH
    Inventors: Aaron Partridge, Markus Lutz, Silvia Kronmueller
  • Publication number: 20100314720
    Abstract: An electronic device has an element formed in the chip region of a substrate, a plurality of interlayer insulating films formed on the substrate, a wire formed in the interlayer insulating films in the chip region, and a plug formed in the interlayer insulating films in the chip region and connecting to the wire. A seal ring extending through the plurality of interlayer insulating films and continuously surrounding the chip region is formed in the peripheral portion of the chip region. A stress absorbing wall extending through the plurality of interlayer insulating films and discretely surrounding the seal ring is formed outside the seal ring.
    Type: Application
    Filed: July 28, 2010
    Publication date: December 16, 2010
    Applicant: PANASONIC CORPORATION
    Inventor: Makoto Tsutsue
  • Patent number: 7846776
    Abstract: Methods for releasably attaching sacrificial support members to microfeature workpieces and microfeature devices formed using such methods are disclosed herein. One embodiment, for example, is directed to a method for processing a microfeature workpiece releasably attached to a first support member. The workpiece includes a microelectronic substrate, a plurality of microelectronic dies on and/or in the substrate, and a sacrificial support member attached to an active side of the substrate. The method can include separating individual dies from the workpiece by cutting through the sacrificial support member and the substrate while the workpiece is attached to the first support member. The method can also include attaching a singulated die and corresponding portion of the sacrificial support member as a unit to a second support member.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: December 7, 2010
    Assignee: Micron Technology, Inc.
    Inventors: William A. Polinsky, Michael B. Ball
  • Patent number: 7847375
    Abstract: This application relates to a semiconductor device, the semiconductor device comprising a metal carrier, an insulating foil partially covering the metal carrier, a first chip attached to the metal carrier over the insulating foil, and a second chip attached to the metal carrier over a region not covered by the insulating foil.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: December 7, 2010
    Assignee: Infineon Technologies AG
    Inventors: Joachim Mahler, Ralf Wombacher, Ralf Otremba
  • Patent number: 7847389
    Abstract: Even when a substrate on which a semiconductor package has been mounted is made curved, stress upon electrical connections is mitigated, thereby eliminating faulty connections and improving connection reliability. A semiconductor chip has electrodes on a second face thereof. Support blocks, capable of bending and flexing, are placed at two locations on a peripheral edge of a first face of the semiconductor chip. An interposer is placed so as to span the support blocks with the support blocks interposed between itself and the semiconductor chip, and has a wiring pattern in a flexible resin film. Two end portions of the interposer are folded back onto the side of the second face of the semiconductor chip, and the wiring pattern thereof is electrically connected to the electrodes of the semiconductor chip.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: December 7, 2010
    Assignee: NEC Corporation
    Inventors: Nobuhiro Mikami, Shinji Watanabe, Junya Sato, Atsumasa Sawada
  • Patent number: 7842552
    Abstract: A structure and a method for forming the same. The structure includes (i) a carrier substrate which includes substrate pads, (ii) a chip physically attached to the carrier substrate, and (iii) a first frame physically attached to the carrier substrate. A CTE (coefficient of thermal expansion) of the first frame is substantially lower than a CTE of the carrier substrate.
    Type: Grant
    Filed: October 12, 2007
    Date of Patent: November 30, 2010
    Assignee: International Business Machines Corporation
    Inventors: John Peter Karidis, Mark Delorman Schultz
  • Patent number: 7843033
    Abstract: An integrated circuit pad structure includes a ground strip (206) positioned below a pad (101). In one example a conductive element (102) is coupled to the pad (101), and at least two tiled layers, positioned below the first conductive element (102) and positioned above the ground strip (206) are included. A conductor (203), may run beneath the ground strip (206). In a second example, a pad (101) is seated on a ground shield cage having a bottom conductive ground element (302) including several ground strips where at least one ground strip (116) is along a signal routing path. The ground shield cage further includes a set of stacked conductive ground elements, stacked to form sidewalls (209, 210) of the cage. The top conductive ground element (301) of the stacked elements has an inner perimeter and an outer perimeter, such that the inner perimeter surrounds the pad (101) and the top conductive ground element (301) is in the plane of the conductive element (102) coupled to the pad (101).
    Type: Grant
    Filed: February 8, 2008
    Date of Patent: November 30, 2010
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jyoti P. Mondal, David B. Harr
  • Patent number: 7838977
    Abstract: This invention discloses an electronic package for containing a vertical semiconductor chip that includes a laminated board having a via connector and conductive traces distributed on multiple layers of the laminated board connected to the via connector. The semiconductor chip having at least one electrode connected to the conductive traces for electrically connected to the conductive traces at a different layer on the laminated board and the via connector dissipating heat generated from the vertical semiconductor. A ball grid array (BGA) connected to the via connector functioning as contact at a bottom surface of the package for mounting on electrical terminals disposed on a printed circuit board (PCB) wherein the laminated board having a thermal expansion coefficient in substantially a same range the PCB whereby the BGA having a reliable electrical contact with the electrical terminals.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: November 23, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Ming Sun, Yueh Se Ho
  • Patent number: 7833834
    Abstract: A method for producing a nitride semiconductor laser light source is provided. The nitride semiconductor laser light source has a nitride semiconductor laser chip, a stem for mounting the laser chip thereon, and a cap for covering the laser chip. The laser chip is encapsulated in a sealed container composed of the stem and the cap. The method for producing this nitride semiconductor laser light source has a cleaning step of cleaning the surface of the laser chip, the stem, or the cap. In the cleaning step, the laser chip, the stem, or the cap is exposed with ozone or an excited oxygen atom, or baked by heat. The method also has, after the cleaning step, a capping step of encapsulating the laser chip in the sealed container composed of the stem and the cap. During the capping step, the cleaned surface of the laser chip, the stem, or the cap is kept clean.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: November 16, 2010
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Daisuke Hanaoka, Masaya Ishida, Atsushi Ogawa, Yoshihiko Tani, Takuro Ishikura
  • Publication number: 20100283131
    Abstract: A semiconductor wafer has a semiconductor substrate and films on the substrate. The substrate and/or the films have at least one etch line creating a discontinuous surface that reduces residual stress in the wafer. Reducing residual stress in the semiconductor wafer reduces warpage of the wafer when the wafer is thin. Additionally, isolation plugs may be used to fill a portion of the etch lines to prevent shorting of the layers.
    Type: Application
    Filed: May 7, 2009
    Publication date: November 11, 2010
    Applicant: QUALCOMM INCORPORATED
    Inventor: Arvind Chandrasekaran
  • Patent number: 7829989
    Abstract: An electronic package for containing at least a top packaging module vertically stacked on a bottom packaging module. Each of the packaging modules includes a semiconductor chip packaged and connected by via connectors and connectors disposed on a laminated board fabricated with a standard printed-circuit board process wherein the top and bottom packaging module further configured as a surface mountable modules for conveniently stacking and mounting to prearranged electrical contacts without using a leadframe. At least one of the top and bottom packaging modules is a multi-chip module (MCM) containing at least two semiconductor chips. At least one of the top and bottom packaging modules includes a ball grid array (BGA) for surface mounting onto the prearranged electrical contacts. At least one of the top and bottom packaging modules includes a plurality of solder bumps on one of the semiconductor chips for surface mounting onto the prearranged electrical contacts.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: November 9, 2010
    Assignee: Alpha & Omega Semiconductor, Ltd.
    Inventors: Ming Sun, Yueh Se Ho
  • Publication number: 20100276784
    Abstract: An electronic module including a substrate having at least one structure that reduces stress flow through the substrate, wherein the structure comprises at least one trench in a surface of the substrate.
    Type: Application
    Filed: May 20, 2010
    Publication date: November 4, 2010
    Applicant: International Business Machines Corporation
    Inventors: David Questad, Vijayeshwar D. Kharma, Jennifer V. Muncy, Arun Sharma, Sri M. Sri-Jayantha, Lorenzo Valdevit
  • Patent number: 7808004
    Abstract: A light emitting diode package structure having a heat-resistant cover and a method of manufacturing the same include a base, a light emitting diode chip, a plastic shell, and a packaging material. The plastic shell is in the shape of a bowl and has an injection hole thereon. After the light emitting diode chip is installed onto the base, the plastic shell is covered onto the base to fully and air-tightly seal the light emitting diode chip, and the packaging material is injected into the plastic shell through the injection hole until the plastic shell is filled up with the packaging material to form a packaging cover, and finally the plastic shell is removed to complete the LED package structure.
    Type: Grant
    Filed: March 17, 2006
    Date of Patent: October 5, 2010
    Assignee: Edison Opto Corporation
    Inventors: Tsung-Ting Sun, Hung-Ta Laio, Hung-Hsun Chou, Tz-Shiuan Yan, Kuo-Shih Hsu
  • Publication number: 20100237438
    Abstract: A semiconductor device has a circuit element region formed on a semiconductor substrate, and a protective pattern formed so as to surround the circuit element region.
    Type: Application
    Filed: February 16, 2010
    Publication date: September 23, 2010
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Takafumi IKEDA, Takahito Nakazawa, Hideaki Maekawa, Yuuichi Tatsumi, Toshifumi Minami
  • Publication number: 20100230788
    Abstract: A chip structure includes a substrate and a stress buffer layer. The substrate has a first surface and a second surface opposite to the first surface. The stress buffer layer is disposed on the periphery of the substrate and located in at least one of the first surface and the second surface of the substrate.
    Type: Application
    Filed: February 10, 2010
    Publication date: September 16, 2010
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventor: SHENG-YANG PENG
  • Patent number: 7795722
    Abstract: A substrate structure is disclosed. The substrate structure includes a core substrate, an interconnection portion and a solder mask. The core substrate includes a top surface and a bottom surface opposite the top surface. A circuit pattern is disposed on the top surface. The interconnection portion is disposed on the top surface; herein the interconnection portion includes a surface dielectric layer and a surface circuit layer disposed on the surface dielectric layer. The surface circuit layer is electrically connected to the circuit pattern. The solder mask is disposed on the interconnection portion; herein the solder mask includes a hole to identify the substrate structure. Besides, a method for manufacturing the substrate structure is disclosed.
    Type: Grant
    Filed: December 28, 2006
    Date of Patent: September 14, 2010
    Assignee: Advanced Semiconductor Engineering Inc.
    Inventors: Shu-Luan Chan, Chi-Chih Huang, Shuo-Hsun Chang
  • Patent number: 7795743
    Abstract: A wiring substrate having variously sized ball pads, a semiconductor package including the wiring substrate, and a stack package using the semiconductor package, to improve board level reliability (BLR) of a semiconductor package or stack package mounted on a mother board are shown. Outer ball pads are formed to have relatively greater surface areas at the corners of the semiconductor package as compared to those at other areas and are formed to have the greatest surface area within a designable range. Additionally, occurrence of cracks may be inhibited at junctions of other solder balls by forming dummy solder pads at the outermost corners among the outer ball pads formed proximate to the corners of the wiring substrate. Stress arising during a board level reliability test is absorbed without product failure at junctions between the dummy solder pads and dummy solder balls.
    Type: Grant
    Filed: October 5, 2006
    Date of Patent: September 14, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Hun Kim, Hak-Kyoon Byun, Sung-Yong Park, Heung-Kyu Kwon
  • Publication number: 20100213590
    Abstract: A barrier layer can be attached in a semiconductor package to one or more sensitive devices. The barrier layer can be used to obstruct tampering by a malicious agent attempting to access sensitive information on the sensitive device. The barrier layer can cause the sensitive device to become inoperable if physically tampered. Additional other aspects of the protective packaging provide protection against x-ray and thermal probing as well as chemical and electrical tampering attempts.
    Type: Application
    Filed: February 25, 2010
    Publication date: August 26, 2010
    Applicant: CONEXANT SYSTEMS, INC.
    Inventors: Robert W. Warren, Hyun Jung Lee, Nic Rossi
  • Patent number: 7777328
    Abstract: A substrate includes a inorganic material base board has a recess and at least one penetration hole provided around the recess, and a semiconductor device accommodated in the recess and including at least one electrode pad provided on a surface of the semiconductor device. A resin filling is provided in the at least one penetration hole and has at least one through-hole for electrically connecting a top surface and a back surface of the resin filling. An insulating layer covers the surfaces of the semiconductor device, the resin filling and the inorganic material base board and has a first opening corresponding to the at least one through-hole and a second opening corresponding to the at least one electrode pad. A conductive wiring is formed on a surface of the insulating layer for electrically connecting the at least one through-hole and the at least one electrode pad.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: August 17, 2010
    Assignee: Ibiden Co., Ltd.
    Inventor: Ryo Enomoto
  • Publication number: 20100200958
    Abstract: A microelectronic element, e.g., a semiconductor chip having a silicon-on-insulator layer (“SOI layer”) separated from a bulk monocrystalline silicon layer by a buried oxide (BOX) layer in which a crack stop extends in first lateral directions at least generally parallel to the edges of the chip to define a ring-like barrier separating an active portion of the chip inside the barrier with a peripheral portion of the chip. The crack stop can include a first crack stop ring contacting a silicon portion of the chip above the BOX layer; the first crack stop ring may extend continuously in the first lateral directions to surround the active portion of the chip. A guard ring (“GR”) including a GR contact ring can extend downwardly through the SOI layer and the BOX layer to conductively contact the bulk monocrystalline silicon region, the GR contact ring extending at least generally parallel to the first crack stop ring to surround the active portion of the chip.
    Type: Application
    Filed: February 12, 2010
    Publication date: August 12, 2010
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Matthew S. Angyal, Mahender Kumar, Effendi Leobandung, Jay W. Strane
  • Patent number: 7772686
    Abstract: A portable memory card formed from a multi-die assembly, and methods of fabricating same, are disclosed. One such multi-die assembly includes an LGA SiP semiconductor package and a leadframe-based SMT package both affixed to a PCB. The multi-die assembly thus formed may be encased within a standard lid to form a completed portable memory card, such as a standard SD™ card. Test pads on the LGA SiP package, used for testing operation of the package after it is fabricated, may also be used for physically and electrically coupling the LGA SiP package to the PCB.
    Type: Grant
    Filed: June 28, 2007
    Date of Patent: August 10, 2010
    Assignee: SanDisk Corporation
    Inventors: Ning Ye, Robert C. Miller, Cheemen Yu, Hem Takiar, Andre McKenzie
  • Publication number: 20100193945
    Abstract: The present application relates to a reinforcing structure (1, 2) for reinforcing a stack of layers (100) in a semiconductor component, wherein at least one reinforcing element (110, 118) having at least one integrated anchor-like part (110a, 110b), is provided. The basic idea is to reinforce bond pad structures by providing a better mechanical connection between the layers below an advanced underbump metallization (BUMA, UBM) by providing reinforcing elements under the UBM and/or BUMA layer.
    Type: Application
    Filed: July 17, 2008
    Publication date: August 5, 2010
    Applicant: NXP B.V.
    Inventors: Hendrik Pieter Hochstenbach, Willem Dirk Van Driel
  • Publication number: 20100193918
    Abstract: A system, method, and apparatus for suppressing cracks in the wafer dicing process. A wafer includes a plurality of die attached to a frame and mounting tape, with the die separated by a plurality of scribe lanes. An existing die seal generally protects the boundary of the die but can still fail to fully protect the die from excessive cracks induced by dicing damage, particularly when dicing through brittle, low-k dielectrics. The system, method, and apparatus includes embedding a crack arrest structure (CAS) between adjacent scribe lanes. Upon a mechanical saw dicing the wafer, the CAS creates a moisture diffusion block, and can absorb or significantly diminish the energy of cracks propagating towards the individual die seals. Furthermore, the system, method, and apparatus can be implemented without the need to increase the width of the scribe lanes.
    Type: Application
    Filed: February 4, 2009
    Publication date: August 5, 2010
    Inventors: Jeffrey A. West, Patricia Diane Vincent, Robert A. Tuerck
  • Patent number: 7768005
    Abstract: A physically secure processing assembly is provided that includes dies mounted on a substrate so as to sandwich the electrical contacts of the dies between the dies and the substrate. The substrate is provided with substrate contacts and conductive pathways that are electrically coupled to the die contacts and extend through the substrate. Electrical conductors surround the conductive pathways. A monitoring circuit detects a break in continuity of one or more of the electrical conductors, and preferably renders the assembly inoperable. Preferably, an epoxy encapsulation is provided to prevent probing tools from being able to reach the die or substrate contacts.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 3, 2010
    Assignee: International Business Machines Corporation
    Inventors: Vincenzo Condorelli, Claudius Feger, Kevin C. Gotze, Nihad Hadzic, John U. Knickerbocker, Edmund J. Sprogis
  • Patent number: 7768119
    Abstract: A carrier structure embedded with semiconductor chips is disclosed, which comprises a core board and a plurality of semiconductor chips mounted therein. The core board comprises two metal plates between which an adhesive material is disposed. An etching stop layer is deposited on the both surfaces of the core board. Pluralities of cavities are formed to penetrate through the core board. The semiconductor chips each have an active surface on which a plurality of electrode pads are disposed, and those are embedded in the cavities and mounted in the core board. An etching groove formed on the core board between the neighboring semiconductor chips is filled with the adhesive material. The present invention avoids the production of metal burrs when the carrier structure is cut.
    Type: Grant
    Filed: December 10, 2007
    Date of Patent: August 3, 2010
    Assignee: Phoenix Precision Technology Corporation
    Inventor: Kan-Jung Chia
  • Publication number: 20100187659
    Abstract: An inventive semiconductor device includes a semiconductor chip having a passivation film, and a sealing resin layer provided over the passivation film for sealing a front side of the semiconductor chip. The sealing resin layer extends to a side surface of the passivation film to cover the side surface.
    Type: Application
    Filed: March 26, 2010
    Publication date: July 29, 2010
    Applicant: ROHM CO., LTD.
    Inventors: Osamu Miyata, Masaki Kasai, Shingo Higuchi
  • Publication number: 20100181652
    Abstract: Systems and methods for reducing stiction between elements of a microelectromechanical systems (MEMS) device during anodic bonding. The MEMS device includes a substrate cover with an optional conductor on its interior surface and the cover is anchored to a first portion of a sensing element. The MEMS device further includes a second portion of the sensing element separated from the substrate cover with a space and an antistiction element disposed between the second portion and cover. The antistiction element can be formed of a material type with high electrostatic resistance, to prevent stiction between MEMS device elements during anodic bonding.
    Type: Application
    Filed: January 16, 2009
    Publication date: July 22, 2010
    Applicant: Honeywell International Inc.
    Inventors: Chris Milne, Jeff A. Ridley, Galen Magendanz, Marcos Daniel Ruiz
  • Patent number: 7745944
    Abstract: Microelectronic devices having intermediate contacts, and associated methods of packaging microelectronic devices with intermediate contacts, are disclosed herein. A packaged microelectronic device configured in accordance with one embodiment of the invention includes a microelectronic die attached to an interconnecting substrate. The microelectronic die includes an integrated circuit electrically coupled to a plurality of terminals. Each of the terminals is electrically coupled to a corresponding first contact on the die with an individual wire-bond. Each of the first contacts on the die is electrically coupled to a corresponding second contact on the interconnecting substrate by a conductive coupler such as a solder ball.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: June 29, 2010
    Assignee: Micron Technology, Inc.
    Inventor: Setho Sing Fee
  • Patent number: 7745259
    Abstract: A layered chip package includes: a main body including a plurality of layer portions; wiring disposed on a side surface of the main body; a plurality of first terminals disposed on a top surface of the main body; and a plurality of second terminals disposed on a bottom surface of the main body. Each layer portion includes a semiconductor chip, an insulating portion covering at least one side surface of the semiconductor chip, and a plurality of electrodes connected to the semiconductor chip. Each electrode has an end face surrounded by the insulating portion and located at the side surface of the main body on which the wiring is disposed. The wiring is connected to the end faces of the plurality of electrodes of the plurality of layer portions, and to the plurality of first and second terminals.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 29, 2010
    Assignees: Headway Technologies, Inc., TDK Corporation
    Inventors: Yoshitaka Sasaki, Hiroyuki Ito, Tatsuya Harada, Nobuyuki Okuzawa, Satoru Sueki
  • Publication number: 20100155582
    Abstract: A solid-state imaging device includes: a photodiode formed to be segmented with respect to each pixel in a pixel area in which plural pixels are integrated on a light receiving surface of a semiconductor substrate; an insulator film formed on the semiconductor substrate to cover the photodiode; a recessed part formed with respect to each of the pixels in the insulator film in an upper part of the photodiode; a first light transmission layer of a siloxane resin formed to fill the recessed part and configure an optical waveguide in the pixel area; a second light transmission layer formed to configure an on-chip lens with respect to each of the pixels in the pixel area; and a guard ring formed to surround an outer circumference of the pixel area to partition an inner area containing the pixel area and an outer dicing area.
    Type: Application
    Filed: December 9, 2009
    Publication date: June 24, 2010
    Applicant: SONY CORPORATION
    Inventors: Hideki HIRANO, Akiko OGINO, Kenju NISHIKIDO, Iwao SUGIURA, Haruhiko AJISAWA, Ikuo YOSHIHARA
  • Publication number: 20100155935
    Abstract: Methods for coating a protective material on a semiconductor substrate to protect a back surface thereof from defects are provided, by depositing a diamond-like coating (DLC) material thereon at a low temperature, e.g. between about 150° C. to about 350° C.
    Type: Application
    Filed: December 23, 2008
    Publication date: June 24, 2010
    Inventors: Ed Prack, Leonel Arana, Sandeep Razdan
  • Patent number: 7741715
    Abstract: A design for a crack stop and moisture barrier for a semiconductor device includes a plurality of discrete conductive features formed at the edge of an integrated circuit proximate a scribe line. The discrete conductive features may comprise a plurality of staggered lines, a plurality of horseshoe-shaped lines, or a combination of both.
    Type: Grant
    Filed: March 14, 2005
    Date of Patent: June 22, 2010
    Assignee: Infineon Technologies AG
    Inventors: Sun-Oo Kim, O Seo Park
  • Publication number: 20100148312
    Abstract: Reinforced smart cards with and methods of making an integrated circuit chip for smart are disclosed. In some embodiments, a method includes generally providing an integrated circuit wafer including a plurality of integrated circuits, providing a stiffener, attaching the stiffener top surface to the wafer bottom surface, and physically separating integrated circuits. The wafer can be substantially disc-shaped with a wafer perimeter. Integrated circuits can be disposed on the wafer's top surface, and the wafer's bottom surface can span a wafer bottom area. The stiffener can have a top surface spanning an area corresponding to a circuitry portion of the wafer's top surface (where integrated circuits can be disposed). The stiffener's can be applied to the wafer's bottom surface to form a wafer/stiffener assembly.
    Type: Application
    Filed: December 16, 2009
    Publication date: June 17, 2010
    Applicant: IVI SMART TECHNOLOGIES, INC.
    Inventor: MATTHEW JUNG