Stacked Arrangements Of Devices (epo) Patents (Class 257/E25.006)
  • Patent number: 10707169
    Abstract: Ceramic interposers in a disaggregated-die semiconductor package allow for useful signal integrity and interconnecting components. Low-loss ceramics are used to tune ceramic interposers for a die assembly that may have components from different process-technology nodes.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: July 7, 2020
    Assignee: Intel Corporation
    Inventor: Digvijay Ashokkumar Raorane
  • Patent number: 9935082
    Abstract: Stacked semiconductor dies are provided with selective capillary under fill to avoid wafer warpage during curing. In one embodiment, a method of manufacturing a semiconductor device includes forming at least three stacks of semiconductor dies over a substrate, the stacks spaced apart from one another by gaps. A first sealing material such as a capillary under fill material is deposited into a first subset of the gaps. A second sealing material such as a mold resin is deposited into a second subset of the gaps. The first and second sealing materials are cured, and the die stacks are then singulated.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: April 3, 2018
    Assignee: Micron Technology, Inc.
    Inventor: Mitsuhisa Watanabe
  • Patent number: 9853012
    Abstract: Provided are semiconductor packages having through electrodes and methods of fabricating the same. The method may include may include forming a wafer-level package including first semiconductor chips stacked on a second semiconductor chip, forming a chip-level package including fourth semiconductor chips stacked on a third semiconductor chip stacking a plurality of the chip-level packages on a back surface of the second semiconductor substrate of the wafer-level package, polishing the first mold layer of the wafer-level package and the first semiconductor chips to expose a first through electrodes of the first semiconductor chip, and forming outer electrodes on the polished first semiconductor chips to be connected to the first through electrodes, respectively.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: December 26, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyunsoo Chung, Jongyeon Kim, In-Young Lee, Tae-Je Cho
  • Patent number: 9041176
    Abstract: Some implementations provide a structure that includes a first package substrate, a first component, a second package substrate, a second component, and a third component. The first package substrate has a first area. The first component has a first height and is positioned on the first area. The second package substrate is coupled to the first package substrate. The second package substrate has second and third areas. The second area of the second package substrate vertically overlaps with the first area of the first package substrate The third area of the second package substrate is non-overlapping with the first area of the first package substrate. The second component has a second height and is positioned on the second area. The third component is positioned on the third area. The third component has a third height that is greater than each of the first and second heights.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: May 26, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Yue Li, Charles D. Paynter, Ruey Kae Zang
  • Patent number: 9024423
    Abstract: A semiconductor chip in which a power MOSFET is placed above a semiconductor chip in which another power MOSFET is formed and they are sealed with an encapsulation resin. The semiconductor chips are so arranged that the upper semiconductor chip does not overlap with a gate pad electrode of the lower semiconductor chip in a plan view. The semiconductor chips are identical in size and the respective source pad electrodes and gate pad electrodes of the lower semiconductor chip and the upper semiconductor chip are identical in shape and arrangement. The lower semiconductor chip and the upper semiconductor chip are arranged with their respective centers displaced from each other. Accordingly, the size of a semiconductor device can be reduced.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 5, 2015
    Assignee: Renesas Electronics Corporation
    Inventors: Akira Muto, Yuichi Machida, Nobuya Koike, Atsushi Fujiki, Masaki Tamura
  • Patent number: 9013031
    Abstract: A semiconductor package includes a lower package including a lower semiconductor chip on a lower package substrate, an upper package on the lower package, and a heat interface material between the lower package and the upper package. The upper package includes an upper semiconductor chip on an upper package substrate including a center portion adjacent to the lower semiconductor chip and an edge portion. The heat interface material is in contact with a top surface of the lower semiconductor chip and the upper package substrate. The upper package substrate includes a heat diffusion via penetrating the center portion and an interconnection via penetrating the edge portion. The interconnection via is spaced apart from the heat diffusion via.
    Type: Grant
    Filed: February 20, 2014
    Date of Patent: April 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yunhyeok Im, Jichul Kim, Kyol Park, Seongho Shin
  • Patent number: 9006032
    Abstract: A method of forming a semiconductor device package includes removing a portion of a first connector and a molding compound surrounding the first connector to form an opening, wherein the first connector is part of a first package, and removing the portion of the first connector comprises forming a surface on the first connector which is at an angle with respect to a top surface of the molding compound. The method further includes placing a second connector in the opening, wherein the second connector is part of a second package having a semiconductor die. The method further includes bonding the second connector to a remaining portion of the first connector.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Chien-Hsun Lee, Chun-Chih Chuang
  • Patent number: 9006907
    Abstract: An integrated circuit device is disclosed. The integrated circuit device includes a semiconductor die fabricated by a front-end semiconductor process and having oppositely disposed planar surfaces. The semiconductor die is formed with semiconductor devices, power supply circuitry coupled to the semiconductor devices, decoupling capacitance circuitry, and through-vias. The through-vias include a first group of vias coupled to the power supply circuitry and a second group of vias coupled to the decoupling capacitance circuitry. Conductors are formed in a first metal layer disposed on the semiconductor die in accordance with a back-end semiconductor process. The conductors are configured to couple to the first and second groups of through-vias to establish conductive paths from the power supply circuitry to the decoupling capacitance circuitry.
    Type: Grant
    Filed: May 28, 2013
    Date of Patent: April 14, 2015
    Assignee: Rambus Inc.
    Inventors: David Secker, Ling Yang, Chanh Tran, Ying Ji
  • Patent number: 9000575
    Abstract: A first substrate with a penetration electrode formed thereon is stacked on a second substrate with a protruding electrode formed thereon. The penetration electrode has a recessed portion. The substrates are stacked with the protruding electrode entered in the recessed portion. A distal width of the protruding electrode is smaller than an opening width of the recessed portion.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: April 7, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Hideo Imai
  • Patent number: 8999754
    Abstract: An integrated circuit package system includes a base substrate, attaching a base die over the base substrate, attaching an integrated interposer having interposer circuit devices, over the base die, and forming a package system encapsulant having an encapsulant cavity over the integrated interposer.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: April 7, 2015
    Assignee: STATS ChipPAC Ltd.
    Inventors: Seng Guan Chow, Il Kwon Shim, Byung Joon Han
  • Patent number: 8981581
    Abstract: A package stack structure may an upper package include an upper package substrate having a first edge and a second edge opposite to the first edge. The upper package substrate has a first region arranged near the first edge and a second region arranged near the second edge. A first upper semiconductor device is mounted on the upper package substrate. The package stack structure may also include a lower package having a lower package substrate and a lower semiconductor device. The lower package is connected to the upper package through a plurality of inter-package connectors. The plurality of the inter-package connectors may include first inter-package connectors configured to transmit data signals; second inter-package connectors configured to transmit address/control signals; third inter-package connectors configured to provide a supply voltage for an address/control circuit; and fourth inter-package connectors configured to provide a supply voltage for a data circuit.
    Type: Grant
    Filed: February 25, 2014
    Date of Patent: March 17, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Kyu Kwon, Seong-Ho Shin, Yun-Seok Choi, Yong-Hoon Kim
  • Patent number: 8975754
    Abstract: A chip package is described. This chip package includes a substrate having a side at an angle relative to the top and bottom surfaces of the substrate that is between that of a direction parallel to the top and bottom surfaces and that of a direction perpendicular to the top and bottom surfaces (i.e., between 0° and 90°). This side may be configured to couple to a stack of semiconductor dies in which the semiconductor dies are offset from each other in a direction parallel to the top and bottom surfaces so that one side of the stack defines a stepped terrace. For example, the side may include electrical pads. These electrical pads may be coupled to electrical pads on the top surface by through-substrate vias (TSVs) in the substrate. Moreover, the electrical pads on the top surface may be configured to couple to an integrated circuit.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: March 10, 2015
    Assignee: Oracle International Corporation
    Inventors: Hiren D. Thacker, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 8970052
    Abstract: In a semiconductor device of the present invention, a second semiconductor chip is stacked on a first semiconductor chip having a plurality of bonding pads in its central region, with a bonding layer interposed therebetween. A plurality of wires respectively connected to the plurality of bonding pads of the first semiconductor chip are led out to the outside over a peripheral edge of the first semiconductor chip by passing through a space between the first and second semiconductor chips. A retaining member for retaining at least a subset of the plurality of wires is provided in a region on the first semiconductor chip including a middle point between the bonding pads and the peripheral edge of the first semiconductor chip by using a material different from the bonding layer so that the subset of the wires is positioned generally at a center of the spacing between the first semiconductor chip and the second semiconductor chip.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: March 3, 2015
    Assignee: PS4 Luxco S.a.r.l.
    Inventors: Yu Hasegawa, Mitsuaki Katagiri, Satoshi Isa, Ken Iwakura, Dai Sasaki
  • Patent number: 8963308
    Abstract: Semiconductor packages are provided. The semiconductor packages may include an upper package including a plurality of upper semiconductor devices connected to an upper package substrate. The semiconductor packages may also include a lower package including a lower semiconductor device connected to a lower package substrate. The upper and lower packages may be connected to each other.
    Type: Grant
    Filed: February 24, 2014
    Date of Patent: February 24, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Kyu Kwon, Young-Bae Kim, Yun-Hee Lee
  • Patent number: 8952549
    Abstract: A semiconductor package comprises a board including a board pad, a plurality of semiconductor chips mounted on the board, the semiconductor chips including chip pads. Bumps are disposed on the chip pads, respectively, and a wire is disposed between the chip pads and the bumps. The wire electrically connects the chip pads of the plurality of semiconductor chips and the board pad to each other.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: February 10, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Doojin Kim, Youngsik Kim, Kitaik Oh, Sungbok Hong
  • Patent number: 8945998
    Abstract: Various structures of a programmable semiconductor interposer for electronic packaging are described. An array of semiconductor devices having various values is formed in the interposer. A user can program the interposer and form a “virtual” device having a desired value by selectively connecting various one of the array of devices to contact pads formed on the surface of the interposer. An inventive electronic package structure includes a standard interposer having an array of unconnected devices of various values and a device selection unit, which selectively connects various one of the array of devices in the standard interposer to an integrated circuit die encapsulated in the electronic package. Methods of forming the programmable semiconductor interposer and the electronic package are also illustrated.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chao-Shun Hsu, Clinton Chao, Mark Shane Peng
  • Patent number: 8941230
    Abstract: A metal plate covers an opening on the upper surface of a core substrate and exposes an outer edge of the upper surface of the core substrate. A conductive layer covers the lower surface of the core substrate. A semiconductor chip bonded to a first surface of the metal plate is exposed through the opening. A first insulating layer covers the upper and side surface of the metal plate and the outer edge of the upper surface of the core substrate. A second insulating layer fills the openings of the metal plate and the conductive layer and covers the outer edge of the lower surface of the core substrate, the conductive layer, and the semiconductor chip. The metal plate is thinner than the semiconductor chip. Total thickness of the conductive layer and the core substrate is equal to or larger than the thickness of the semiconductor chip.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: January 27, 2015
    Assignee: Shinko Electric Industries Co., Ltd.
    Inventors: Masahiro Kyozuka, Akihiko Tateiwa, Yuji Kunimoto, Jun Furuichi
  • Patent number: 8941245
    Abstract: A semiconductor package comprises a substrate having a first opening formed therethrough, a first semiconductor chip stacked on the substrate in a flip chip manner and having a second opening formed therethrough, a second semiconductor chip stacked on the first semiconductor chip in a flip chip manner and having a third opening formed therethrough, and a molding material covering the first semiconductor chip and the second semiconductor chip and filling up a space between the substrate and the first semiconductor chip, a space between the first semiconductor chip and the second semiconductor chip, and filling each of the first opening, the second opening, and the third opening.
    Type: Grant
    Filed: June 26, 2012
    Date of Patent: January 27, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chang-Cheol Lee, Hyun-Jun Kim, In-Young Lee, Ki-Kwon Jeong
  • Patent number: 8928132
    Abstract: A semiconductor package having a reduced size by including an interposer having through substrate vias (TSVs), the semiconductor package may comprise a lower semiconductor package which includes a lower base substrate, an interposer with TSVs on the lower base substrate, and a lower semiconductor chip on the interposer and electrically connected to the interposer. The semiconductor package may include an upper semiconductor package on the lower semiconductor package including an upper semiconductor chip and package connecting members on the interposer and electrically connect the upper semiconductor package to the interposer. An exterior molding member may be provided.
    Type: Grant
    Filed: July 22, 2011
    Date of Patent: January 6, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: YunSeok Choi, ChungSun Lee
  • Patent number: 8896111
    Abstract: In one embodiment, a semiconductor device includes a first semiconductor chip disposed on a circuit board, an adhesive layer fixing the first semiconductor chip to the circuit board, and a second semiconductor chip having an outer shape smaller than that of the first semiconductor chip. At least a part of the second semiconductor chip is embedded in the adhesive layer. The adhesive layer has a thickness in a range of 95 to 150 ?m. The adhesive layer includes a cured product of a thermosetting resin whose thermal time viscosity at a time that the second semiconductor chip is embedded is in a range of 500 to 5000 Pa·s.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: November 25, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Tanimoto, Takashi Imoto, Yoriyasu Ando, Masashi Noda, Naoki Iwamasa, Koichi Miyashita, Masatoshi Kawato, Masaji Iwamoto, Jun Tanaka, Yusuke Dohmae
  • Patent number: 8896112
    Abstract: A multi-chip module (MCM) is described. This MCM includes at least two substrates that are mechanically coupled and aligned by positive and negative features on facing surfaces of the substrates. These positive and negative features may mate and self-lock with each other. The positive features may be self-populated into the negative features on at least one of the substrates using a hydrophilic layer in the negative feature. This hydrophilic layer may be used in conjunction with a hydrophobic layer surrounding the negative features on a top surface of at least one of the substrates.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: November 25, 2014
    Assignee: Oracle International Corporation
    Inventors: Hiren D. Thacker, Ashok V. Krishnamoorthy, John E. Cunningham, Chaoqi Zhang
  • Patent number: 8890334
    Abstract: There is reduced the difference in inductance between bonding wires to be coupled to two semiconductor chips stacked one over another. A semiconductor device includes external terminals, lower and upper semiconductor chips, and first and second bonding wires. The lower semiconductor chip has first bonding pads, and the upper semiconductor chip has second bonding pads. The first bonding wire couples the first bonding pad of the lower semiconductor chip and the external terminal, and the second bonding wire couples the second bonding pad of the upper semiconductor chip and the external terminal. The diameter of the second bonding wire is larger than the diameter of the first bonding wire.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: November 18, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Toru Narita, Teruhito Takeuchi, Joichi Saito
  • Patent number: 8878353
    Abstract: A structure may include bond elements having bases joined to conductive elements at a first portion of a first surface and end surfaces remote from the substrate. A dielectric encapsulation element may overlie and extend from the first portion and fill spaces between the bond elements to separate the bond elements from one another. The encapsulation element has a third surface facing away from the first surface. Unencapsulated portions of the bond elements are defined by at least portions of the end surfaces uncovered by the encapsulation element at the third surface. The encapsulation element at least partially defines a second portion of the first surface that is other than the first portion and has an area sized to accommodate an entire area of a microelectronic element. Some conductive elements are at the second portion and configured for connection with such microelectronic element.
    Type: Grant
    Filed: December 20, 2012
    Date of Patent: November 4, 2014
    Assignee: Invensas Corporation
    Inventors: Belgacem Haba, Ilyas Mohammed, Terrence Caskey, Reynaldo Co, Ellis Chau
  • Patent number: 8872317
    Abstract: A stacked package for an electronic device and a method of manufacturing the stacked package include a first semiconductor package being formed with a first conductive pad and a second conductive pad. A second semiconductor package is formed with a third conductive pad and a fourth conductive pad and is disposed over the first semiconductor package. A first conductive connecting member electrically connects the first conductive pad and the third conductive pad. A second conductive connection member electrically connects the second conductive pad and the fourth conductive pad.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: October 28, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Young-Seok Hong
  • Patent number: 8872321
    Abstract: One implementation of present disclosure includes a semiconductor package stack. The semiconductor package stack includes an upper package coupled to a lower package by a plurality of solder balls. The semiconductor package stack also includes a lower active die situated in a lower package substrate in the lower package. The lower active die is thermally coupled to a heat spreader in the upper package by a thermal interface material. An upper active die is situated in an upper package substrate in the upper package, the upper package substrate being situated over the heat spreader. The thermal interface material can include an array of aligned carbon nanotubes within a filler material. The heat spreader can include at least one layer of metal or metal alloy. Furthermore, the heat spreader can be connected to ground or a DC voltage source. The plurality of solder balls can be situated under the heat spreader.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: October 28, 2014
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Rezaur Rahman Khan, Kevin Kunzhong Hu, Sampath K. V. Karikalan, Pieter Vorenkamp, Xiangdong Chen
  • Patent number: 8847378
    Abstract: A semiconductor package includes a first semiconductor package, a second semiconductor package, and a package-connecting member. The first semiconductor package includes a first substrate, a chip stacking portion disposed on the first substrate and including a plurality of first semiconductor chips, and a first sealant for surrounding the chip stacking portion on the first substrate. The second semiconductor package includes a second substrate, at least one second semiconductor chip disposed on the second substrate, and a second sealant for surrounding the second semiconductor chip on the second substrate. The package-connecting member electrically connects the first semiconductor package and the second semiconductor package.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 30, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yun-Seok Choi, Tae-je Cho
  • Patent number: 8836102
    Abstract: Provided is a multilayered semiconductor device, including: a first semiconductor package including a first semiconductor element and a first wiring board; a second semiconductor package including: a second semiconductor element, a second wiring board and a first encapsulating resin for encapsulating the second semiconductor element therein; and a plate member disposed between the first semiconductor package and the second semiconductor package, the first semiconductor package, the plate member, and the second semiconductor package being stacked in this order, in which the first wiring board and the second wiring board are electrically connected to each other via a metal wire through one of a notch and an opening formed in the plate member and the first semiconductor element, the second semiconductor package, and the metal wire are encapsulated in a second encapsulating resin.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: September 16, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yuya Okada
  • Patent number: 8823159
    Abstract: Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: September 2, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Seng Kim Dalson Ye, Chin Hui Chong, Choon Kuan Lee, Wang Lai Lee, Roslan Bin Said
  • Patent number: 8816484
    Abstract: A semiconductor device, in which an integrated circuit portion and an antenna are easily connected, can surely transmit and receive a signal to and from a communication device. The integrated circuit portion is formed of a thin film transistor over a surface of a substrate so that the area occupied by the integrated circuit portion is increased. The antenna is provided over the integrated circuit portion, and the thin film transistor and the antenna are connected. Further, the area over the substrate occupied by the integrated circuit portion is 0.5 to 1 times as large as the area of the surface of the substrate. Thus, the size of the integrated circuit portion can be close to the desired size of the antenna, so that the integrated circuit portion and the antenna are easily connected and the semiconductor device can surely transmit and receive a signal to and from the communication device.
    Type: Grant
    Filed: February 6, 2008
    Date of Patent: August 26, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Jun Koyama, Shunpei Yamazaki
  • Patent number: 8803336
    Abstract: A semiconductor package includes a substrate; a driving chip having first bumps on a first surface and bump pads on a second surface facing away from the first surface, and mounted to the substrate by the medium of the first bumps; a support member disposed on the substrate substantially horizontally with respect to the driving chip; and a plurality of memory chips substantially horizontally disposed on the driving chip and the support member such that one corner portions of the memory chips are positioned on the driving chip while being centered about the driving chip, wherein the respective memory chips have second bumps which are electrically connected with the respective bump pads of the driving chip, on one surfaces of the one corner portions of the memory chips which face the driving chip.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: August 12, 2014
    Assignee: SK Hynix Inc.
    Inventors: Sang Eun Lee, Sung Soo Ryu, Chang Il Kim, Seon Kwang Jeon
  • Patent number: 8779570
    Abstract: A stackable integrated circuit package system including mounting an integrated circuit device over a package carrier, mounting a stiffener over the package carrier and mounting a mountable package carrier over the stiffener with a vertical gap between the integrated circuit device and the mountable package carrier.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: July 15, 2014
    Assignee: STATS ChipPAC Ltd.
    Inventors: Seong Bo Shim, TaeWoo Kang, Yong Hee Kang
  • Patent number: 8773562
    Abstract: A vertically stacked image sensor having a photodiode chip and a transistor array chip. The photodiode chip includes at least one photodiode and a transfer gate extends vertically from a top surface of the photodiode chip. The image sensor further includes a transistor array chip stacked on top of the photodiode chip. The transistor array chip includes the control circuitry and storage nodes. The image sensor further includes a logic chip vertically stacked on the transistor array chip. The transfer gate communicates data from the at least one photodiode to the transistor array chip and the logic chip selectively activates the vertical transfer gate, the reset gate, the source follower gate, and the row select gate.
    Type: Grant
    Filed: January 31, 2013
    Date of Patent: July 8, 2014
    Assignee: Apple Inc.
    Inventor: Xiaofeng Fan
  • Patent number: 8766424
    Abstract: A PoP (package-on-package) package includes a bottom package with a substrate encapsulated in an encapsulant with a die coupled to the top of the substrate. At least a portion of the die is exposed above the encapsulant on the bottom package substrate. A top package includes a substrate with encapsulant on both the frontside and the backside of the substrate. The backside of the top package substrate is coupled to the topside of the bottom package substrate with at least part of the die being located in a recess in the encapsulant on the backside of the top package substrate.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: July 1, 2014
    Assignee: Apple Inc.
    Inventor: Chih-Ming Chung
  • Patent number: 8759967
    Abstract: A semiconductor package and a package on package are provided. The semiconductor package includes a substrate; a semiconductor chip attached to a surface of the substrate; connecting conductors disposed on the surface of the substrate; a mold formed on the substrate and in which the connecting conductors and the semiconductor chip are provided; and connecting via holes extending through the mold and exposing the connecting conductors. With respect to a first connecting via hole of the connecting via holes, a planar distance between a first connecting conductor exposed by the first connecting via hole and an entrance of the first connecting via hole is not uniform.
    Type: Grant
    Filed: August 29, 2013
    Date of Patent: June 24, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hak-Kyoon Byun, Dae-Young Choi, Mi-Yeon Kim
  • Patent number: 8749043
    Abstract: A package on packaging structure comprising a first package and a second package provides for improved thermal conduction and mechanical strength by the introduction of a thermally conductive substrate attached to the second package. The first package has a first substrate and a first integrated circuit. The second package has a second substrate containing through vias that has a first coefficient of thermal expansion. The second package also has a second integrated circuit having a second coefficient of thermal expansion located on the second substrate. The second coefficient of thermal expansion deviates from the first coefficient of thermal expansion by less than about 10 or less than about 5 parts-per-million per degree Celsius. A first set of conductive elements couples the first substrate and the second substrate. A second set of conductive elements couples the second substrate and the second integrated circuit.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: June 10, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chen-Hua Yu, Mirng-Ji Lii, Hao-Yi Tsai, Hsien-Wei Chen, Kai-Chiang Wu
  • Patent number: 8749072
    Abstract: There are disclosed herein various implementations of semiconductor packages having a selectively conductive film interposer. In one such implementation, a semiconductor package includes a first active die having a first plurality of electrical connectors on a top surface of the first active die, a selectively conductive film interposer situated over the first active die, and a second active die having a second plurality of electrical connectors on a bottom surface of the second active die. The selectively conductive film interposer may be configured to serve as an interposer and to selectively couple at least one of the first plurality of electrical connectors to at least one of the second plurality of electrical connectors.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: June 10, 2014
    Assignee: Broadcom Corporation
    Inventors: Sam Ziqun Zhao, Kevin Kunzhong Hu, Sampath K. V. Karikalan, Rezaur Rahman Khan, Pieter Vorenkamp, Xiangdong Chen
  • Patent number: 8742596
    Abstract: Disclosed herein is a semiconductor device including: a first laminate having a wiring layer formed on a substrate; a second laminate having a wiring layer formed on a substrate, a principal surface of the second laminate being bonded to a principal surface of the first laminate; a functional element disposed in at least one of the first laminate and the second laminate; and an air gap penetrating an interface between the first laminate and the second laminate, the air gap being disposed on an outside of a circuit formation region including the functional element in at least one of the first laminate and the second laminate as viewed from a direction perpendicular to the principal surfaces of the first laminate and the second laminate.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: June 3, 2014
    Assignee: Sony Corporation
    Inventor: Takaaki Hirano
  • Patent number: 8736076
    Abstract: One aspect provides an integrated circuit (IC) packaging assembly that comprises a substrate having conductive traces located thereon, wherein the signal traces are located in an IC device region and the power traces are located in a wafer level fan out (WLFO) region located lateral the IC device region. This embodiment further comprises a first IC device located on a first side of the substrate within the IC device region and that contacts the signal traces in the IC device region. A second IC device is located on a second side of the substrate opposite the first side and overlaps the IC device region and the WLFO region. The second IC device contacts a first portion of the signal traces in the IC device region and contacts a first portion of the power traces in the WLFO region.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: May 27, 2014
    Assignee: LSI Corporation
    Inventor: Donald E. Hawk
  • Patent number: 8736074
    Abstract: According to an aspect of the invention, a semiconductor device includes a substrate having an opening area, a first semiconductor chip, and a second semiconductor chip. The first semiconductor chip has a first electrode for high-speed communication and that is disposed around the opening area on the substrate. The second semiconductor chip has a second electrode and third electrode for power and low-speed communication and that is disposed on the first semiconductor chip so that the first electrode is coupled with the second electrode by electrostatic coupling and dielectric coupling, the third electrode facing the opening area.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 27, 2014
    Assignee: Fuji Xerox Co., Ltd.
    Inventors: Daisuke Iguchi, Kanji Otsuka, Yutaka Akiyama
  • Patent number: 8729684
    Abstract: An interposer chip may include a substrate, a plurality of upper terminals, a plurality of lower terminals, a first conductive pattern that electrically connects the first upper terminal to a first set of one or more lower terminals, a second conductive pattern that electrically connects the second upper terminal to a second set of one or more lower terminals and a cut test pattern disposed between the first conductive pattern and the second conductive pattern, the test pattern used for testing electrical characteristics of the first conductive pattern and the second conductive pattern.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: May 20, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yeong-Lyeol Park, Sung-Dong Cho, Sin-Woo Kang
  • Patent number: 8729688
    Abstract: Provided is a stacked semiconductor package. The stacked semiconductor package of the present invention comprises: a substrate including at least one contact pad; an external chip laminate which includes a plurality of semiconductor chips mounted on the substrate, and which is stacked in multi-steps such that the ends at one side of the plurality of semiconductor chips alternately protrude in opposite directions to expose bonding pads which are formed on the up-face surface; at least one internal chip which is disposed in a mounting space formed between the external chip laminate and substrate so as to be electrically connected to the substrate; and a conductive wire electrically connecting the bonding pad of the semiconductor chip and the contact pad of the substrate.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: May 20, 2014
    Assignee: Hana Micron Inc.
    Inventors: Yong Ha Jung, Dae Jin Kim
  • Patent number: 8729689
    Abstract: Provided is a stacked semiconductor package.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: May 20, 2014
    Assignee: Hana Micron Inc.
    Inventors: Chul Kyu Hwang, Hyun Woo Lee
  • Patent number: 8722457
    Abstract: In a semiconductor package, a substrate has an active surface containing a plurality of active circuits. An adhesive layer is formed over the active surface of the substrate, and a known good unit (KGU) is mounted to the adhesive layer. An interconnect structure electrically connects the KGU and active circuits on the substrate. The interconnect structure includes a wire bond between a contact pad on the substrate and a contact pad on the KGU, a redistribution layer on a back surface of the substrate, opposite the active surface, a through hole via (THV) through the substrate that electrically connects the redistribution layer and wire bond, and solder bumps formed in electrical contact with the redistribution layer. The KGU includes a KGU substrate for supporting the KGU, a semiconductor die disposed over the KGU substrate, and an encapsulant formed over the semiconductor die.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: May 13, 2014
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Dioscoro A. Merilo, Lionel Chien Hui Tay, Henry Descalzo Bathan
  • Patent number: 8716854
    Abstract: A multi-chip package includes a main substrate; a plurality of first semiconductor chips stacked on an upper surface of the main substrate and having bonding pads which are electrically connected with the main substrate; and a semiconductor package attached to side surfaces of the stacked first semiconductor chips and electrically connected with the main substrate.
    Type: Grant
    Filed: November 30, 2012
    Date of Patent: May 6, 2014
    Assignee: SK Hynix Inc.
    Inventors: Ki Young Kim, Myung Gun Park
  • Patent number: 8710642
    Abstract: A semiconductor device includes a first wiring board, a first semiconductor element mounted on the first wiring board, a second wiring board disposed over the first semiconductor element, and a second semiconductor element mounted on the second wiring board. The wiring boards are electrically interconnected by a connecting portion interposed therebetween. A resin layer is formed between the wiring boards such that the first semiconductor element mounted on the first wiring board is sealed and such that the wiring boards having the respective semiconductor elements mounted thereon are bonded together.
    Type: Grant
    Filed: March 20, 2012
    Date of Patent: April 29, 2014
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Masanori Takahashi
  • Patent number: 8704381
    Abstract: A package and method of making thereof. The package includes a first plated area, a second plated area, a die, a bond, and a molding. The die is attached to the first plated area, and the bond couples the die to the first and/or the second plated areas. The molding encapsulates the die, the bonding wire, and the top surfaces of the first and second plated areas, such that the bottom surfaces of the first and second plated areas are exposed exterior to the package.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: April 22, 2014
    Assignee: UTAC Thai Limited
    Inventors: Somchai Nondhasitthichai, Saravuth Sirinorakul
  • Patent number: 8704354
    Abstract: The described embodiments of forming bonding structures for package on package involves removing a portion of connectors and molding compound of the lower package. The described bonding mechanisms enable easier placement and alignment of connectors of an upper package to with connector of a lower package. As a result, the process window of the bonding process is wider. In addition, the bonding structures have smoother join profile and planar joint plane. As a result, the bonding structures are less likely to crack and also are less likely to crack. Both the yield and the form factor of the package on package structure are improved.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: April 22, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung Wei Cheng, Tsung-Ding Wang, Chien-Hsun Lee, Chun-Chih Chuang
  • Patent number: 8698309
    Abstract: A semiconductor device includes a first semiconductor device and second semiconductor device stacked on the first semiconductor device. The first semiconductor device includes a first interconnect substrate, a first semiconductor element provided on an upper surface of the first interconnect substrate, a first electrode provided on the upper surface of the first interconnect substrate, and an insulating layer having an opening portion through which part of the first electrode is exposed. The second semiconductor device includes a second interconnect substrate, a second semiconductor element provided on an upper surface of the second interconnect substrate, a second electrode provided on a lower surface of the second interconnect substrate, and an inter-device connection terminal connected to the second electrode. Part of the first electrode exposed through the opening portion has a smaller area than an area of the opening portion.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: April 15, 2014
    Assignee: Panasonic Corporation
    Inventors: Shigefumi Dohi, Kouji Oomori
  • Patent number: 8698301
    Abstract: Semiconductor packages are provided. The semiconductor packages may include an upper package including a plurality of upper semiconductor devices connected to an upper package substrate. The semiconductor packages may also include a lower package including a lower semiconductor device connected to a lower package substrate. The upper and lower packages may be connected to each other.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: April 15, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Heung-Kyu Kwon, Young-Bae Kim, Yun-Hee Lee
  • Patent number: RE45463
    Abstract: A stacked microelectronic assembly includes a dielectric element and a first and second microelectronic element stacked one on top of the other with the first microelectronic element underlying at least a portion of the second microelectronic element. The first microelectronic element and the second microelectronic element have front surfaces on which exposed on a central region of the front surface are contacts. A spacer layer may be provided under a portion of the second microelectronic element opposite a portion of the second microelectronic element overlying the first microelectronic element. Additionally, a third microelectronic element may be substituted in for the spacer layer so that the first microelectronic element and the third microelectronic element are underlying opposing sides of the second microelectronic element.
    Type: Grant
    Filed: March 19, 2013
    Date of Patent: April 14, 2015
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba