Abstract: Disclosed is a light emission element including, on a substrate having an insulative surface, a first electrode connected with a thin film transistor and an insulator covering the end of the first electrode, a layer containing, an organic compound in contact with the first electrode, a second electrode in contact with the layer containing the organic compound. The first electrode has an inclined surface and the inclined surface reflects emitted light from the layer containing the organic compound. Further, a light absorbing multi-layered film absorbing external light is disposed on the portion of the first electrode covered with the insulator. The light absorbing multi-layered film comprising at least has a three-layered structure comprising a light transmitting film, a film partially absorbing light and a light transmitting film.
Type:
Grant
Filed:
November 9, 2012
Date of Patent:
April 22, 2014
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: A unit cell for use in an imaging system may include an absorber layer of semiconductor material formed on a semiconductor substrate, at least one contact including semiconductor material formed on the semiconductor substrate and electrically coupled to the absorber layer, and a cap layer of semiconductor material formed on the semiconductor substrate and electrically coupled to and formed between the absorber layer and the at least one contact. The absorber layer may be configured to absorb incident photons such that the absorbed photons excite electrons in the absorber layer to generate a photocurrent. The at least one contact may be configured to conduct the photocurrent to one or more electrical components external to the unit cell. The cap layer may be configured to conduct the photocurrent between the absorber layer and the at least one contact.
Type:
Grant
Filed:
July 6, 2009
Date of Patent:
March 11, 2014
Assignee:
Raytheon Company
Inventors:
Edward Peter Gordon Smith, Gregory Mark Venzor, Eric J. Beuville
Abstract: A light emission device manufactured by a method of forming a curved surface having a radius of curvature to the upper end of an insulator 19, exposing a portion of the first electrode 18c to form an inclined surface in accordance with the curved surface, and applying etching so as to expose the first electrode 18b in a region to form a light emission region, in which emitted light from the layer containing the organic compound 20 is reflected on the inclined surface of the first electrode 18c to increase the total take-out amount of light in the direction of an arrow shown in FIG.
Type:
Grant
Filed:
February 25, 2011
Date of Patent:
November 13, 2012
Assignee:
Semiconductor Energy Laboratory Co., Ltd.
Abstract: The present invention, in one embodiment, provides a method of producing a PN junction the method including providing a single crystal substrate; forming an insulating layer on the single crystal substrate; forming a via through the insulating layer to provide an exposed portion of the single crystal substrate; forming amorphous Si on at least the exposed portion of the single crystal substrate; converting at least a portion of the amorphous Si into single crystal Si; and forming dopant regions in the single crystal Si. In one embodiment the diode of the present invention is integrated with a memory device.
Type:
Grant
Filed:
January 7, 2008
Date of Patent:
March 8, 2011
Assignees:
International Business Machines Corporation, Qimonda AG, Macronix International Co., Ltd.
Inventors:
Bipin Rajendran, Thomas Happ, Hsiang-Lan Lung
Abstract: An area sensor of the present invention has a function of displaying an image in a sensor portion by using light-emitting elements and a reading function using photoelectric conversion devices. Therefore, an image read in the sensor portion can be displayed thereon without separately providing an electronic display on the area sensor. Furthermore, a photoelectric conversion layer of a photodiode according to the present invention is made of an amorphous silicon film and an N-type semiconductor layer and a P-type semiconductor layer are made of a polycrystalline silicon film. The amorphous silicon film is formed to be thicker than the polycrystalline silicon film. As a result, the photodiode according to the present invention can receive more light.
Type:
Grant
Filed:
August 8, 2001
Date of Patent:
April 18, 2006
Assignee:
Semiconductor Energy Laboratory Co., Ltd.