Acoustic Transducer Patents (Class 29/594)
  • Patent number: 8375560
    Abstract: A method for manufacturing a condenser microphone includes forming a diaphragm module using microelectromechanical system (MEMS) techniques. The diaphragm module includes a diaphragm that is deformable by energy of sound waves, and a diaphragm spacer that extends from one side of the diaphragm and controls a tension of the diaphragm. The method further includes providing a backplate with vent holes, aligning the vent holes of the backplate with a central region of the diaphragm, and connecting the backplate to the diaphragm spacer to construct a transducer unit. The diaphragm spacer, the diaphragm and the backplate cooperate to form an air chamber in fluid communication with an environment external to the condenser microphone. The backplate and the diaphragm cooperate to form a condenser. The method further includes enclosing the transducer unit in a housing that includes a shell and a circuit board to form the condenser microphone.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: February 19, 2013
    Assignee: Taiwan Carol Electronics Co., Ltd.
    Inventors: Jean-Yih Tsai, Chung-Ching Lai, Chao-Chih Chang
  • Patent number: 8375559
    Abstract: A method of manufacturing a quartz crystal unit comprises disposing a metal film on opposite surfaces of a quartz crystal wafer and then etching the wafer to form a two-line tuning fork resonator vibratable in a flexural mode of an inverse phase. A groove is formed in the opposite main surfaces of both tines, and the length of each groove is determined relative to the length of the resonator so that the series resistance of the fundamental mode of vibration of the resonator is less than the series resistance of the second overtone mode of vibration thereof. The resonator is then mounted in case after which the resonant frequency of the resonator is adjusted.
    Type: Grant
    Filed: November 10, 2010
    Date of Patent: February 19, 2013
    Assignee: Piedek Technical Laboratory
    Inventor: Hirofumi Kawashima
  • Patent number: 8371018
    Abstract: In an electromechanical transducer which includes a vibration membrane provided with an upper electrode, a substrate provided with a lower electrode, and a support member adapted to support the vibration membrane in such a manner that a gap is formed between the vibration membrane and the substrate with these electrodes being arranged in opposition to each other, it is constructed such that a part of the vibration membrane and a region of the substrate are kept in contact with each other without application of an external force, and a remaining region of the vibration membrane other than its region in which the contact state is kept is able to vibrate.
    Type: Grant
    Filed: September 19, 2008
    Date of Patent: February 12, 2013
    Assignee: Canon Kabushiki Kaisha
    Inventor: Chienliu Chang
  • Publication number: 20130034257
    Abstract: A MEMS microphone. The MEMS microphone includes a substrate, a transducer support that includes or supports a transducer, a housing, and an acoustic channel. The transducer support resides on the substrate. The housing surrounds the transducer support and includes an acoustic aperture. The acoustic channel couples the acoustic aperture to the transducer, and isolates the transducer from an interior area of the MEMS microphone.
    Type: Application
    Filed: August 2, 2011
    Publication date: February 7, 2013
    Applicant: ROBERT BOSCH GMBH
    Inventors: Andrew J. Doller, Michael Peter Knauss, Philip Sean Stetson
  • Patent number: 8368153
    Abstract: A wafer level package of micro electromechanical system (MEMS) microphone includes a substrate, a number of dielectric layers stacked on the substrate, a MEMS diaphragm, a number of supporting rings and a protective layer. The MEMS diaphragm is disposed between two adjacent dielectric layers. A first chamber is between the MEMS diaphragm and the substrate. The supporting rings are disposed in some dielectric layers and stacked with each other. An inner diameter of the lower supporting ring is greater than that of the upper supporting ring. The protective layer is disposed on the upmost supporting ring and covers the MEMS diaphragm. A second chamber is between the MEMS diaphragm and the protective layer. The protective layer defines a number of first through holes for exposing the MEMS diaphragm. The wafer level package of MEMS microphone has an advantage of low cost.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: February 5, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Chien-Hsin Huang, Li-Che Chen, Ming-I Wang, Bang-Chiang Lan, Hui-Min Wu, Tzung-I Su
  • Patent number: 8369544
    Abstract: A microphone component that may be used in many types of enclosures for making contact with a living body for picking up body sounds. Piezoelectric transflexural diaphragm elements (3, 5, 6) are known; however, they are only useful as microphone elements when the manner of creating electrical contact does not influence their mechanical properties. A microphone component has been developed, which is both rugged and amenable to very inexpensive manufacture. This is obtained using a laminated construction in which a special layer is placed between the piezoelectric transflexural diaphragm element and the electrical interface element.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: February 5, 2013
    Assignee: 3M Innovative Properties Company
    Inventor: Bjoern Knud Andersen
  • Patent number: 8365373
    Abstract: Though the initial concept of the face-mounted resonator was ahead of fabrication technology, the solidly-mounted resonator (SMR) is now a practical resonator design yielding high Qs in a space-efficient and robust mounting configuration. An agile tunable piezoelectric SMR is now provided with a resonator and alternating stacks of high mechanical impedance and low mechanical impedance, piezoelectric layers advantageously stacked on a substrate with the piezoelectric layers connected to an adaptive circuit that alternates with an external electrical impedance having values anywhere between an open circuit and a short circuit.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: February 5, 2013
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: Arthur Ballato
  • Publication number: 20130022225
    Abstract: A headphone sound-generating structure includes a sound-generating module and a plurality fastening elements. The sound-generating module includes a first perforated plate, a first ring-shaped spacer, a diaphragm assembly, a second ring-shaped spacer, a second perforated plate, and a second ring-shaped mounting frame, which are sequentially superposed in a receiving space defined on an ear cup. The fastening elements are extended through third mounting holes of the second ring-shaped mounting frame and fourth mounting holes of the ear cup to thereby quickly secure the sound-generating module to the ear cup to complete a headphone sound-generating structure, which can be manufactured at lowered cost and increased good yield, and allows convenient maintenance without wasting any material. A method of assembling the headphone sound-generating structure is also introduced.
    Type: Application
    Filed: July 22, 2011
    Publication date: January 24, 2013
    Applicant: FORTUNE GRAND TECHNOLOGY INC.
    Inventors: HSIN-YUAN CHIANG, CHUAN-CHUN MA
  • Patent number: 8356399
    Abstract: A method of protecting a resonating sensor is described. The protected resonating sensor may include at least one passive ultrasonically excitable resonating sensor unit. Each sensor unit has one or more vibratable members having a resonating frequency that varies as a function of a physical variable in a measurement environment. The sensor is protected by forming one or more protective chambers defined between a compliant member and the vibratable member(s). A substantially non-compressible medium is disposed within the protective chamber(s). The compliant member has a first side that may be exposed to a measurement environment and a second side that may be exposed to the substantially non-compressible medium. The substantially non-compressible medium may be a liquid or gel and is in contact with the vibratable member(s). When the medium is a liquid, the chamber is sealed. When the medium is a gel, the chamber may be sealed or non-sealed.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: January 22, 2013
    Assignee: Microtech Medical Technologies Ltd.
    Inventor: Shay Kaplan
  • Publication number: 20130016860
    Abstract: A speaker system comprising a power source, an audio processor, a speaker comprising at least one conductive component comprising conductive ink, an enabling device, wherein the enabling device provides power to the audio processor, memory and speaker, and a memory, wherein the memory contains audio data, wherein the speaker has substantially uniform thickness and thickness substantially similar to that of paper, wherein the speaker is capable of being inserted seamlessly into written materials, and wherein electricity is transmitted using conductive components and the conductive components comprise a conductive ink and wherein electricity coming from the enabling device, when applied to the speaker, causes mechanical deformation and sound.
    Type: Application
    Filed: June 8, 2012
    Publication date: January 17, 2013
    Inventors: Randall Boudouris, Mike Orra, Joseph Patrick Moening, Steven Papadimos
  • Patent number: 8353096
    Abstract: The present invention provides a method of packaging surface microfabricated transducers such that electrical connections, protection, and relevant environmental exposure are realized prior to their separation into discrete components. The packaging method also isolates elements of array transducers. Post processing of wafers consisting of transducers only on the top few microns of the wafer surface can be used to create a wafer scale packaging solution. By spinning or otherwise depositing polymeric and metallic thin and thick films, and by lithographically defining apertures and patterns on such films, transducers can be fully packaged prior to the final dicing steps that would separate the packaged transducers from each other. In the case of microfabricated ultrasonic transducers, such packaging layers can also enable flexible transducers and eliminate or curtail the acoustic cross-coupling that can occur between array elements.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: January 15, 2013
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventor: Igal Ladabaum
  • Publication number: 20130011001
    Abstract: A speaker system includes: a baffle board having a first attachment portion, a second attachment portion, and a third attachment portion; a diaphragm, which is exposed to a front face side of the baffle board; an edge, which is disposed on an outer circumference of the diaphragm and is fixed to the first attachment portion to support the diaphragm; a magnetic circuit holding member, which is configured to be fixed to the second attachment portion so that a magnetic circuit is holed at a rear face side of the diaphragm; and a damper, which is disposed at the rear face side of the diaphragm and is fixed to the third attachment portion to support the diaphragm.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 10, 2013
    Applicant: MINEBEA CO., LTD.
    Inventors: Hiroki FUJIMORI, Masatoshi MIYASHITA
  • Patent number: 8347482
    Abstract: A method for manufacturing a ferrite magnet device including a ferrite body and first and second center electrodes arranged so as to intersect and be electrically insulated from each other and a permanent magnet arranged to apply a direct current magnetic field to the ferrite body and a method for manufacturing an isolator or a composite electronic component, which include the ferrite magnet device. A magnetic force of the permanent magnet is adjusted using a measurement jig and a magnetic force adjusting apparatus while the permanent magnet is fixed to a principal surface of the ferrite body.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: January 8, 2013
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takashi Hasegawa
  • Patent number: 8347483
    Abstract: An ultrasound transducer includes an array of PZT elements mounted on a non-recessed distal surface of a backing block. Between each element and the backing block is a conductive region formed as a portion of a metallic layer sputtered onto the distal surface. Traces on a longitudinally extending circuit board—preferably, a substantially rigid printed circuit board, which may be embedded within the block—connect the conductive region, and thus the PZT element, with any conventional external ultrasound imaging system. A substantially “T” or “inverted-L” shaped electrode is thereby formed for each element, with no need for soldering. At least one longitudinally extending metallic member mounted on a respective lateral surface of the backing block forms a heat sink and a common electrical ground. A thermally and electrically conductive layer, such as of foil, transfers heat from at least one matching layer mounted on the elements to the metallic member.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 8, 2013
    Assignee: MR Holdings (HK) Limited
    Inventor: Xiaocong Guo
  • Publication number: 20130006153
    Abstract: The present invention relates to a low-profile ultrasound transducer. The low-profile ultrasound transducer includes a piezoelectric component operative to receive a driving signal from an energy generating module and to emit the driving signal as ultrasonic energy. The piezoelectric component has a front surface and a back surface, and the energy generating module includes a plurality of electronic components. The low-profile ultrasound transducer also includes a lens component directly or indirectly deposited on the front surface of the piezoelectric component. The lens component includes a lens portion and a support portion. The lens portion of the lens component is configured to control the direction and wave pattern of the ultrasonic energy emitted from the piezoelectric component. The support portion of the lens component is configured to hold the piezoelectric component in place and to provide a chamber for housing at least one electronic component of the energy generating module.
    Type: Application
    Filed: January 3, 2011
    Publication date: January 3, 2013
    Applicant: ZETROZ LLC
    Inventor: George K. Lewis, JR.
  • Publication number: 20130004011
    Abstract: Non-occluding earbuds and methods for making the same are disclosed. The earbud has a non-occluding housing having a directional port positioned offset with respect to a center axis of the housing. The directional port may be constructed to project acoustic signals into the user's ear canal. In addition, the directional port can include separate openings or ports for different front volumes existing within the housing. Front and back volumes can exist for each speaker contained within the housing, and embodiments of this invention use a midmold structure that enables the front volumes to be tuned independently of each other.
    Type: Application
    Filed: July 1, 2011
    Publication date: January 3, 2013
    Applicant: APPLE INC.
    Inventors: Jeffrey Hayashida, Jonathan Aase, Julian Hoenig
  • Patent number: 8336192
    Abstract: A method of collective fabrication of remotely interrogatable sensors, wherein the method may include fabricating fabricating a first series of first resonators exhibiting a first resonant frequency at ambient temperature and a first static capacitance and fabricating a second series of second resonators exhibiting a second resonant frequency at ambient temperature and a second static capacitance. The method may also include performing a series of electrical measurements of the set of the first series of first resonators and of the set of the second series of second resonators, so as to determine first pairs and second pairs of resonant frequency and of capacitance of each of the first and second resonators and performing a series of matching of a first resonator and of a second resonator.
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: December 25, 2012
    Assignee: Senseor
    Inventors: Jean-François Leguen, Luc Chommeloux
  • Patent number: 8336191
    Abstract: An electronics filter circuit includes an electromechanical resonator that is mounted directly to the surface of a silicon integrated circuit, rather than being a surface mounted or leaded filter can on a circuit board. This filter circuit allows the integrated circuit electronic package to be significantly smaller than a conventional electromechanical resonator package. The electromechanical resonator may be protected during processing and during use with a protective cover that is made of a material such as titanium. The protective cover is attached to the integrated circuit chip.
    Type: Grant
    Filed: August 3, 2007
    Date of Patent: December 25, 2012
    Assignee: Alfred E. Mann Foundation For Scientific Research
    Inventors: Charles L. Byers, Joseph H. Schulman, Gary D. Schnittgrund
  • Publication number: 20120321111
    Abstract: The present invention relates to an electret condenser microphone which comprises an exterior sidewall structure attached to a carrier. The exterior sidewall structure comprises a non-conductive base material carrying first and second electrical wiring patterns electrically connected to first and second electrical traces, respectively, of the carrier. A diaphragm holder, carrying a conductive microphone diaphragm is attached to the sidewall structure to establish electrical connection between a conductive microphone diaphragm and one of the first and second electrical wiring patterns of the sidewall structure. A conductive perforated backplate is arranged in spaced relationship to the conductive microphone diaphragm. The conductive perforated backplate is electrically connected to another one of the first and second wiring patterns of the sidewall structure.
    Type: Application
    Filed: June 21, 2012
    Publication date: December 20, 2012
    Applicant: ANALOG DEVICES A/S
    Inventor: Christian LILLELUND
  • Publication number: 20120317792
    Abstract: Provided is a method of manufacturing a loudspeaker including assembling a magnetic circuit and a frame. In the step of assembling the magnetic circuit and the frame, parallelism between a plate and a damper attachment portion of the frame is ensured by bringing an upper portion of the plate and the damper attachment portion of the frame into contact with a jig. In addition, perpendicularity between a magnetic gap and the damper attachment portion of the frame is ensured by bringing an outer circumferential side portion of the plate of the magnetic gap and an inner circumferential side portion of the yoke into contact with the jig. The magnetic circuit and the frame are assembled in such a state. With such a manufacturing method, it is possible to achieve a superior loudspeaker capable of reducing a gap defect while being downsized and having increased maximum input power.
    Type: Application
    Filed: March 30, 2011
    Publication date: December 20, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Toshiyuki Koike, Shinsaku Sawa, Tadashi Akiyama
  • Patent number: 8327520
    Abstract: A coupling conductor for a YIG filter or YIG oscillator, which may be produced from a metallic foil by eroding, laser cutting and/or etching of a metallic foil. The coupling conductor includes at least one curved section, which at least partially surrounds a YIG element and at least one conductor section.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: December 11, 2012
    Assignee: Rohde & Schwarz GmbH & Co. KG
    Inventors: Wilhelm Hohenester, Claus Tremmel
  • Patent number: 8327973
    Abstract: Disclosed are foam compositions with enhanced sound attenuation characteristics for use in earpieces, for example, user-disposable foam members such as foam tips for sound control devices including sound transmission devices and earplugs in which a relationship between the size of the pores and the volume of the cells of the polymeric may be controlled.
    Type: Grant
    Filed: August 4, 2010
    Date of Patent: December 11, 2012
    Assignee: Hearing Components, Inc.
    Inventors: William Parish, Vasant V. Kolpe
  • Patent number: 8330556
    Abstract: An acoustic resonator, comprises a substrate and a first passivation layer disposed over the substrate. The first passivation layer comprises a first layer of silicon carbide (SiC). The acoustic resonator further comprises a first electrode disposed over the passivation layer, a second electrode, and a piezoelectric layer disposed between the first and second electrodes. The acoustic resonator comprises a second passivation layer disposed over the second electrode. The second passivation layer comprises a second layer of silicon carbide (SiC).
    Type: Grant
    Filed: November 23, 2009
    Date of Patent: December 11, 2012
    Assignee: Avago Technologies Wireless IP (Singapore) Pte. Ltd.
    Inventors: Daniel J. Miller, Martha Johnson
  • Patent number: 8327521
    Abstract: Methods are provided for production of pre-collapsed capacitive micro-machined ultrasonic transducers (cMUTs). Methods disclosed generally include the steps of obtaining a nearly completed traditional cMUT structure prior to etching and sealing the membrane, defining holes through the membrane of the cMUT structure for each electrode ring fixed relative to the top face of the membrane, applying a bias voltage across the membrane and substrate of the cMUT structure so as to collapse the areas of the membrane proximate to the holes to or toward the substrate, fixing and sealing the collapsed areas of the membrane to the substrate by applying an encasing layer, and discontinuing or reducing the bias voltage. CMUT assemblies are provided, including packaged assemblies, integrated assemblies with an integrated circuit/chip (e.g., a beam-steering chip) and a cMUT/lens assembly. Advantageous cMUT-based applications utilizing the disclosed pre-collapsed cMUTs are also provided, e.g.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: December 11, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Peter Dirksen, Anthonie Van Der Lugt
  • Publication number: 20120308037
    Abstract: A microelectromechanical microphone chip having a stereoscopic diaphragm structure includes a base, having a chamber; a diaphragm, disposed on the chamber and having steps with height differences; and a back plate, disposed on the diaphragm, forming a space with the diaphragm in between, and having a plurality of sound-holes communicating with the space.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Inventors: Hung-Jen CHEN, Kuan-Hsun Chiu, Ming-Li Hsu, Xian-Gen Liao
  • Publication number: 20120308061
    Abstract: A hearing aid has improved immunity to RF electromagnetic interference produced from wireless communications devices. A microphone receives audio signals from the environment. Audio circuitry is connected to the microphone and amplifies the audio signals. A speaker is connected to the audio circuitry and directs the audio signals into an ear canal of the user of the hearing aid. The audio connection lines connect the microphone and audio circuitry and the speaker and audio circuitry. A filter is connected into each of the audio connection lines and operative for reducing the RF coupling from a wireless communications device.
    Type: Application
    Filed: August 13, 2012
    Publication date: December 6, 2012
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: Lizhong ZHU, George MANKARUSE, Michael CORRIGAN
  • Publication number: 20120308066
    Abstract: A combined MicroElectroMechanical Systems (MEMS) microphone includes a first substrate, a second substrate, a vibrating diaphragm, a backplate, and an accommodating slot. The first substrate has a first chamber, the vibrating diaphragm is disposed on the first chamber, the second substrate has a second chamber, one side of the backplate is disposed on the second chamber, and the other side of the backplate is disposed on the vibrating diaphragm, so that the second substrate is combined with the first substrate. In addition, the backplate has multiple sound holes, and the accommodating slot is disposed between the first substrate and the second substrate to form a space between the vibrating diaphragm and the backplate.
    Type: Application
    Filed: June 3, 2011
    Publication date: December 6, 2012
    Inventors: Hung-Jen CHEN, Kuan-Hsun Chiu, Kuo-Hsiang Li, Yung-Ta Chen
  • Patent number: 8325950
    Abstract: Disclosed is a silicon condenser microphone including a backplate having a plurality of perforations therethrough, a diaphragm opposed from the backplate for forming a capacitor. The diaphragm includes a first part and a second part received in the first part, the second part being capable of vibrating relative to the backplate. The first part is connected to the ground and the second part is connected to a bias voltage.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: December 4, 2012
    Assignees: AAC Acoustic Technologies (Shenzhen) Co., Ltd., American Audio Components Inc.
    Inventors: Hai-Feng Li, Rui Zhang
  • Patent number: 8322018
    Abstract: The disclosure is related to a method and a device of manufacturing a speaker. First, a roll element is fabricated by a roll-based manufacturing process and by using a material feeder, and the roll element is cut into many sheet elements by using a cutter. An inserting device is used to insert the sheet elements into a temporary storage device, and an extracting device is used to extract the sheet elements from the temporary storage device and place the sheet elements on another roll element fabricated by another roll-based manufacturing process and by using another material feeder. The sheet elements and the other roll element are combined. The roll elements and sheet elements may be vibrating membranes and porous electrodes of a flat speaker.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: December 4, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Chang-Ho Liou, Wei-Chung Lee, Ming-Daw Chen
  • Publication number: 20120298441
    Abstract: Improved approaches for providing a speaker within a housing of a portable electronic device are disclosed. The housing of the portable electronic device can be compact, such as a low profile housing. In one embodiment, an acoustic chamber for a speaker can be formed internal to a housing for a portable electronic device using non-dedicated space. In another embodiment, irregular surfaces can be sealed so that an acoustic chamber for a speaker can be formed internal to a housing for a portable electronic device.
    Type: Application
    Filed: August 9, 2012
    Publication date: November 29, 2012
    Inventors: Gloria Lin, Derek B. Barrentine, Michael Rosenblatt
  • Patent number: 8316526
    Abstract: The present invention provides electroactive polymers, transducers and devices that maintain pre-strain in one or more portions of an electroactive polymer. Electroactive polymers described herein may include a pre-strained portion and a stiffened portion configured to maintain pre-strain in the pre-strained portion. One fabrication technique applies pre-strain to a partially cured electroactive polymer. The partially cured polymer is then further cured to stiffen and maintain the pre-strain. In another fabrication technique, a support layer is coupled to the polymer that maintains pre-strain in a portion of an electroactive polymer. Another embodiment of the invention cures a polymer precursor to maintain pre-strain in an electroactive polymer.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: November 27, 2012
    Assignee: SRI International
    Inventors: Qibing Pei, Ronald E. Pelrine, Marcus Rosenthal
  • Patent number: 8316533
    Abstract: A method for manufacturing a Micro-Electro-Mechanical System pressure sensor. The method includes forming a gauge wafer including a diaphragm and a pedestal region. The method includes forming an electrical insulation layer disposed on a second surface of the diaphragm region and forming a plurality of sensing elements patterned on the electrical insulation layer disposed on the second surface in the diaphragm region. The method includes forming a cap wafer with a central recess in an inner surface and a plurality of through-wafer embedded vias made of an electrically conductive material in the cap wafer. The method includes creating a sealed cavity by coupling the inner recessed surface of the cap wafer to the gauge wafer, such that electrical connections from the sensing elements come out to an outer surface of the cap wafer through the vias. The method includes attaching a spacer wafer with a central aperture to the pedestal region with the central aperture aligned to the diaphragm region.
    Type: Grant
    Filed: August 12, 2010
    Date of Patent: November 27, 2012
    Assignee: S3C, Inc.
    Inventors: James Tjanmeng Suminto, Mohammad Yunus
  • Patent number: 8316518
    Abstract: Methods for the manufacture of electrical components, such as ultrasound transducers, are illustrated and described. In particular, several embodiments of the methods can include patterning electrodes, such as for the connection of an ultrasound transducer to an electrical circuit. The methods also can include depositing metal on surfaces and making an integrated matching layer for an ultrasound transducer. Ultrasound transducers produced by these methods also are illustrated and described.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: November 27, 2012
    Assignee: VisualSonics Inc.
    Inventors: Marc Lukacs, Chris Chaggares, Desmond Hirson, Guofeng Pang
  • Patent number: 8315125
    Abstract: A system and method for biasing a capacitive ultrasonic transducer (CMUT) device with a circuit that includes a CMUT that includes a first plate and a second plate that form a membrane structure; a circuit voltage source at a complementary metal-oxide-semiconductor (CMOS) compatible voltage; a bias voltage source that applies a bias voltage greater than a CMOS compatible voltage and is applied to the first plate; and readout electronics with an input connected on the second plate side of the circuit.
    Type: Grant
    Filed: March 18, 2010
    Date of Patent: November 20, 2012
    Assignee: Sonetics Ultrasound, Inc.
    Inventor: David F. Lemmerhirt
  • Publication number: 20120288130
    Abstract: A microphone arrangement includes a housing having a sound hole, a first input audio transducer with a first sensitivity and a second input audio transducer with a second sensitivity. In this microphone arrangement, the first and the second input audio transducers are arranged in the housing, such that the first input audio transducer is directly acoustically coupled with the sound hole and the second input audio transducer is indirectly acoustically coupled with a sound hole via the first input audio transducer.
    Type: Application
    Filed: May 11, 2011
    Publication date: November 15, 2012
    Applicant: Infineon Technologies AG
    Inventor: Alfons Dehe
  • Patent number: 8307521
    Abstract: A method for manufacturing an acceleration sensing unit includes: providing an element support substrate in which a plurality of element supporting members is arranged so as to form a plane, each of the element supporting members being coupled to the other element supporting member through a supporting part and having a fixed part and a movable part that is supported by the fixed part through a beam, the beam having a flexibility with which the movable part is displaced along an acceleration detection axis direction when an acceleration is applied to the movable part; providing an stress sensing element substrate in which a plurality of stress sensing elements is arranged so as to form a plane, each of the stress sensing elements being coupled to the other stress sensing element through an element supporting part and having a stress sensing part and fixed ends that are formed so as to have a single body with the stress sensing part at both ends of the stress sensing part; disposing the stress sensing element
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: November 13, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Yoshikuni Saito
  • Publication number: 20120275623
    Abstract: A mobile wireless communications device includes a housing and circuit board carried by the housing and having radio frequency (RF) circuitry and a processor operative with each other. Audio circuitry is carried by the circuit board and an audio transducer assembly, such as a speaker, has electrical contacts that electrically engage the audio circuitry for carrying audio signals between the audio circuitry and audio transducer assembly. A filter is mounted at the audio transducer assembly and reduces radio frequency (RF) electromagnetic interference to the audio transducer assembly during device operation.
    Type: Application
    Filed: July 10, 2012
    Publication date: November 1, 2012
    Applicant: RESEARCH IN MOTION LIMITED
    Inventors: LIZHONG ZHU, GEORGE MANKARUSE, MICHAEL CORRIGAN
  • Publication number: 20120275634
    Abstract: A microphone comprising a substrate, a transducer element that is mounted on a top side of the substrate, a covering layer that covers the transducer element and forms a seal with the top side of the substrate, a shaped covering material that covers the substrate, the transducer element and the covering layer, and a sound opening that extends through the covering material and the covering layer. Methods for manufacturing a microphone and for manufacturing a plurality of microphones are also disclosed.
    Type: Application
    Filed: April 26, 2011
    Publication date: November 1, 2012
    Applicant: EPCOS AG
    Inventors: Anton Leidl, Wolfgang Pahl
  • Publication number: 20120266677
    Abstract: An ultrasonic transducer for use in a fluid medium includes at least one transducer core having at least one electroacoustic transducer element, and further includes at least one housing having at least two housing parts. At least one first housing part at least partially encloses the transducer core such that a rear side of the electroacoustic transducer element which faces away from the fluid medium is accessible. Furthermore, at least one second housing part is connected to the first housing part. The ultrasonic transducer is essentially terminated by the second housing part on its side, which faces away from the fluid medium.
    Type: Application
    Filed: September 10, 2010
    Publication date: October 25, 2012
    Inventors: Roland Mueller, Gerhard Hueftle, Michael Horstbrink, Tobias Lang, Sami Radwan, Bernd Kuenzl, Roland Wanja
  • Publication number: 20120267986
    Abstract: A dual-frequency ultrasound transducer, comprising a piezo-electric element bonded to a substrate, has two resonant vibration modes: a low frequency mechanical bending resonance mode and a relatively high frequency thickness resonance mode. The low frequency bending resonance mode occurs when the piezo-electric element is excited, in use, by a voltage which includes a low frequency oscillating component. The high frequency thickness resonance mode occurs when the piezo-electric element is excited, in use, by a voltage which includes a relatively high frequency oscillating component. The transducer may include a mounting arrangement, such as a support ring securing the periphery of the substrate to an underlying base layer that enhances the depth of penetration and focus of the ultrasound.
    Type: Application
    Filed: June 17, 2010
    Publication date: October 25, 2012
    Applicant: SONOVIA HOLDINGS LLC
    Inventors: Paul Mark Galluzzo, Justine Rorke Buckland, Neil Pollock
  • Publication number: 20120267981
    Abstract: Modular electronics are provided for a multi-dimensional array. The electronics are positioned perpendicular to the array in modules. The modules include frames to support the electronics and provide for electrical connection between the array and the electronics. The frames include thermally conductive material to transfer heat away from the electronics and the array. The frames form a surface to support part of the array and a single layer of flexible circuit material with pads and traces over the surface for electrical connection. The flexible circuit material allows connection to the electronics at a pitch different than the pitch of the array. The modules allow the same electronics parts to be used with different sized arrays. The traces and pads of the flexible circuit material may be changed for different arrays without having to redesign the electronics and/or modules.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 25, 2012
    Applicant: SIEMENS MEDICAL SOLUTIONS USA, INC.
    Inventors: Richard Lee Morris, David A. Petersen
  • Patent number: 8286330
    Abstract: Provided is a method of producing a vibrating body for a vibration wave drive device using a vibrator in which an electromechanical energy conversion element is joined to a vibrating body having a plurality of protruding portions, the method including a first step and a second step. In the first step, an elastic material having a plurality of protruding portions is produced. In the second step, a pressure in a direction opposite to a protruding direction of the protruding portions of the elastic material is applied to press at least parts of the protruding portions to reduce slits between the protruding portions adjacent to each other.
    Type: Grant
    Filed: May 3, 2010
    Date of Patent: October 16, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Jun Tamai
  • Publication number: 20120256517
    Abstract: This invention relates generally to capacitive micromachined ultrasonic transducers (CMUTs), particularly to those comprising diamond or diamond like carbon membranes and a method of microfabrication of such CMUTs, wherein the membrane of diamond or diamond like carbon is attached to the substrate by plasma-activated direct bonding of an interlayer of high temperature oxide (HTO).
    Type: Application
    Filed: April 11, 2011
    Publication date: October 11, 2012
    Inventor: Baris Bayram
  • Patent number: 8284979
    Abstract: Provided are a method of forming a sound hole in a condenser microphone case that prevents foreign substances from being thrown to improve reliability and the condenser microphone case. The method of forming the sound hole in the condenser microphone case includes cutting a portion of a bottom surface of a metal case in the cylindrical metal case having an opened side to mount components for a microphone, and simultaneously, pressing the cut portion to form a sound hole having a gap shape at the cut portion.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: October 9, 2012
    Assignee: BSE Co., Ltd.
    Inventor: Chung-Dam Song
  • Patent number: 8281480
    Abstract: A method for manufacturing a wireless receiver is disclosed. The method includes the steps of: providing a metallic casing having an accommodating space with both opposite ends thereof and having an front opening and a rear opening in communication with the accommodating space; forming a positioning base having a mounting trough by joining to the accommodating space of the metallic casing, the mounting trough being in communication with the accommodating space and rear opening; providing a receiving module, assembling the receiving module in the accommodating space, the receiving module being fixed by inserting it into the mounting trough via the rear opening; and providing a housing, assembling the housing to the rear opening, the housing sealing the rear opening to block the receiving module from sliding out of the rear opening. Therefore, the whole size of the wireless receiver can be reduced.
    Type: Grant
    Filed: January 24, 2011
    Date of Patent: October 9, 2012
    Assignee: Dexin Corporation
    Inventor: Cheng-Cheng Wu
  • Publication number: 20120253199
    Abstract: According to one embodiment, an ultrasonic probe includes a transducer element, a backing material, and a buffer layer. The transducer element vibrates to transmit and receive an ultrasonic wave. The buffer layer is provided on the back side of the transducer element. The backing material is provided on the back side of the buffer layer and damps an ultrasonic wave from the transducer element. The buffer layer has a Poisson ratio larger than that of the backing material.
    Type: Application
    Filed: March 22, 2012
    Publication date: October 4, 2012
    Applicants: TOSHIBA MEDICAL SYSTEMS CORPORATION, KABUSHIKI KAISHA TOSHIBA
    Inventor: Minoru AOKI
  • Publication number: 20120250924
    Abstract: A portable loudspeaker includes an electro-acoustic driver which creates sound waves when operated and a housing having a front side to which the driver is secured. An internal part of the housing defines a first portion of an acoustic volume in which at least a portion of the driver is located. The sound waves from the driver are capable of acoustically energizing the acoustic volume. A unitary battery module is removably secured to the housing for providing electrical power to the driver. A part of the battery module defines a second portion of the acoustic volume.
    Type: Application
    Filed: March 31, 2011
    Publication date: October 4, 2012
    Inventors: Travis E. Nicholson, Paul Warren, Dewey L. Potter
  • Publication number: 20120250930
    Abstract: A diaphragm is formed of paper manufactured from a first fiber material and a second fiber material. The first fiber material is beaten to have a given freeness, and the second fiber material is made by carbonizing bamboo fiber that has been fibrillated into a microfibril state. This structure allows the second fiber material to increase a rigidity of the diaphragm and also increase an internal loss, so that sound quality of the speaker that employs this diaphragm can be improved.
    Type: Application
    Filed: January 12, 2011
    Publication date: October 4, 2012
    Applicant: Panasonic Corporation
    Inventors: Yoshimichi Kajihara, Yohei Jin, Toru Fujii
  • Patent number: 8276254
    Abstract: A method of forming a miniature, surface micromachined, differential microphone, comprising depositing a sacrificial layer on a surface of a silicon wafer; depositing a diaphragm material on a surface of the sacrificial layer; etching the diaphragm material layer to isolate a diaphragm; and removing a portion of the sacrificial layer beneath the defined diaphragm. A diaphragm formed in the diaphragm material layer is supported by a hinge and otherwise isolated from a remaining portion of the diaphragm material layer by a slit adjacent a perimeter of the diaphragm. An enclosed back volume beneath the diaphragm has a depth defined by a thickness of the sacrificial layer, and communicates with an external region via the slit. A transducer may be provided for producing an electrical signal responsive to a displacement of the diaphragm.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: October 2, 2012
    Assignee: The Research Foundation of State University of New York
    Inventor: Ronald N. Miles
  • Publication number: 20120239113
    Abstract: An implantable hearing prosthesis comprising a vibrator for generating vibrations, a coupling arm adapted to be attached to an element of a recipient's ear; and a quick-connector comprising a first connector half disposed on the vibrator and a second connector half disposed on the coupling arm, wherein the connector halves are adapted to be releasably mated with one another to secure the coupling arm in relative position to the vibrator.
    Type: Application
    Filed: March 15, 2011
    Publication date: September 20, 2012
    Inventor: Jan VERMEIREN