Indicating Transducer Patents (Class 29/595)
  • Publication number: 20030233871
    Abstract: A method provides a sharpened Multi-Walled Carbon NanoTube Scanning Probe (MWCNT-SP) for a Atomic Force Microscopy (AFM). The MWCNT-SP is attached to a cantilever and help in the FMA. The tip of the MWCNT-SP is positioned in contact with a conducting substrate, and a voltage source is connected to the MWCNT-SP and to the substrate. The outer layers of the MWCNT-SP become hot, and the outermost carbon layers burns off, thereby creating a point on the MWCNT-SP.
    Type: Application
    Filed: May 16, 2003
    Publication date: December 25, 2003
    Applicant: Eloret Corporation
    Inventors: Cattien V. Nguyen, Ramsey M.D. Stevens
  • Patent number: 6667611
    Abstract: A pulse signal generator comprises a pair of magnets (3a, 3b) for producing a magnetic field, a magnetic element wire (5) provided in the magnetic field and capable of producing large Barkhausen jumps, a wire coil (2) provided around the magnetic element wire (5) to output a pulse signal. The magnetic element wire (5) is embedded in a coil bobbin (6) as a unit.
    Type: Grant
    Filed: October 26, 2001
    Date of Patent: December 23, 2003
    Assignee: Hirose Electric Co., Ltd.
    Inventors: Tomoaki Ito, Masami Tanaka, Tadashi Kubota, Yasuhiro Masuzaki
  • Patent number: 6643909
    Abstract: Method of making a proximity probe including providing a preform having an interior cavity accessible by an opened rearward end; coupling a coil to the preform proximate a forward most end of the preform for defining an assembly; locating a single support pin through the rearward end such that the support pin extends within the interior cavity while having an end emanating from the rearward end; cantilevering the emanating end between an upper and a lower mold plate defining a mold cavity for supporting the assembly; injecting moldable material into the mold cavity for molding an encapsulation of material over the assembly for defining an encapsulated probe tip, allowing the encapsulated probe tip to cure; removing the encapsulated probe tip from the mold cavity; removing the support pin from the assembly, and coupling a cable to the encapsulated probe tip for forming the proximity probe.
    Type: Grant
    Filed: April 10, 2001
    Date of Patent: November 11, 2003
    Assignee: Bently Nevada LLC
    Inventor: Robert Ivan Rose
  • Patent number: 6640451
    Abstract: The present invention relates to a system and method for sensing the angular position of a rotatable member. The system and method employ the use of a composite rotatable member comprising a solidifiable material and a magnetically attractable particulate material. The rotatable member has a major body portion and at least one magnetically detectable reference point. The reference point has a first magnetic property and the major body portion has a second magnetic property, different from the first magnetic property. A magnetic property sensor is fixed relative to the rotatable member to detect the passage of the reference point within the rotatable member. The sensor produces a signal in response to the passage of the reference point. A central processing unit is provided for determining the angular position of the rotatable member in response to the signal generated by the sensor.
    Type: Grant
    Filed: June 14, 2000
    Date of Patent: November 4, 2003
    Assignee: Visteon Global Technologies, Inc.
    Inventor: Edward John Vinarcik
  • Publication number: 20030200823
    Abstract: A method for manufacturing a flexural plate wave sensor includes the steps of depositing an etch-stop layer over a substrate, depositing a membrane layer over the etch stop layer, depositing a piezoelectric layer over the membrane layer, forming a first transducer on the piezoelectric layer and forming a second transducer on the piezoelectric layer, spaced from the first transducer. The method further includes the steps of etching a cavity through the substrate, the cavity having substantially parallel interior walls, removing the portion of the etch stop layer between the cavity and the membrane layer to expose a portion of the membrane layer, and depositing an absorptive coating on the exposed portion of the membrane layer.
    Type: Application
    Filed: December 19, 2002
    Publication date: October 30, 2003
    Inventors: Brian T. Cunningham, John R. Williams
  • Patent number: 6637087
    Abstract: A method of manufacturing an edge reflection type surface acoustic wave device includes the step of preparing a surface acoustic wave mother substrate having a plurality of interdigital transducers formed on one main surface thereof. A cut groove is formed in the substrate by cutting the surface acoustic wave mother substrate beginning from the one main surface side thereof. This step of forming a cut groove is repeated so as to produce a plurality of cut grooves so that the first reflection edge of the respective surface acoustic wave devices are sequentially formed. Next, similarly, cut grooves are sequentially formed on the surface acoustic wave mother substrate from the one main-face side thereof so as not to reach the other main surface thereof, whereby the second reflection edges of the respective surface acoustic wave devices are sequentially formed.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: October 28, 2003
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Hideya Horiuchi, Michio Kadota, Junya Ago, Seigo Hayashi, Yasunori Takakuwa
  • Publication number: 20030188427
    Abstract: A process for the manufacture of small sensors with reproducible surfaces, including electrochemical sensors. One process includes forming channels in the surface of a substrate and disposing a conductive material in the channels to form an electrode. The conductive material can also be formed on the substrate by other impact and non-impact methods. In a preferred embodiment, the method includes the steps of providing a continuous substrate web, and disposing a pattern of a conductive material on the continuous substrate web to form one or more working electrodes and/or counter electrodes.
    Type: Application
    Filed: March 31, 2003
    Publication date: October 9, 2003
    Applicant: TheraSense, Inc.
    Inventors: James Say, Michael F. Tomasco, Adam Heller, Yoram Gal, Behrad Aria, Ephraim Heller, Phillip John Plante, Mark S. Vreeke
  • Patent number: 6629341
    Abstract: A method for fabricating a piezoelectric macro-fiber composite actuator comprises providing a piezoelectric material that has two sides and attaching one side upon an adhesive backing sheet. The method further comprises slicing the piezoelectric material to provide a plurality of piezoelectric fibers in juxtaposition. A conductive film is then adhesively bonded to the other side of the piezoelectric material, and the adhesive backing sheet is removed. The conductive film has first and second conductive patterns formed thereon which are electrically isolated from one another and in electrical contact with the piezoelectric material. The first and second conductive patterns of the conductive film each have a plurality of electrodes to form a pattern of interdigitated electrodes. A second film is then bonded to the other side of the piezoelectric material. The second film may have a pair of conductive patterns similar to the conductive patterns of the first film.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: October 7, 2003
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: W. Keats Wilkie, Robert G. Bryant, Robert L. Fox, Richard F. Hellbaum, James W. High, Antony Jalink, Jr., Bruce D. Little, Paul H. Mirick
  • Patent number: 6622368
    Abstract: A method of manufacturing a transducer of the type having a diaphragm (11) with a predetermined tension. After the transducer has been manufactured with its basic structure the diaphragm is adjusted to have a predetermined tension, which is preferably low in order to obtain a high sensitivity. Two embodiments are disclosed. One embodiment includes heating the transducer to a temperature above the glass transition temperature of the material (12, 14) retaining the diaphragm. Another embodiment includes measuring the actual tension of the diaphragm, which can be used to calculate an adjustment of the thickness of the diaphragm resulting in the desired tension.
    Type: Grant
    Filed: January 5, 2001
    Date of Patent: September 23, 2003
    Assignee: SonionMEMS A/S
    Inventors: Matthias Müllenborn, Pirmin Rombach
  • Publication number: 20030173493
    Abstract: The light receiving sections of solid-state image sensing devices (2a and 2b) are disposed on a base (1) to adjoin each other, and are fixed with an adhesive resin (11). A transparent film (3) is formed on the light receiving sections so as to wholly cover a gap (25) and have a flat surface on which a layer of a scintillator (4) is formed.
    Type: Application
    Filed: May 21, 2003
    Publication date: September 18, 2003
    Inventors: Takuya Homme, Toshio Takabayashi
  • Patent number: 6618927
    Abstract: A sensing element, disposed in a housing, has a gas contact portion exposed to a measured gas. A protective cover extends from a distal end of the housing so as to surround the gas contact portion of the sensing element. A first metallic cover surrounds signal output terminals and leads connected to the sensing element. In manufacturing the first metallic cover, a shot blasting is applied to a surface of a semi-finished product of the first metallic cover.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: September 16, 2003
    Assignee: Denso Corporation
    Inventors: Hideyuki Tajima, Norihiko Nakano
  • Patent number: 6621266
    Abstract: A micromachined magnetometer is built from a rotatable micromachined structure on which is deposited a ferromagnetic material magnetized along an axis parallel to the substrate. A structure rotatable about the Z-axis can be used to detect external magnetic fields along the X-axis or the Y-axis, depending on the orientation of the magnetic moment of the ferromagnetic material. A structure rotatable about the X-axis or the Y-axis can be used to detect external magnetic fields along the Z-axis. By combining two or three of these structures, a dual-axis or three-axis magnetometer is obtained.
    Type: Grant
    Filed: October 23, 2000
    Date of Patent: September 16, 2003
    Assignee: Analog Devices, Inc.
    Inventors: Richard S. Payne, Yang Zhao
  • Patent number: 6617042
    Abstract: A degassed polyester varnish is applied to the transduction driver to increase surface dielectric strength (insulation resistance), driver voltage breakdown, physical protection, and heat and water resistance. A vacuum chamber application process is used to apply the polyester varnish. The disclosed coating technique is applicable to all transducer drive materials and all transducer types.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: September 9, 2003
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Matthew M. DeAngelis
  • Patent number: 6591703
    Abstract: A sensor has a housing, in which there is arranged a thermosetting molding compound which is encapsulated in a linear region in the longitudinal direction of the housing by a thermoplastic molding compound. The two molding compounds meet at a conical contact surface. An electrical terminal element is electrically connected to a printed-circuit board via lines. The printed-circuit board is embedded into the two molding compounds at the level of the center line, the thermosetting molding compound enclosing all the electrically active components and conductor tracks of the printed-circuit board. Annular grooves are arranged on the outer side of the thermosetting molding compound. Due to the encapsulation, the thermoplastic molding compound engages in these annular grooves in a positively and non-positively engaging manner.
    Type: Grant
    Filed: May 2, 2001
    Date of Patent: July 15, 2003
    Assignee: Balluff GmbH
    Inventors: Ernst Gass, Michael Fritton, Josef Mayer, Walter Roth
  • Publication number: 20030110865
    Abstract: A compact pressure sensor of capacitive type includes a pressure sensor housing assembly, which contains a reference cavity in which a high vacuum exists and which has a minimum volume. The pressure sensor housing comprises an upper base plate, a thinner shielding plate and a movable diaphragm, and a small cavity formed between the shielding plate and movable diaphragm. A narrow channel extends from the cavity to the outside and they form a reference cavity. At the mouth of the channel a recess is provided containing an elastically mounted getter body which is capable of being thermally activated, so that a portion of the surface of the getter body is a wall surface in the reference cavity. A closing lid having a low projecting profile is placed in a gastight way in the recess and engages the getter body. When simultaneously closing the reference cavity and activating the getter body, the lid is attached to a heating probe at a distance from the sensor housing and the getter body is placed in the recess.
    Type: Application
    Filed: August 20, 1999
    Publication date: June 19, 2003
    Inventor: STAFFAN JOHSSON
  • Patent number: 6571443
    Abstract: A method of manufacture and a piezoelectric transducer are provided having a housing whose interior contains a piezoelectric element having radially spaced surfaces which undergo relative shear and produce an electrical signal in response thereto, an outer radial surface of the piezoelectric element being soldered to the interior of the housing, and an inner radial surface of the piezoelectric element is soldered to the outer surface of a stress/strain transmitting element. The solder alloy used shrinks less than →2.5% solidification. The subassembly made up of the piezoelectric element and the stress/strain transmitting element is provided with a passage to permit escape of gas from a chamber above the piezoelectric member which may be present from vapors attendant soldering.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: June 3, 2003
    Assignee: Oceana Sensor Technologies
    Inventors: Richard Lally, Isaak Baber
  • Patent number: 6571445
    Abstract: The present invention provides an transducer and a method of making the same. The transducer is comprised of a plurality of transducer cells, and conductive interconnects between the cells. Each transducer cell contains a bottom electrode formed on a layer of insulator material, a lower insulating film portion formed over the bottom electrode, a middle insulating film portion that includes an air/vacuum void region, and an upper insulating film portion that includes a top electrode formed within a portion of the upper insulating film portion. A first layer of interconnects electrically connect the bottom electrodes of each transducer cell and a second layer of interconnects electrically connect the top electrodes of each transducer cell. The top and bottom layers of interconnects are patterned to avoid overlap between them, thus reducing the parasitic capacitance.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: June 3, 2003
    Inventor: Igal Ladabaum
  • Patent number: 6546982
    Abstract: Method and apparatus for mounting a transponder module (602, 602a, 702, 951, 1000, 1020, 1102, 1102′, 1402) and an antenna (740, 740′, 862, 940, 1140, 1140′, 1200, 1300, 1320, 1360, 1360′, 1440, 1460) in a pneumatic tire (312, 630, 1204, 1350, 1350′), and for coupling or connecting the antenna to the transponder module. A patch (600, 700, 700′, 850, 950, 980, 1100, 1100′, 1210, 1356, 1356′, 1400) has an opening (620, 720, 720′, 856, 956, 986, 1120, 1120′, 1420) extending to a cavity (622, 722, 860, 960, 990, 1122, 1122′, 1422) within the body of the patch. The transponder module is removably retained in the cavity by a resilient annular lip (624, 724, 724′, 858, 958, 988, 1124, 1124′, 1424) extending around the opening.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: April 15, 2003
    Assignee: The Goodyear Tire & Rubber Company
    Inventors: Robert Walter Brown, Richard Stephen Pollack
  • Patent number: 6543110
    Abstract: Pre-strained electroactive polymers are described that improve conversion from electrical to mechanical energy. When a voltage is applied to electrodes contacting a pre-strained polymer, the polymer deflects. This deflection may be used to do mechanical work. The pre-strain improves the mechanical response of an electroactive polymer. Also described herein are actuators that include an electroactive polymer and mechanical coupling to convert deflection of the polymer into mechanical work. Further described are compliant electrodes that conform to the shape of a polymer. Methods for fabricating electromechanical devices including one or more electroactive polymers are also described.
    Type: Grant
    Filed: July 20, 2000
    Date of Patent: April 8, 2003
    Assignee: SRI International
    Inventors: Ronald E. Pelrine, Roy D. Kornbluh, Seajin Oh, Jose P. Joseph
  • Publication number: 20030041437
    Abstract: Method and system for assembling a multisensor device that includes at least two sensors operable to provide a respective stream of pulses indicative of angular information of a rotating object are provided. The sensors are assembled so that the streams of pulses have an accurate phasing relationship relative to one another. The method allows to provide a sensor carrier. The method further allows to locate the sensor carrier to have a predefined spatial relationship relative to a target wheel. The sensor carrier includes a passageway for receiving each of the sensors. The passageway allows slidable movement to selected ones of the sensors along a phasing axis. As relative movement between the target wheel and the sensor carrier occurs, each of the sensors is energized to provide a respective stream of pulses. A determining action allows to determine the phasing relationship of each stream of pulses relative to one another.
    Type: Application
    Filed: August 31, 2001
    Publication date: March 6, 2003
    Inventors: John Derek Williams, James E. Walters
  • Publication number: 20030005782
    Abstract: A component includes a housing (110, 1110) at least partially defining a cavity (125, 1125), a sensor element (105) located in the cavity, and a support member (340, 1140) located over the cavity, located over at least a portion of the housing, and having a hole (341, 1141) over the cavity. The component also includes a filter (345, 700, 800, 1045) located over the support member and located over the hole in the support member.
    Type: Application
    Filed: July 9, 2001
    Publication date: January 9, 2003
    Applicant: Motorola, Inc.
    Inventors: William G. McDonald, David J. Monk, James E. Hannibal, Slobodan Petrovic
  • Publication number: 20020184954
    Abstract: This invention provides a piezometric device to measure ground water having a fluid container in which the piezometric element is immersed so that it is permanently saturated. An opening above the level of the piezometric element allows fluid in a container to be retained and yet equalized with surrounding ground water to provide pressure readings. This avoids the device becoming unreliable should the water level fluctuate. A releasable seal may be placed over the opening into the container 2 to keep the fluid within the housing during transportation.
    Type: Application
    Filed: May 13, 2002
    Publication date: December 12, 2002
    Inventor: Julian Peter Tyson
  • Patent number: 6474134
    Abstract: The present invention provides a method for adjusting the sensitivity of an acceleration detecting device comprising a pair of piezoelectric elements, of an acceleration sensor device for detecting an externally acting acceleration. According to this method, electric charges produced in the pair of piezoelectric elements placed at positions being symmetric with respect to a weight are made to be equal to each other. The electric outputs of the piezoelectric elements are changed by varying the electrostatic capacity of the acceleration sensor device. Thus, noise sensitivity is suppressed.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: November 5, 2002
    Assignees: NGK Insulators, Ltd., NGK Optoceramics Co., Ltd.
    Inventors: Hiroyuki Takahashi, Kazuyoshi Shibata, Hideki Andoh
  • Patent number: 6457857
    Abstract: A sheathed and flanged temperature probe is formed using a cylindrical sheath and a flange of the same metallic material. The cylindrical sheath is closed on one end and open on the other, and has a length at least an order of magnitude greater than its outer diameter. The temperature sensing element is inserted into the sheath, leaving wires protruding from the open end of the sheath. The sheath may contain an epoxy in the closed end to insulate and stabilize the sensing element. The central portion of the sheath remains empty except for wires connecting the sensing element to the electrical leads. The open end of the sheath is sealed around two electrical leads, enclosing the temperature sensing element from ambient conditions. The flange member is formed from a single piece of metal, cold drawn using an awl to form a continuous sleeve having an axis perpendicular to the planar surface of the flange. The sheath is inserted into the sleeve.
    Type: Grant
    Filed: August 4, 2000
    Date of Patent: October 1, 2002
    Assignee: Mamac Systems, Inc.
    Inventor: S. Asim Gul
  • Patent number: 6453526
    Abstract: The present invention discloses an ultrasonic phased array transducer with an ultralow backfill and a method for making. The ultrasonic phased array includes a low density backfill material having an ultralow acoustic impedance. The backfill material is either an aerogel, a carbon aerogel, an xerogel, or a carbon xerogel. A piezoelectric ceramic material and two matching layers are bonded to the backfill material. In one embodiment, a plurality of interconnect vias are formed in the backfill material with conducting material deposited in the vias. A portion of the bonded matching layers, the piezoelectric ceramic material, and the backfill material have isolation cuts therethrough to form an array of electrically and acoustically isolated individual elements. In a second embodiment, the backfill material is bonded to an electronic layer at a face opposite to the piezoelectric ceramic material and the matching layers.
    Type: Grant
    Filed: April 9, 2001
    Date of Patent: September 24, 2002
    Assignee: General Electric Company
    Inventors: Peter William Lorraine, Lowell Scott Smith
  • Patent number: 6435005
    Abstract: A heater pattern for a heater of a gas sensor in which a temperature profile is manipulated utilizes a thermistor element arranged in an electrically serial configuration and disposed on a substrate. The thermistor element is arranged so as to define an edge pattern extending about a perimeter of the substrate and a center pattern serially connected to the edge pattern. The center pattern extends over a portion of the substrate that is intermediate the perimeter of the substrate. In a preferred embodiment, the thermistor element is screen printed onto the substrate to a thickness of about 5 microns to about 50 microns, and preferably to a thickness of about 10 microns to about 40 microns. The edge and center patterns are furthermore preferably formed of materials having differing coefficients of thermal resistivity, e.g., platinum and platinum/palladium blends.
    Type: Grant
    Filed: December 19, 2000
    Date of Patent: August 20, 2002
    Assignee: Delphi Technologies, Inc.
    Inventors: Paul C. Kikuchi, Lone-Wen F. Tai, Walter T. Symons
  • Patent number: 6414584
    Abstract: An electrical brush wiper for use in a position sensor to contact an electrically resistive surface. The wiper has a metallic beam having a channel. The channel is formed from a pair of parallel extending flanges. One of the flanges is attached to the beam. Carbon fibers are secured within the channel between the flanges. The flanges have several tabs for securing the fibers in the channel. The tabs can be welded to the flanges.
    Type: Grant
    Filed: September 24, 1999
    Date of Patent: July 2, 2002
    Assignee: CTS Corporation
    Inventors: Shengli Liu, John Zdanys, Norman C. Weingart
  • Publication number: 20020050052
    Abstract: In a method for manufacturing a sensor apparatus having a sensor chip disposed in a recess of a case, after the sensor chip is disposed in the recess of the case, an opening portion of the recess is closed with a sheet member. The sheet member can prevent foreign matters from intruding an inside of the recess during manufacturing steps. After that, a through hole is formed in the sheet member. Accordingly, the inside and outside of the recess communicate with each other, and the sensor chip can detect an external environment of the recess such as atmospheric pressure.
    Type: Application
    Filed: August 7, 2001
    Publication date: May 2, 2002
    Inventors: Minoru Tokuhara, Yukihiro Kato
  • Publication number: 20020050171
    Abstract: A method for manufacturing a sensor component, in particular, a thin-film high-pressure sensor, as well as a sensor component, is described, in which at least one measuring element, in particular an expansion measuring strip is arranged on a membrane, and separated from the membrane through an electrically insulating film, the measuring element being arranged on an electrically insulating substrate, which is mounted in a subsequent step onto the membrane on the side that faces away from the measuring element, so that the electrically insulating substrate forms the electrically insulating film. The electrically insulating substrate performs both a carrier function during the application of the expansion measuring strip to the substrate as well as an insulation function after the mounting of the substrate onto the membrane. In this way, the application of a separate insulation film made of silicon dioxide becomes unnecessary.
    Type: Application
    Filed: July 20, 2001
    Publication date: May 2, 2002
    Inventor: Joachim Gluck
  • Patent number: 6374478
    Abstract: A system for manufacturing a straight tube Coriolis Flowmeter. The system of this invention provides a process for connecting a flow tube assembly including a balance bar and a flow tube to at least two points inside a casing. The process provides an inexpensive way to use localized heat to affix the flow tube assembly to the two points. The use of localized heat reduces damage caused by expansion of components caused by heat as well reduces damage to electrical components in the casing.
    Type: Grant
    Filed: June 30, 1999
    Date of Patent: April 23, 2002
    Assignee: Micro Motion, Inc.
    Inventors: Gregory Alan Neece, James Vernon Decker, Clinton Ray Griffin, Edwin Arthur Hagerman, III, Curtis John Ollila, Michael Leon Overfelt, Kevin Robert Piletic, John Randolph Roper, Michael Benton Shelton
  • Publication number: 20020038508
    Abstract: Firstly, a supporting frame is produced, whose opening is spanned by an auxiliary layer flush on one side. Following the production of microstructures, flat parts or membranes on the common plane defined by the auxiliary layer and the supporting frame, the auxiliary layer is removed, preferably by etching. In a preferred application, the self-supporting microstructures produced in accordance with the method of the invention are used as electrically heatable resistance grids in a device for measuring weak gas flows.
    Type: Application
    Filed: October 1, 2001
    Publication date: April 4, 2002
    Inventor: Gunter Trausch
  • Patent number: 6334361
    Abstract: The present invention discloses a sensor and a method of its manufacture. The sensor is used to sense position shifts, motional velocities or rotational speeds of an encoder and comprises a housing which accommodates electric components. The housing is made up of a first housing part of plastics which is at least in part enwrapped by a second injection-molded housing part that is also made of plastics. The first housing part is designed integrally with at least one positioning element molecularly interfaced with the second housing part.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: January 1, 2002
    Assignee: Continental Teves AG & Co., OHG
    Inventors: Edmond De Volder, Andre Goossens, Marc Panis, Peter Volz
  • Publication number: 20010052180
    Abstract: A socket test probe and a method of making the probe which results in a probe head which has flat plates which serve as electrodes encased in resin. The electrodes are conductive plates with one or more edges of the conductive plates exposed for connection to the electrodes of a socket. The entire probe head starts as a solid block of conductive material which is drilled, machined, filled with resin and machined again to form a socket testing probe utilizing the edges of conductive plates as electrodes.
    Type: Application
    Filed: February 23, 2001
    Publication date: December 20, 2001
    Inventors: Gary A. Clayton, Douglas G. Hastings
  • Patent number: 6321438
    Abstract: A method of applying a matching layer to a transducer includes placing the transducer on a fixture and covering the transducer with a stencil so that an opening in the stencil allows access to a metal-coated, piezoelectric surface of the transducer, and so that the stencil is affixed to the transducer surface. A roughly cylindrically shaped bead of epoxy is extruded onto the stencil at a predetermined distance from the opening, and a blade is positioned upstanding relative to the transducer surface and located so that the bead lies between the blade and the opening. The fixture is moved laterally so that the blade rolls the bead across the exposed transducer surface to form a layer of epoxy thereon. The fixture can then be moved back in the opposite direction to its initial position if desired. The assembly can also be subjected to a vacuum before the fixture is returned to its initial position. If desired, the fixture can be designed to vibrate during movement.
    Type: Grant
    Filed: May 1, 1998
    Date of Patent: November 27, 2001
    Assignee: SciMed Life Systems, Inc.
    Inventors: Don S. Mamayek, Veijo Suorsa
  • Patent number: 6303013
    Abstract: A gas sensor has a housing integrally formed with a caulked fixation portion. A detection element is inserted into the housing and fixed therein by caulking the caulked fixation portion via a sealing member such as a metallic ring. The caulked fixation portion is composed of a caulked portion and a buckling portion, and satisfies dimensional relationships of T1<T3<T2; 2<T2/T1, and 3<L/{(T1+T2)/2}. T1 is a minimum thickness of the caulked portion, and T2 is a maximum thickness of the caulked portion. T3 is an average thickness of the buckling portion, and L is a length of the caulked portion in an axial direction of the gas sensor.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: October 16, 2001
    Assignee: Denso Corporation
    Inventors: Isao Watanabe, Takashi Kojima
  • Publication number: 20010023528
    Abstract: A sensor, such as a proximity sensor, having its components sealed within a case, has its sensitivity adjusted with a remotely settable digital potentiometer after assembly of the sensor. The adjustment connection is then destroyed.
    Type: Application
    Filed: May 29, 2001
    Publication date: September 27, 2001
    Inventors: Frederick W. Hintz, Stephen J. Postma
  • Patent number: 6263723
    Abstract: The present invention provides a gas sensor element having properties capable of detecting methane and carbon monoxide selectively with 1 sensor by improving gas selectivity of the semiconductor gas sensor. The present invention relates to a gas sensor element, which has a carbon monoxide sensor layer with an ability to function as a catalyst film that blocks carbon monoxide, which impedes detection of methane at the underlying methane sensor, and has a layer-built structure where the surface of a methane sensor is covered with the carbon monoxide gas sensor which can be obtained by a gas-phase method.
    Type: Grant
    Filed: March 14, 2000
    Date of Patent: July 24, 2001
    Inventors: Yasumasa Takao, Masanobu Awano, Mutsuo Sando
  • Patent number: 6194894
    Abstract: To make it possible for a rotation angle sensor to be manufactured and assembled more easily and more accurately, the part components of a stator element (21) made of a ferritic material are held in a sintered stator body, made by a sintering technique, by at least one holding element in a holding recess of a base element made of a non-magnetizable material. A magnetic holding device (26, 27) is a holding element made by a metal injection moulding (MIM) technique with an at least partly formed magnetic isolation zone and at least one recess. An annular magnetic element (24) is attached inside the MIM holding device by means of at least one slit-shaped recess and at least one compatible linking element, and positioned at a given angle (&agr;) in relation to a gap, between the sintered stator bodies.
    Type: Grant
    Filed: December 14, 1998
    Date of Patent: February 27, 2001
    Assignee: AB Eletronik GmbH
    Inventors: Peter Apel, Marion Hauschopp
  • Patent number: 6131267
    Abstract: The encapsulated transducer (10) includes an injection molded encapsulation (20) having a front end (22) and a back end (24). The encapsulation (20) ensconces a sensing element (40) proximate the front end (22) and a portion of a cable (60) which extends from the back end (24). The sensing element or coil (40) is electrically and mechanically connected to the cable (60) by a pair of suitably sized front and rear ferrules (80), (90) secured to a center and coaxial conductor (66), (70) of the associated cable (60) thereby forming a coil and cable assembly (110). At least the rear ferrule (90) includes a shoulder (100) for firmly anchoring the coil and cable assembly (110) within the encapsulation (20). In addition an injection molding process provides the durable encapsulation (20) which bonds with a dielectric (68) of the cable (60) and symmetrically locks the coil and cable assembly (110) therein.
    Type: Grant
    Filed: June 22, 1998
    Date of Patent: October 17, 2000
    Assignee: Bently Nevada Corporation
    Inventor: Dave Van Den Berg
  • Patent number: 6111407
    Abstract: A method of producing a magnetic field sensor, whose sensor element is formed by at least one piece of wire comprising amorphous or nanocrystalline ferromagnetic material, whose electrical impedance is dependent on the magnetic field. The piece of wire is connected by an electrical terminal of nonferromagnetic metal. The ends of the at least one piece of wire are press-fitted into two spaced-apart conductors of nonferromagnetic metal, in particular copper.
    Type: Grant
    Filed: February 25, 1998
    Date of Patent: August 29, 2000
    Assignee: Securiton General Control Systems Gesellschaft m.b.H.
    Inventors: Hans Hauser, Johann Nicolics, Herbert Newald, Horst Bruggraber
  • Patent number: 6075870
    Abstract: A transducer which is particularly suitable for hearing aids is set forth which has improved resistance to mechanical shock. The transducer includes a coil having a tunnel, a magnetic member with a pair of magnets defining an air gap and an armature extending through the tunnel and into the air gap. The coil is rotated with respect to the magnetic member in a manner such that the coil forms a stop for the armature, thus preventing excessive deflection of the armature leg in the occurrence of a shock. The armature may also be provided with expanded edge portions which assist in limiting its deflection.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: June 13, 2000
    Assignee: Microtronic B.V.
    Inventors: Onno Geschiere, Hendrik Dolleman, Huib Groot Obbink, Aart Zeger van Halteren
  • Patent number: 6072312
    Abstract: An encapsulated transducer (10) includes an injection molded encapsulation (20) having a front end (22) and a back end (24). The encapsulation (20) is a monolith of cured moldable material ensconcing a sensing element (90) proximate the front end (22) and a portion of an information transmitting medium (120) emanating from the back end (24). A component alignment preform (40) operatively couples the sensing element (90) with the information transmitting medium or cable (120). The component alignment preform (40) includes a front ferrule (70) and a rear ferrule (80) bonded thereto and linearly spaced apart along a long axis "A". The component alignment preform (40) further includes an annular recess (44) in which the sensing element or coil (90) is placed so that it is linearly spaced and aligned along the common long axis "A" in which the front and rear ferrules (70), (80) are aligned.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: June 6, 2000
    Assignee: Bently Nevada Corporation
    Inventor: Dave Van Den Berg
  • Patent number: 6018861
    Abstract: A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.
    Type: Grant
    Filed: August 15, 1996
    Date of Patent: February 1, 2000
    Assignee: The United States of America as represented by the United States National Aeronautics and Space Administration
    Inventors: Mark Sheplak, Catherine B. McGinley, Eric F. Spina, Ralph M. Stephens, Purnell Hopson, Jr., Vincent B. Cruz
  • Patent number: 5973598
    Abstract: An enhanced identification tag produces an identification (ID) signal, i.e., a radio frequency (RF) signal carrying identification information, capable of being interpreted by an electronic reader device. An identification tag in accordance with the invention is characterized by a flexible substrate, programmable encoder circuitry formed on said substrate defining identification information, an antenna, and signal generator circuitry carried by said substrate responsive to said encoder circuitry for applying a radio frequency signal bearing said identification information to said antenna. A preferred tag is fabricated using a printing process to mark a conductive pattern, e.g., comprised of a conductive ink based on silver, carbon, etc., on a flexible substrate, e.g., polytethyline, polyvinyl chloride or other plastic type material.
    Type: Grant
    Filed: September 9, 1998
    Date of Patent: October 26, 1999
    Assignee: Precision Dynamics Corporation
    Inventor: Michael L. Beigel
  • Patent number: 5963028
    Abstract: A magnetic field sensor assembly has a magnet, a semiconductor sensor and a metal leadframe encapsulated in a plastic package to form a semiconductor integrated circuit. A metal leadframe has a die attach pad on which the sensor is secured and an assembly having one or more projections for securing the magnet in close proximity to the sensor. The leadframe is made from a metal having sufficient spring tension so that the assembly having the projections will secure the magnet. The sensor is adjacent to a ferromagnetic object and will detect a change in magnetic field caused by the ferromagnetic object. Only a thin layer of the plastic package covers the sensor thus reducing the distance between the sensor and the ferromagnetic object but still maintaining an air gap between the plastic package and the ferromagnetic object sufficient to allow passage of the ferromagnetic object.
    Type: Grant
    Filed: August 19, 1997
    Date of Patent: October 5, 1999
    Assignee: Allegro MicroSystems, Inc.
    Inventors: Raymond W Engel, Ravi Vig, Jay Gagnon J Gagnon
  • Patent number: 5954850
    Abstract: The present provides a method for making glass pressure sensors in batch. First glass plates of appropriate dimensions are scribed. Then electrodes are sputters onto each of the plates, followed by screen printing a frit layer and crossover tabs. The plates are then preglazed and bonded together to form a plurality of sensors. The plates are then scribed and broken along the scribes to form individual sensors.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: September 21, 1999
    Inventors: Anthony J. Bernot, Raymond H. Niska, Nicholas F. Schmidt
  • Patent number: 5920983
    Abstract: An electrostatic supporting type acceleration detecting gyro apparatus is formed as an active type so as to be able to positively cancel a displacement of a gyro rotor. Control DC voltages for generating electrostatic supporting forces and displacement detection AC voltages for detecting a displacement of gyro rotor are applied to electrostatic supporting electrodes, and mechanism control circuits detect displacement indicating voltage signals (P.sub.1A) through (P.sub.4B). A displacement of the gyro rotor and the control DC voltages applied to the electrostatic supporting electrodes are computed based on the displacement detection voltages (P.sub.1A) through (P.sub.4B) outputted from the mechanism control circuits.
    Type: Grant
    Filed: February 10, 1997
    Date of Patent: July 13, 1999
    Assignee: Tokimec Inc.
    Inventors: Takao Murakoshi, Takeshi Hojo, Takafumi Nakaishi, Shigeru Nakamura
  • Patent number: 5867886
    Abstract: A media-compatible, high-pressure transducer cell (12), a rugged sensor assembly (10) incorporating the cell (12), and a method for its production. The pressure cell (12) generally includes a metal body having a diaphragm (26), at least one dielectric layer (28, 38) on the diaphragm (26), and at least one thick-film piezoresistive element (34) on the dielectric layer (28, 38) for sensing deflection of the diaphragm (26). For purposes of compatibility with a wide variety of media, the metal body is preferably formed of steel, most preferably a stainless steel alloy such as an AISI Type 300 or 400 Series. The diaphragm (26) can be formed by etching or machining the metal body. The dielectric layers (28, 38) are preferably formed by thick-film processing as done for the piezoresistive element (34), employing materials that will adhere to the metal diaphragm (26), withstand the strains induced as the diaphragm (26) deflects, and faithfully transmit such strains to the thick-film piezoresistor (34).
    Type: Grant
    Filed: October 20, 1997
    Date of Patent: February 9, 1999
    Assignee: Delco Electronics Corp.
    Inventors: Joseph Martin Ratell, John Marcus Hart, Jr.
  • Patent number: 5818224
    Abstract: An encapsulated transducer (10) includes an injection molded encapsulation ensconcing a sensing element (90) proximate the front end (22) and a portion of an information transmitting medium (120) emanating from the back end (24). A component alignment preform (40) operatively couples the sensing element (90) with the information transmitting medium (120). The preform (40) includes a front ferrule (70) and a rear ferrule (80) bonded thereto and linearly spaced apart along a long axis "A". The preform (40) further includes an annular recess (44) in which the sensing element or coil (90) is placed. A first lead (98) and a second lead (100) of the coil are electrically connected to the front ferrule (70) and the rear ferrule (80), respectively. A back end (48) of the preform (40) receives a stripped end (122) of the cable (120) such that a plurality of conductors are operatively coupled to the front ferrule (70) and the rear ferrule (80) and to the leads of the coil.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: October 6, 1998
    Assignee: Bently Nevada Corporation
    Inventor: Dave Van Den Berg
  • Patent number: 5770941
    Abstract: The encapsulated transducer (10) includes an injection molded encapsulation (20) having a front end (22) and a back end (24). The encapsulation (20) ensconces a sensing element (40) proximate the front end (22) and a portion of a cable (60) which extends from the back end (24). The sensing element or coil (40) is electrically and mechanically connected to the cable (60) by a pair of suitably sized front and rear ferrules (80), (90) secured to a center and coaxial conductor (66), (70) of the associated cable (60) thereby forming a coil and cable assembly (110). At least the rear ferrule (90) includes a shoulder (100) for firmly anchoring the coil and cable assembly (110) within the encapsulation (20). In addition an injection molding process provides the durable encapsulation (20) which bonds with a dielectric (68) of the cable (60) and symmetrically locks the coil and cable assembly (110) therein.
    Type: Grant
    Filed: October 13, 1995
    Date of Patent: June 23, 1998
    Assignee: Bently Nevada Corporation
    Inventor: Dave Van Den Berg