With Dual Gap Materials Patents (Class 29/603.11)
  • Patent number: 11289116
    Abstract: A PMR, TAMR or MAMR (Perpendicular Magnetic Recording, Thermally Assisted Magnetic Recording or Microwave Assisted Magnetic Recording) slider-mounted read/write head produces less heat during operation by using magnetic read shields in which are embedded a patterned layer of thermally absorbing material. At least one shield includes a heating coil which is used to adjust the fly-height of the slider by creating a thermal protrusion at the slider ABS. When additional sources of energy, such as laser heating, microwave heating or the write coil itself, are applied to the recording medium, the shields can overheat, adversely affecting their performance. The patterned layer of heat absorbing material reduces the flow of heat from the thermal heating coil to the air bearing surface (ABS) thus cooling the region around the write head while not adversely affecting the shape of the thermal protrusion.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: March 29, 2022
    Assignee: Headway Technologies, Inc.
    Inventors: Kowang Liu, Yuhui Tang, Siu Yin Ngan, Qinghua Zeng, Ellis Cha
  • Patent number: 10062732
    Abstract: A magnetic memory device comprises a first reference magnetic layer, a first tunnel barrier layer, a second tunnel barrier layer, and a free magnetic layer disposed between the first tunnel barrier layer and the second tunnel barrier layer. A magnitude of an in-plane magnetostatic field from the first reference magnetic layer at an edge of the free magnetic layer is less than about 500 Oe. One embodiment comprises a second reference magnetic layer on the second tunnel barrier layer in which the first reference magnetic layer, the first tunnel barrier layer, the free magnetic layer, the second tunnel barrier layer and the second reference magnetic layer are arranged as a stack, and in which a width of the first tunnel barrier layer, the free magnetic layer, the second tunnel barrier and the second reference magnetic layer in a second direction is less than about 30 nm.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: August 28, 2018
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dmytro Apalkov, Mohamad Krounbi, Vladimir Nikitin, Volodymyr Voznyuk
  • Patent number: 8978240
    Abstract: A CPP-GMR spin valve having a composite spacer layer comprised of at least one metal (M) layer and at least one semiconductor or semi-metal (S) layer is disclosed. The composite spacer may have a M/S, S/M, M/S/M, S/M/S, M/S/M/S/M, or a multilayer (M/S/M)n configuration where n is an integer?1. The pinned layer preferably has an AP2/coupling/AP1 configuration wherein the AP2 portion is a FCC trilayer represented by CoZFe(100-Z)/FeYCo(100-Y)/CoZFe(100-Z) where y is 0 to 60 atomic %, and z is 75 to 100 atomic %. In one embodiment, M is Cu with a thickness from 0.5 to 50 Angstroms and S is ZnO with a thickness of 1 to 50 Angstroms. The S layer may be doped with one or more elements. The dR/R ratio of the spin valve is increased to 10% or greater while maintaining acceptable EM and RA performance.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: March 17, 2015
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Moris Dovek, Yue Liu
  • Patent number: 8914969
    Abstract: A method fabricates a magnetic transducer. A sacrificial leading shield is provided on an etch stop layer. A nonmagnetic layer is provided on the sacrificial leading shield. A pole trench is formed in the nonmagnetic layer and on the sacrificial leading shield. A pole is formed. The pole has a bottom and a top wider than the bottom in a pole tip region. Part of the pole in the pole tip region is in the pole trench and at the ABS location. The sacrificial leading shield and part of the nonmagnetic layer adjacent to the pole are removed. An air bridge thus resides in place of the sacrificial leading shield between the portion of the pole and the etch stop layer. As least one shield layer is provided. The at least one shield layer substantially fills the air bridge and form a monolithic shield including a leading and side shields.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: December 23, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Xiaotian Zhou, Hongzhou Jiang, Donghong Li, Lien-Chang Wang, Ching-Huang Lu, Wencheng Su, Lieping Zhong, Tao Pan
  • Patent number: 8914970
    Abstract: A tunneling magnetoresistive sensor has an extended pinned layer wherein both the MgO spacer layer and the underlying ferromagnetic pinned layer extend beyond the back edge of the ferromagnetic free layer in the stripe height direction and optionally also beyond the side edges of the free layer in the trackwidth direction. A patterned photoresist layer with a back edge is formed on the sensor stack and a methanol (CH3OH)-based reactive ion etching (RIE) removes the unprotected free layer, defining the free layer back edge. The methanol-based RIE terminates at the MgO spacer layer without damaging the underlying reference layer. A second patterned photoresist layer may be deposited and a second methanol-based RIE may be performed if it is desired to have the reference layer also extend beyond the side edges of the free layer in the trackwidth direction.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: December 23, 2014
    Assignee: HGST Netherlands B.V.
    Inventor: Jordan Asher Katine
  • Patent number: 8826515
    Abstract: A write head includes a first pole P1, a P1 pedestal, a first back gap layer plated on top of the first pole P1 leaving a region between the P1 pedestal and the first back gap layer for plating a coil. Further, a first insulation layer is applied on top of the P1 pedestal and the first back gap layer and the region between the P1 pedestal and the first back gap layer. The write head further includes a coil, patterned at least partially on top of the P1 pedestal and the first back gap layer and the region between the P1 pedestal and the first back gap layer, copper plated in the coil patterns, and a second insulation layer is applied to fill the spaces in between the coil turns. The resulting structure is planarized via chemical mechanical polishing.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: September 9, 2014
    Assignee: HGST Netherlands B.V.
    Inventors: Terence Tin-Lok Lam, David Kaimon Lee, Edward Hin Pong Lee, Changqing Shi
  • Patent number: 8720044
    Abstract: A method for manufacturing a magnetic transducer is described. The method includes providing a negative mask having a bottom, a plurality of sides, and a top wider than the bottom. The method also includes depositing a nonmagnetic layer on the negative mask. The nonmagnetic layer has a plurality of portions covering the plurality of sides of the negative mask. The method also includes providing a first mask having a first trench therein. The negative mask resides in the first trench. The method further includes depositing side shield material(s), at least a portion of which resides in the first trench. The method further includes removing the negative mask to create a second trench between the plurality of portions of the nonmagnetic layer and form a pole, at least a portion of which resides in the second trench.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: May 13, 2014
    Assignee: Western Digital (Fremont), LLC
    Inventors: Ut Tran, Zhigang Bai, Kevin K. Lin, Li He
  • Patent number: 8607439
    Abstract: A method and system for providing an energy assisted magnetic recording (EAMR) head are described. The method and system include providing a slider, an EAMR transducer coupled with the slider, and a top layer on the slider. The top layer includes a mirror well therein and has a substantially flat top surface. The method and system further includes providing a laser including a light-emitting surface and providing a mirror optically coupled with the laser. The laser is coupled to the top surface of the top layer external to the mirror well. The mirror has a bottom surface and a reflective surface facing the light-emitting surface of the laser. A portion of the bottom surface of the mirror is affixed to the top surface of the top layer. A portion of the mirror resides in the mirror well.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 17, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lei Wang, Dujiang Wan
  • Patent number: 8533937
    Abstract: A method or forming a wrapped-around shielded perpendicular magnetic recording writer pole is disclosed. A structure comprising a leading shield layer and an intermediate layer disposed over the leading shield layer is provided, the intermediate layer comprising a pole material and a dielectric material. A trench is formed in the dielectric material. A non-magnetic layer in the trench is removed via an ion beam etching process. A seed layer is deposited in the trench and over the pole material. A magnetic material comprising a side shield layer is deposited on at least a portion of the seed layer.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: September 17, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinwen Wang, Weimin Si, Jianxin Fang, Ying Hong, Hongzhou Jiang, Ching-Huang Lu, Yan Chen, Donghong Li, Lien-Chang Wang, Lieping Zhong, Tao Pan
  • Patent number: 8495813
    Abstract: A method of making an energy-assisted magnetic recording apparatus is provided. The method comprises the step of aligning a first wafer including a plurality of vertical cavity surface emitting lasers (VCSELs) with a second wafer including a plurality of magnetic recording heads, such that an emitting region of each of the plurality of VCSELs is disposed over a light redirecting structure of a corresponding one of the plurality of magnetic recording heads. The method further comprises the step of bonding the first wafer to the second wafer.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 30, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yufeng Hu, Jinshan Li
  • Patent number: 8484830
    Abstract: A CPP-GMR spin valve having a CoFe/NiFe composite free layer is disclosed in which Fe content of the CoFe layer ranges from 20 to 70 atomic % and Ni content in the NiFe layer varies, from 85 to 100 atomic % to maintain low Hc and ?s values. A small positive magnetostriction value in a Co75Fe25 layer is used to offset a negative magnetostriction value in a Ni90Fe10layer. The CoFe layer is deposited on a sensor stack in which a seed layer, AFM layer, pinned layer, and non-magnetic spacer layer are sequentially formed on a substrate. After a NiFe layer and capping layer are sequentially deposited on the CoFe layer, the sensor stack is patterned to give a sensor element with top and bottom surfaces and a sidewall connecting the top and bottom surfaces. Thereafter, a dielectric layer is formed adjacent to the sidewalls.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: July 16, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen, Chyu-Jiuh Torng
  • Patent number: 8453317
    Abstract: Methods of fabricating magnetic write heads and electrical lapping guides (ELG's) using a split gap deposition process is described. A removal process is performed on a magnetic material to define a main write pole and to define a corresponding ELG for the main write pole. A first non-magnetic gap layer is deposited. A mask and liftoff process is performed to deposit an electrically conductive material on the first gap layer disposed along a front edge of the ELG. A second non-magnetic gap layer is then deposited and a shield is fabricated for the write pole.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: June 4, 2013
    Assignee: HGST Netherlands, B.V.
    Inventors: Donald Allen, Jennifer Ai-Ming Leung, Aron Pentek, Thomas Roucoux
  • Patent number: 8453316
    Abstract: A method of forming a magnetic head comprises the steps of: selectively exposing through the use of a photomask a photoresist layer unpatterned; forming a pattern for forming a pole layer by developing the photoresist layer after the exposure; and forming the pole layer through the use of the pattern. The photomask includes first to third regions. The first region has such a perimeter that a projection image thereof is shaped along a perimeter of an ideal shape of the top surface of the pole layer. The second region touches the perimeter of the first region, and is located outside the first region. The third region is located inside the first region without touching the perimeter of the first region. The third region suppresses deviation of the pole layer from its desired shape which may be caused by the effect of light reflected while the photoresist layer is exposed.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: June 4, 2013
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Kazuo Ishizaki, Hiroyuki Itoh
  • Patent number: 8413317
    Abstract: A method and system for fabricating a microelectric device are described. A write pole of an energy assisted magnetic recording head or a capacitor might be fabricated. The method includes depositing a resist film and curing the resist film at a temperature of at least 180 degrees centigrade. A cured resist film capable of supporting a line having an aspect ratio of at least ten is thus provided. A portion of the cured resist film is removed. A remaining portion of the resist film forms the line. An insulating or nonmagnetic layer is deposited after formation of the line. The line is removed to provide a trench in the insulating or nonmagnetic layer. The trench has a height and a width. The height divided by the width corresponds to the aspect ratio. At least part of the structure is provided in the trench.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: April 9, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Dujiang Wan, Hai Sun, Ge Yi, Wei Gao, Hong Zhang, Guanghong Luo, Yunjun Tang, Tiffany Yun Wen Jiang, Zhigang Zhou, Wencheng Su
  • Patent number: 8381391
    Abstract: A method for providing a magnetic recording transducer is described. The method includes providing a pinned layer for a magnetic element. In one aspect, a portion of a tunneling barrier layer for the magnetic element is provided. The magnetic recording transducer annealed is after the portion of the tunneling barrier layer is provided. The annealing is at a temperature higher than room temperature. A remaining portion of the tunneling barrier layer is provided after the annealing. In another aspect, the magnetic transducer is transferred to a high vacuum annealing apparatus before annealing the magnetic transducer. In this aspect, the magnetic transducer may be annealed before any portion of the tunneling barrier is provided or after at least a portion of the tunneling barrier is provided. The annealing is performed in the high vacuum annealing apparatus. A free layer for the magnetic element is also provided.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: February 26, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Chando Park, Qunwen Leng, Mahendra Pakala
  • Patent number: 8341826
    Abstract: A method and system for fabricating magnetic transducer are described. The method and system include providing a main pole having a bottom, a top wider than the bottom, and a top bevel. A nonmagnetic gap covering the main pole is provided. A portion of the nonmagnetic gap resides on the top of the main pole. A first seed layer is provided. At least a portion of the first seed layer covers the portion of the nonmagnetic gap on top of the main pole. A portion of the nonmagnetic gap on the magnetic recording transducer is removed after the first seed layer is provided. A second seed layer is provided after the portion of the nonmagnetic gap is removed. The second seed layer covers at least the portion of the first seed layer. A wrap-around shield layer is provided on the second seed layer.
    Type: Grant
    Filed: April 12, 2010
    Date of Patent: January 1, 2013
    Assignee: Western Digital (Fremont), LLC
    Inventors: Hai Jiang, Yunhe Huang, Jinwen Wang, Yun-Fei Li, Ying Hong
  • Patent number: 8336194
    Abstract: A method of fabricating a tunneling magnetoresistance (TMR) reader is disclosed. A TMR structure comprising at least one ferromagnetic layer and at least one nonmagnetic insulating layer is provided. A first thermal annealing process on the TMR structure is performed. A reader pattern definition process performed on the TMR structure to obtain a patterned TMR reader. A second thermal annealing process is performed on the patterned TMR reader.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: December 25, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Lu Yuan, Jian X. Shen, Geoffrey W. Anderson, Christopher Ng
  • Patent number: 8333008
    Abstract: A method and system for fabricating a perpendicular magnetic recording head, and the head so formed, are described. The method includes depositing an underlayer directly on an insulating layer. The underlayer preferably includes at least one of a nonferromagnetic metal, silicon oxide, and silicon nitride. A pole layer, which has a pole removal rate, is provided on the underlayer. The method and system further include forming a perpendicular magnetic recording pole from the pole layer. The perpendicular magnetic recording pole has a top and a bottom that is narrower than the top. The process of forming the perpendicular magnetic recording pole further includes removing a portion of the pole layer such that a pole removal rate for the pole layer is less than or substantially equal to a removal rate of the underlayer during the removing step.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: December 18, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Kyusik Sin, Lei Wang, Yingjian Chen
  • Patent number: 8240024
    Abstract: In one general embodiment, a method for fabricating magnetic structures using post-deposition tilting includes forming a thin film magnetic transducer structure on a substantially planar portion of a substrate such that a plane of deposition of the thin film transducer structure is substantially parallel to a plane of the substrate. Additionally, the thin film transducer structure is caused to tilt at an angle relative to the plane of the substrate. The thin film transducer is fixed at the angle after being tilted.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: August 14, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, Laurent Dellmann, Michel Despont, Philipp Herget, Pierre-Olivier Jubert
  • Patent number: 8230582
    Abstract: One preferred method for use in making a device structure with use of the resist channel shrinking solution includes the steps of forming a first pedestal portion within a channel of a patterned resist; applying a resist channel shrinking solution comprising a resist channel shrinking film and corrosion inhibitors within the channel of the patterned resist; baking the resist channel shrinking solution over the patterned resist to thereby reduce a width of the channel of the patterned resist; removing the resist channel shrinking solution; and forming a second pedestal portion within the reduced-width channel of the patterned resist. Advantageously, the oxide layer and the corrosion inhibitors of the resist channel shrinking solution reduce corrosion in the pedestal during the act of baking the resist channel shrinking solution.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: July 31, 2012
    Assignee: HGST Netherlands B.V.
    Inventors: Christian Rene Bonhote, Jila Tabib, Dennis Richard Mckean, Daniel Wayne Bedell, Jyh-Shuey Lo, Heiu Lam, Kim Y Lee
  • Patent number: 8230583
    Abstract: A method for self aligning a lapping guide with a structure of a write pole. A write pole is formed over a substrate and an electrically conductive material lapping guide material is deposited in a location that is removed from the write pole. A mask is then formed over a portion of the write pole and a portion of the electrically conductive material. A material removal process such as reactive ion etching can then be performed to remove a portion of the magnetic material that is not protected by the mask structure. An magnetic material is then electroplated over the write pole with the write pole, with the mask still in place. In this way, the electroplated material has an edge that is self aligned with an edge of the electrically conductive lapping guide material, both being defined by the same mask structure.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: July 31, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Patent number: 8225488
    Abstract: A method for providing a PMR pole in a magnetic recording transducer comprises providing a mask on an intermediate layer, the mask including a line having at least one side, providing a hard mask on the mask, a first portion of the hard mask residing on the at least one side and a second portion residing on a surface of the intermediate layer, the hard mask including a dry-etchable layer and a high removal ratio layer on the dry-etchable layer, removing at least part of the first portion of the hard mask, at least a portion of the line being exposed, removing the line, thereby providing an aperture in the hard mask corresponding to the line, forming a trench in the intermediate layer under the aperture using a removal process, and providing the PMR pole, at least a portion of the PMR pole residing in the trench.
    Type: Grant
    Filed: May 22, 2009
    Date of Patent: July 24, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinqiu Zhang, Yun-Fei Li, Ying Hong
  • Patent number: 8225486
    Abstract: In a manufacturing process of a head slider, a plurality of head elements are formed on a wafer, each head element comprising: a return pole, a coil, and a main pole. The wafer is cut into respective head elements so that individual head sliders are formed. A ratio of an amplitude of an electrical signal applied to the coil of the write head on the head slider to an amplitude of output from an independent magnetic field sensor not embedded in the head slider is calculated, where the independent magnetic field sensor is disposed near the main pole so as to be opposed to the main pole across the air bearing surface, and where the ratio is calculated while a displacement between the main pole and the magnetic field sensor is swept. A flare point height of the main pole is determined from the calculated amplitude ratio.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Toshio Takahashi, Akihiro Namba, Masafumi Mochizuki
  • Patent number: 8220136
    Abstract: A method for forming a planarized surface for at least one bar of sliders for utilization in a hard disk drive is disclosed. In general, at least one bar of sliders is placed on an adhesive layer. A single thermoplastic layer is then provided above the at least one bar of sliders. The single thermoplastic layer is then heated to a softening temperature such that the single thermoplastic layer will flow between the at least one bar of sliders. The single thermoplastic layer is then cooled to form a planarized surface of both said single thermoplastic layer and said at least one bar of sliders at said adhesive layer.
    Type: Grant
    Filed: May 3, 2007
    Date of Patent: July 17, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B. V.
    Inventors: Cherngye Hwang, Jorge Goitia, Kenneth L. Larson, Dennis R. McKean
  • Patent number: 8209848
    Abstract: A process (and the structure resulting therefrom) is described for manufacturing a magnetic write head in which there is no physical interface between the first and second trailing shields. This is achieved by laying down a sacrificial layer which is patterned to extend inwards towards the top yoke whereby the dimensions and shapes of the shields are defined.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: July 3, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Zhigang Bai, Moris Dovek, Yan Wu, Cherng-Chyi Han, Jiun-Ting Lee
  • Patent number: 8201321
    Abstract: Provided is a method of manufacturing a perpendicular magnetic recording head which can enhance accuracy and simplify the manufacturing process. The method includes: forming a photoresist pattern having an opening part; forming a non-magnetic layer so as to narrow the opening part by a dry film forming method such as ALD method; stacking a seed layer and a plating layer so as to bury the opening part provided with the non-magnetic layer; and forming a main magnetic pole layer by polishing the non-magnetic layer, the seed layer, and the plating layer by CMP method until the photoresist pattern is exposed. The final opening width is unsusceptible to variations, thus reducing the number of the steps of forming the main magnetic layer.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: June 19, 2012
    Assignees: TDK Corporation, SAE Magnetics (H.K.) Ltd.
    Inventors: Naoto Matono, Tatsuya Harada
  • Patent number: 8201320
    Abstract: A method for manufacturing a magnetic write head having a leading magnetic shield and a trailing magnetic shield that are arranged to prevent the lost of magnetic write field to the trailing magnetic shield. The write head includes a non-magnetic step layer that provides additional spacing between the trailing magnetic shield and the write pole at a region removed from the air bearing surface.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: June 19, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Yingjian Chen, Andrew Chiu, Liubo Hong, Wen-Chien D. Hsiao, Edward H. P. Lee, Fenglin Liu, Katalin Pentek, Kyusik Shin, Yi Zheng, Qiping Zhong, Honglin Zhu
  • Patent number: 8191234
    Abstract: A method for protecting a thin film structure including fabricating a plurality of island structures in a recording gap of a magnetic recording head, exposing a substantial portion of the plurality of island structures by removing at least a portion of the surrounding recording gap material via at least one etching process, including ion milling, coating the magnetic recording head containing the plurality of island structures with a coating material, including silicon nitride or aluminum oxide, and removing at least a portion of the coating material via a removal process, including chemical-mechanical polishing or lapping, to expose an uppermost region of at least a portion of said plurality of island structures.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: June 5, 2012
    Assignee: International Business Machines Corporation
    Inventors: Robert G. Biskeborn, Calvin S. Lo, Cherngye Hwang
  • Patent number: 8186040
    Abstract: A method in one embodiment includes forming a resist structure above an upper surface of a substrate, wherein a portion of the upper surface of the substrate is a shaping layer, wherein the resist structure has an undercut; depositing a layer of magnetic material above exposed regions of the substrate, wherein a portion of the layer of magnetic material tapers towards the substrate as it approaches the undercut; removing the resist structure; and forming a write pole above the layer of magnetic material. Additional methods are disclosed.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: May 29, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Wen-Chien David Hsiao, Vladimir Nikitin, Trevor W. Olson, Yuan Yao
  • Patent number: 8166630
    Abstract: To provide a manufacturing method which can adjust the lengths of a recording element and a reproducing element for enabling manufacture of high-quality magnetic head sliders. The manufacturing method comprises: a stacked-layer forming step which stacks magnetic heads on a substrate; a lapping step which cuts out a bar block having a plurality of connected magnetic head sliders, and polishes a flying surface; and a slider cutting step which cuts out individual magnetic head sliders from the bar block. The stacked-layer forming step forms a reproducing-element polish amount detecting sensor on a same layer as that of the reproducing element, and forms a recording-element polish amount detecting sensor on a same layer as that of the recording element. The lapping step carries out polishing based on each output value of the reproducing-element polish amount detecting sensor and the recording-element polish amount detecting sensor.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: May 1, 2012
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Ryuji Fujii, Ikuhito Onodera, Quan Bao Wang, Masahiro Kuribayashi
  • Patent number: 8166632
    Abstract: A method and system for providing a PMR transducer including an intermediate layer. The method and system include providing a hard mask layer on the intermediate layer. The hard mask layer is for a reactive ion etch of the intermediate layer. The method and system also include providing a bottom antireflective coating (BARC) layer on the hard mask layer. The BARC layer is also a masking layer for the hard mask layer. The method and system also include forming a trench in the intermediate layer using at least one reactive ion etch (RIE). The trench has a bottom and a top wider than the bottom. The method and system also include providing a PMR pole. At least a portion of the PMR pole resides in the trench.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: May 1, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Jinqiu Zhang, Liubo Hong, Yong Shen, Donghong Li
  • Patent number: 8146236
    Abstract: A method and system for providing a perpendicular magnetic recording (PMR) transducer from pole layer(s) are disclosed. First and second planarization stop layers are provided on the pole layer(s). A mask is provided on the second planarization stop layer. A first portion of the mask resides on a portion of the pole layer(s) used to form the PMR pole. The PMR pole is defined after the mask is provided. An intermediate layer surrounding at least the PMR pole is provided. A first planarization is performed on at least the intermediate layer. A portion of the second planarization stop layer is removed during the first planarization. A remaining portion of the second planarization stop layer is removed. A second planarization is performed. A portion of the first planarization stop layer remains after the second planarization. A write gap and shield are provided on the PMR pole and write gap, respectively.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: April 3, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventors: Guanghong Luo, Liubo Hong, Honglin Zhu, Yun-Fei Li, Yingjian Chen
  • Patent number: 8141235
    Abstract: A method for manufacturing a perpendicular magnetic recording transducer is described. A metallic underlayer, an insulator on the metallic underlayer, and a metal mask on the insulator are provided. The metal mask has an aperture therein. A trench is formed in the insulator. The trench's bottom is narrower than its top and includes part of the metallic underlayer. The top has a width of not more than 0.28 micron. A nonmagnetic seed layer that substantially covers at least the trench bottom and sides and that has a thickness of at least five hundred Angstroms is provided. A perpendicular magnetic pole material is plated on at least part of the seed layer. A CMP is performed, removing part of the perpendicular magnetic pole material. A remaining portion of the perpendicular magnetic pole material forms a perpendicular magnetic recording pole. The nonmagnetic seed layer is a stop layer for the CMP.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: March 27, 2012
    Assignee: Western Digital (Fremont), LLC
    Inventor: Lei Larry Zhang
  • Patent number: 8136228
    Abstract: A method for manufacturing a magnetic write head that avoids the challenges associated with the formation of fence structures during write pole definition. A magnetic write pole material is deposited. A mask structure is deposited over the magnetic write pole material. The mask structure includes a first hard mask, a marker layer, a physically robust, inorganic RIEable image transfer layer, a second hard mask structure over the image transfer layer and a photoresist layer over the second hard mask. A reactive ion etching process can be used to transfer the image of the photoresist mask and second hard mask layer onto the image transfer layer. An ion milling is performed to define the write pole. A layer of non-magnetic material such as alumina is deposited. An ion milling is performed until the marker layer has been reached, and another reactive ion etching is performed to remove the remaining hard mask.
    Type: Grant
    Filed: December 24, 2008
    Date of Patent: March 20, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Aron Pentek, Sue Siyang Zhang, Yi Zheng
  • Patent number: 8117738
    Abstract: A perpendicular magnetic recording (PMR) head is fabricated with a self-aligned pole tip shielded laterally by a separated pair of side shields and shielded from above by an upper shield. The side shields are formed from a shield layer by a RIE process characterized by a mask and gases producing a variety of etch rates. The differential in etch rates maintains the opening dimension within the mask and allows the formation of a wedge-shaped trench within the shield layer that then separates the layer into two shields. The pole tip is then plated within the trench and an upper shield is formed above the side shields and pole.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: February 21, 2012
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Min Li, Fenglin Liu, Jiun-Ting Lee
  • Patent number: 8117737
    Abstract: A manufacturing method for a magnetic head includes the steps of: forming a structure on a lower shield, the structure including a lower gap, a main magnetic pole and first and second side gaps; forming first and second side shields; forming an upper gap; and forming an upper shield. In the step of forming the structure, an initial lower gap layer is formed on the lower shield, the initial lower gap layer including a pre-lower-gap portion, and two to-be-removed portions that are located on opposite sides of the pre-lower-gap portion. Then, a protrusion including the main magnetic pole and the first and second side gaps is formed on the pre-lower-gap portion. With the top surface of the protrusion covered with a mask, the initial lower gap layer is etched in part to thereby form the lower gap.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: February 21, 2012
    Assignee: TDK Corporation
    Inventors: Hisayoshi Watanabe, Masachika Hashino, Michitoshi Tsuchiya, Koichi Otani, Tatsuhiro Nojima, Tsutomu Nishinaga, Hideyuki Ukita
  • Patent number: 8079135
    Abstract: A method for providing a perpendicular magnetic recording (PMR) transducer is described. The PMR transducer provided includes a PMR pole and yoke structure coupled with the PMR pole. The method includes providing a hard mask and an intermediate layer. A first portion of the hard mask resides on the PMR pole. A second portion of the hard mask resides on another structure. The intermediate layer surrounds at least the PMR pole. The method also includes performing a planarization on at least the intermediate layer, removing the first portion of the hard mask on the PMR pole without completely removing the second portion of the hard mask on the other structure. The method further includes removing a remaining portion of the hard mask on the other structure, providing a write gap on the PMR pole, and providing a shield on the write gap.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: December 20, 2011
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yong Shen, Liubo Hong, Guanghong Luo, Honglin Zhu, Lei Wang, Yingjian Chen
  • Patent number: 8056213
    Abstract: A PMR head comprises a substrate, a magnetic pole formed over the substrate, the pole having a pole tip having a cross-sectional tapered shape wherein the pole tip is surrounded by a write gap layer, an integrated shield comprising side shields on the substrate laterally surrounding the pole tip and a trailing shield overlying the pole tip and integral with the side shields.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: November 15, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Lijie Guan, Joe Smyth, Moris Dovek
  • Patent number: 8056214
    Abstract: A magnetic head includes a pole layer, first and second side shields, and an encasing layer having a pole groove that accommodates the pole layer and first and second side shield grooves that accommodate the first and second side shields. In a manufacturing method for the magnetic head, the pole groove and first and second initial side shield grooves are formed in a nonmagnetic layer using an etching mask layer having first to third openings. In the manufacturing method, a wall face of the first initial side shield groove that is closer to the pole groove and a wall face of the second initial side shield groove that is closer to the pole groove are etched by dry etching to thereby complete the first and second side shield grooves.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: November 15, 2011
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Kazuo Ishizaki, Hironori Araki, Hiroyuki Ito, Shigeki Tanemura, Atsushi Iljima
  • Patent number: 8042259
    Abstract: A magnetic recording head and a method of manufacturing the same. The magnetic recording head includes a stack containing a main pole and a return pole. The stack includes a first magnetic layer having a groove formed therein; an insulating layer covering a surface of the groove; and a second magnetic layer pattern filling the groove covered with the insulating layer.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Hoo-san Lee, Young-hun Im, Yong-su Kim
  • Patent number: 8028400
    Abstract: A method for forming a tapered, electroplated structure. The method involves forming a first mask structure having an opening. A shrink material is deposited into the opening, such that the thickness of the shrink material is less than the thickness of the first mask structure. The first mask structure and the shrink material are then heated causing the sides of the opening in the mask structure to bulge inward. The shrink material is then removed, and a first electrically conductive material can then be electroplated into the opening to a thickness that is much less than the thickness of the mask. The bulbous shaped of the deformed photoresist mask forms a taper on the first electrically conductive material. The first mask can then be removed and a second electrically conductive material can be electroplated over the first electrically conductive material.
    Type: Grant
    Filed: March 6, 2008
    Date of Patent: October 4, 2011
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Jeffrey S. Lille, Scott Arthur MacDonald
  • Patent number: 7975367
    Abstract: A method of manufacturing a magnetic head that includes a reproducing head, a recording head, and an isolation film for magnetically isolating the reproducing head and the recording head from each other. The method includes the steps of: forming the reproducing head; forming the recording head; and forming the isolation film. The isolation film is formed by stacking a plurality of insulating films formed by chemical vapor deposition.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: July 12, 2011
    Assignee: TDK Corporation
    Inventors: Yoshitaka Sasaki, Tohru Inoue
  • Patent number: 7950135
    Abstract: A manufacturing method of an MR element in which current flows in a direction perpendicular to layer planes, includes a step of forming on a lower electrode layer an MR multi-layered structure with side surfaces substantially perpendicular to the layer lamination plane, a step of forming a first insulation layer on at least the side surfaces of the formed MR multi-layered structure, a step of forming a second insulation layer and a magnetic domain control bias layer on the lower electrode layer, and a step of forming an upper electrode layer on the MR multi-layered structure and the magnetic domain control bias layer.
    Type: Grant
    Filed: May 31, 2007
    Date of Patent: May 31, 2011
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Takayasu Kanaya
  • Patent number: 7918014
    Abstract: A CPP-GMR spin valve having a CoFe/NiFe composite free layer is disclosed in which Fe content of the CoFe layer ranges from 20 to 70 atomic % and Ni content in the NiFe layer varies from 85 to 100 atomic % to maintain low Hc and ?S values. A small positive magnetostriction value in a Co75Fe25 layer is used to offset a negative magnetostriction value in a Ni90Fe10 layer. The CoFe layer is deposited on a sensor stack in which a seed layer, AFM layer, pinned layer, and non-magnetic spacer layer are sequentially formed on a substrate. After a NiFe layer and capping layer are sequentially deposited on the CoFe layer, the sensor stack is patterned to give a sensor element with top and bottom surfaces and a sidewall connecting the top and bottom surfaces. Thereafter, a dielectric layer is formed adjacent to the sidewalls.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: April 5, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Kunliang Zhang, Min Li, Yu-Hsia Chen, Chyu-Jiuh Torng
  • Patent number: 7895731
    Abstract: A method for manufacturing a magnetic field detecting element having a free layer whose magnetization direction is variable depending on an external magnetic field and a pinned layer whose magnetization direction is fixed and these are stacked with an electrically conductive, nonmagnetic spacer layer sandwiched therebetween, wherein sense current flows in a direction perpendicular to film planes of the magnetic field detecting element. The method comprises: forming a spacer adjoining layer adjacent to the spacer layer, Heusler alloy layer, and a metal layer successively in this order; and forming either at least a part of the pinned layer or the free layer by heating the spacer adjoining layer, the Heusler alloy layer, and the metal layer. The spacer adjoining layer has a layer chiefly made of cobalt and iron. The Heusler alloy layer includes metal which is silver, gold, copper, palladium, or platinum, or an alloy thereof. The metal layer is made of the same.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: March 1, 2011
    Assignee: TDK Corporation
    Inventors: Tomohito Mizuno, Yoshihiro Tsuchiya, Koji Shimazawa, Kei Hirata, Keita Kawamori
  • Patent number: 7882617
    Abstract: The main magnetic pole piece of a magnetic head for perpendicular magnetic recording preferably has an inverted trapezoidal shape in order to maintain a sufficient recording magnetic field. Embodiments of the present invention enhance the covering power of the protective film around the main magnetic pole piece of the magnetic head and thereby ensure reliability even when the main magnetic pole piece has such a shape. In one embodiment, the protective film for protecting the main magnetic pole piece is formed by a sputtering apparatus while applying a bias, or it is formed by a carousel type sputtering apparatus or the chemical vapor deposition (CVD) technique.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: February 8, 2011
    Inventors: Atsushi Kato, Isao Nunokawa, Tomohiro Okada, Ichiro Oodake
  • Patent number: 7877860
    Abstract: A method of manufacturing a magnetic head includes the steps of forming an underlying layer, forming a pole layer including a track width defining portion at least by plating, using the underlying layer as an electrode, such that the track width defining portion is disposed on the underlying layer, and removing the underlying layer except a portion below the pole layer by ion beam etching. The underlying layer is made of a conductive material whose etching rate of ion beam etching is higher than that of the magnetic alloy used to make the pole layer.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: February 1, 2011
    Assignee: Headway Technologies, Inc.
    Inventors: Yoshitaka Sasaki, Hiroyuki Itoh, Shigeki Tanemura, Hironori Araki
  • Patent number: 7841067
    Abstract: A method for forming a head having a trailing shield that includes forming a gap layer above a pole, forming a mask above the gap layer, and forming a trailing shield above the gap layer and adjacent the mask, a throat height of the trailing shield being defined between the mask.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 30, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Patent number: 7788796
    Abstract: A method for constructing a magnetic write head using an electrical lapping guide to carefully control critical dimensions during a lapping operation used to define an air bearing surface. The lapping guide is photolithograhically patterned in a common photolithographic step with another write head structure so that special relation between the lapping guide and critical dimensions of the write head structure can be carefully maintained. The electrical lapping guide can be patterned in a common photolithographic step as the write pole so that the location of the flare point can be carefully controlled with respect to the location of the lapping guide. A stitched flare structure can also be built together with the electrical lapping guide, then a self-aligned shield can be further built over this stitched flare structure so that both flare point and shield throat can be controlled tightly together by this electrical lapping guide during lapping process.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: September 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wen-Chien David Hsiao, Ming Jiang, Vladimir Nikitin, Aron Pentek, Yi Zheng
  • Patent number: 7788797
    Abstract: A method for making a perpendicular magnetic recording write head that has a write pole, a trapezoidal-shaped trailing shield notch, and a gap between the write pole and notch uses a reactive ion beam etching (RIBE) process in CHF3 that removes filler material at the side edges of the write pole and thus widens the opening at the side edges. The gap is formed of a nonmagnetic mask film, such as alumina, a nonmagnetic metal protective film and a nonmagnetic gap layer. The nonmagnetic metal film is substantially less reactive to CHF3 than the filler material and protects the underlying mask film and write pole during the widening of the opening. The gap layer and trailing shield notch are deposited into a widened opening above the write pole, so the sides of the notch diverge to cause the generally trapezoidal shape.
    Type: Grant
    Filed: April 16, 2007
    Date of Patent: September 7, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: John I. Kim, Aron Pentek