With Dual Gap Materials Patents (Class 29/603.11)
  • Patent number: 7784171
    Abstract: A method is provided for manufacturing a magneto-resistive device. The magneto-resistive device is for reducing the deterioration in the characteristics of the device due to annealing. The magneto-resistive device has a magneto-resistive layer formed on one surface side of a base, and an insulating layer formed of two layers and deposited around the magneto-resistive layer. The layer of the insulating layer closest to the base is made of a metal or semiconductor oxide. This layer extends over end faces of a plurality of layers made of different materials from one another, which make up the magneto-resistive device, and is in contact with the end faces of the plurality of layers with the same materials.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: August 31, 2010
    Assignee: TDK Corporation
    Inventors: Takeo Kagami, Tetsuya Kuwashima, Norio Takahashi
  • Patent number: 7770281
    Abstract: A method of forming a perpendicular magnetic recording write head having a trailing shield (TS) with a precisely defined throat height (TH) on an air-bearing slider includes depositing an electrical lapping guide (ELG) layer on the substrate adjacent to and spaced from the write pole (WP) layer. A nonmagnetic TS pad layer is deposited on both the gap layer and the ELG layer, with the TS pad layer patterned to have a front edge extending across the both the ELG layer and the gap layer and recessed from the line where the substrate will be later cut to form the slider. An ELG protection layer is patterned on the ELG layer, the TS pad layer material is removed from the ELG layer in the region recessed from the TS pad layer front edge, and the ELG layer is removed in regions not covered by the ELG protection layer.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: August 10, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Aron Pentek
  • Patent number: 7748103
    Abstract: A perpendicular magnetic recording write head has a write pole, a trapezoidal-shaped trailing shield notch, and a metal gap layer between the write pole and notch. The write pole has a trailing edge that has a width substantially defining the track width and that faces the front edge of the notch but is spaced from it by the gap layer. The write head is fabricated by reactive ion beam etching of a thin mask film above the write pole to remove the mask film and widen the opening at the edges of the write pole. The gap layer and notch are deposited into the widened opening above the write pole. The write pole has nonmagnetic filler material, such as alumina, surrounding it except at its trailing edge, where it is in contact with the gap layer, which is formed of a different material than the surrounding filler material.
    Type: Grant
    Filed: April 24, 2006
    Date of Patent: July 6, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Amanda Baer, Michael Feldbaum, Wen-Chien David Hsiao, Vladimir Nikitin, Aron Pentek, Katalin Pentek
  • Patent number: 7743487
    Abstract: A perpendicular write head includes a beveled main pole having corners defining a track width and having a planarized surface and encapsulated on either side thereof and below by an alumina layer, the alumina layer having a polished surface and extending above the main pole on either side thereof as steps.
    Type: Grant
    Filed: June 14, 2006
    Date of Patent: June 29, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Amanda Baer, Hamid Balamane, Michael Feldbaum, Ming Jiang, Aron Pentek, Neil Leslie Robertson, Sue Siyang Zhang
  • Patent number: 7726009
    Abstract: A method of fabricating a write head for perpendicular recording includes forming a pole layer on an undercoat layer, forming a mask over at least a portion of the pole layer, and forming the pole by removing material from the pole layer. The method further includes forming a first gap portion of a gap along a first side and a second side of the pole, forming a protective layer over at least a portion of the first gap portion, removing the mask, and removing the protective layer. The method further includes forming a second gap portion of the gap over at least a top surface of the pole and forming a shield over at least the second gap portion.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: June 1, 2010
    Assignee: Western Digital (Fremont), LLC
    Inventors: Yinshi Liu, Benjamin Chen, Kyusik Sin, Hongping Yuan
  • Patent number: 7712204
    Abstract: A manufacturing method of a thin-film head includes the steps of, laminating and patterning a soft magnetic layer with iron alloy that contains silicon and aluminum through a base layer on a substrate; laminating an insulating layer on the patterned soft magnetic layer; performing a chemical-mechanical polishing of a surface of the laminated insulating layer and the patterned soft magnetic layer with a first acid slurry; forming a lower shield layer by a mechanical polishing with a second weak acid, or neutral slurry with a pH different from that of the first slurry; and forming a lower shield gap layer and a magnetoresistive effect layer on the lower shield layer.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 11, 2010
    Assignee: TDK Corporation
    Inventors: Kazuhiko Maejima, Makoto Hasegawa, Atsuhiro Nonaka, Hiroshi Kamiyama, Teruhisa Shindo, Hiroshi Yamazaki
  • Patent number: 7703194
    Abstract: A method for creating a write element of a magnetic head according to one embodiment includes forming a first pole pedestal; forming a write gap layer above the first pole pedestal; forming a second pole pedestal above the write gap layer; and forming at least one of: a cap layer of CoFeON between the first pole pedestal and the write gap, and a seed layer of CoFeON between the write gap layer and the second pole pedestal. Note that other layers may be interspersed between those set forth here.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: April 27, 2010
    Assignee: International Business Machines Corporation
    Inventors: Brian E. Brusca, Joel S. Forrest, Richard Hsiao, James D. Jarratt, Brian R. York
  • Publication number: 20100064507
    Abstract: A method of manufacturing a magnetic head that includes a reproducing head, a recording head, and an isolation film for magnetically isolating the reproducing head and the recording head from each other. The method includes the steps of: forming the reproducing head; forming the recording head; and forming the isolation film. The isolation film is formed by stacking a plurality of insulating films formed by chemical vapor deposition.
    Type: Application
    Filed: November 16, 2009
    Publication date: March 18, 2010
    Applicant: TDK Corporation
    Inventors: Yoshitaka Sasaki, Tohru Inoue
  • Patent number: 7650686
    Abstract: A servo track writer (STW) clockhead radius jig is disclosed. One embodiment provides a hard disk drive assembly including a base having a cutaway portion to provide visual access therein. In addition, a disk is mounted in the hard disk drive assembly, this disk having an indicator thereon to indicate a required radius setting for a clockhead.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: January 26, 2010
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Teodosio Quilapquilap
  • Patent number: 7637001
    Abstract: A method of manufacturing a thin-film magnetic head, the thin-film magnetic head including a recording head, includes the steps of: forming a first magnetic layer; forming a recording gap layer on the first magnetic layer; forming a second magnetic layer on the recording gap layer; and forming a thin-film coil. The recording gap layer is formed by stacking a plurality of insulating films formed by chemical vapor deposition.
    Type: Grant
    Filed: August 21, 2007
    Date of Patent: December 29, 2009
    Assignee: TDK Corporation
    Inventors: Yoshitaka Sasaki, Tohru Inoue
  • Patent number: 7596854
    Abstract: A method is disclosed for fabricating a read head for a magnetic disk drive having a read head sensor and a hard bias layer, where the read head has a shaped junction between the read head sensor and the hard bias layer. The method includes providing a layered wafer stack to be shaped. A single- or multi-layered photoresist mask having no undercut is deposited upon the layered wafer stack to be shaped. The layered wafer stack is shaped by the output of a milling source, where the shaping includes partial milling to within a partial milling range to form a shaped junction. A hard bias layer is then deposited which is in contact with the shaped junction of the wafer stack.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: October 6, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Marie-Claire Cyrille, Wipul Pemsiri Jayasckara, Mustafa Michael Pinarbasi
  • Patent number: 7565733
    Abstract: An improved method for the manufacture of magnetoresistive multilayer sensors is disclosed. The method is particularly advantageous for the production of magnetic tunnel junction (MTJ) sensors, which can be damaged at the air bearing surface by conventional lapping and ion milling. The disclosed process protects the ABS of the magnetoresistive sensor by depositing a diamond like carbon layer which remains in place through ion milling. The DLC layer is removed by oxidation subsequent to the formation of the ABS.
    Type: Grant
    Filed: May 16, 2006
    Date of Patent: July 28, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hardayal Singh Gill, Wipul Pemsiri Jayasekara, Huey-Ming Tzeng, Xiao Z. Wu
  • Publication number: 20090165286
    Abstract: A method for manufacturing a magnetoresistive sensor that decreases the stack height of the sensor. The method includes forming a sensor structure having at its top, a Ru layer and a Ta layer over the Ru layer. An annealing process is performed to set the magnetization of the pinned layer of the sensor structure. After the annealing process has been completed and the Ta layer is no longer needed, an ion milling process is performed to remove the Ta layer.
    Type: Application
    Filed: December 28, 2007
    Publication date: July 2, 2009
    Inventors: Kuok San Ho, Ying Hong, Wipul Pemsiri Jayasekara, Daniele Mauri
  • Patent number: 7536777
    Abstract: Methods and structures for the fabrication of perpendicular thin film heads are disclosed. Prior to the deposition of shield structures, capped seed layers having a dual layer structure are utilized, improving photo resist adhesion and plated shield adhesion, without the need to deposit, then remove, traditional inorganic anti-reflection coatings prior to shield plating.
    Type: Grant
    Filed: November 10, 2006
    Date of Patent: May 26, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Hieu Lam, Patrick Rush Webb, Yi Zheng
  • Patent number: 7533456
    Abstract: A free layer functions such that a magnetization direction changes depending on an external magnetic field, and is made up of a multilayer structure including a first Heusler alloy layer, and a fixed magnetization layer takes a form wherein an inner pin layer and an outer pin layer are stacked one upon another with a nonmagnetic intermediated layer sandwiched between them. The inner pin layer is made up of a multilayer structure including a second Heusler alloy layer. The first and second Heusler alloy layers are each formed by a co-sputtering technique using a split target split into at least two sub-targets in such a way as to constitute a Heusler alloy layer composition. When the Heusler alloy layer is formed, therefore, it is possible to bring up a film-deposition rate, improve productivity, and improve the performance of the device.
    Type: Grant
    Filed: June 1, 2007
    Date of Patent: May 19, 2009
    Assignee: TDK Corporation
    Inventors: Yoshihiro Tsuchiya, Tomohito Mizuno, Koji Shimazawa
  • Patent number: 7509729
    Abstract: A method for making a write pole in a perpendicular magnetic recording write head uses a metal mask to pattern the primary resist and only ion milling during the subsequent patterning steps. A layer of primary resist is deposited over the magnetic write pole material and a metal mask layer is deposited on the primary resist layer. An imaging resist layer is formed on the metal mask layer and lithographically patterned generally in the desired shape of the write pole. Ion milling without a reactive gas is then performed over the imaging resist pattern to pattern the underlying metal mask layer, which is then used as the mask to define the shape of the primary resist pattern. Ion milling with oxygen is then performed over the metal mask pattern to pattern the underlying primary resist. Ion milling without a reactive gas is then performed over the primary resist pattern to form the underlying write pole.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: March 31, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Donald G. Allen, Amanda Baer, Michael Feldbaum, Hung-Chin Guthrie, Aron Pentek
  • Patent number: 7506430
    Abstract: The problem of increased edge sensitivity associated with the reduction of the spacing between bias magnets in a CPP head has been solved by limiting the width of the bias cancellation layer and by adding an extra layer of insulation to ensure that current through the device flows only through its central area, thereby minimizing its edge reading sensitivity.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 24, 2009
    Assignee: Headway Technologies, Inc.
    Inventors: Jei-Wei Chang, Koichi Terunuma, Youfeng Zheng, Kochan Ju
  • Patent number: 7472469
    Abstract: A method is disclosed for fabricating a read sensor for a magnetic head for a hard disk drive having a read sensor stack and two lateral stacks. The method of fabrication includes forming lateral stacks on a gap layer, surrounding a groove to form a template. The read sensor stack is then formed in the groove, which defines the lateral dimensions of the read sensor stack, and lead layers are then formed on the lateral stacks. Also disclosed is a read head for a disk drive having a sensor stack defined by pre-established lateral stacks, and a disk drive having the read head.
    Type: Grant
    Filed: September 20, 2005
    Date of Patent: January 6, 2009
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: David Eugene Heim, Kim Y. Lee, Tsann Lin, Jih-Shiuan Luo, Chun-Ming Wang
  • Patent number: 7467461
    Abstract: A method of manufacturing a magnetic write head for perpendicular magnetic recording. The method includes the formation of a write pole over a substrate. A non-magnetic side gap layer is deposited and an ion milling is used to remove a portion of the substrate to lower the floor of the substrate. A sacrificial fill layer can then be deposited. A chemical mechanical polishing process can be used to remove the mask structure remaining as a remnant of the formation of the write pole, and then the sacrificial fill layer can be removed. A non-magnetic, electrically conductive material can be deposited to form a tailing gap, an a magnetic material can then be deposited to form a wrap around trailing shield.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: December 23, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Christian Rene Bonhote, Quang Le, Neil Leslie Robertson, Petrus Antonius Van Der Heijden
  • Patent number: 7464458
    Abstract: A perpendicular magnetic write head having a notched, self aligned trailing shield for canting a magnetic field emitted therefrom.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: December 16, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Quang Le, Aron Pentek
  • Patent number: 7444738
    Abstract: Methods and apparatus are provided for sensing physical parameters. The apparatus comprises a magnetic tunnel junction (MTJ) and a magnetic field source whose magnetic field overlaps the MTJ and whose proximity to the MTJ varies in response to an input to the sensor. A magnetic shield is provided at least on a face of the MFS away from the MTJ. The MTJ comprises first and second magnetic electrodes separated by a dielectric configured to permit significant tunneling conduction therebetween. The first magnetic region has its spin axis pinned and the second magnetic electrode has its spin axis free. The magnetic field source is oriented closer to the second magnetic electrode than the first magnetic electrode. The overall sensor dynamic range is extended by providing multiple electrically coupled sensors receiving the same input but with different individual response curves and desirably but not essentially formed on the same substrate.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: November 4, 2008
    Assignee: EverSpin Technologies, Inc.
    Inventors: Young Sir Chung, Robert W. Baird, Gregory W. Grynkewich
  • Patent number: 7392579
    Abstract: A slider mounted CPP GMR or TMR read head sensor is protected from electrostatic discharge (ESD) damage and from noise and cross-talk from an adjacent write head by means of a balanced resistive/capacitative shunt. The shunt includes highly resistive interconnections between upper and lower shields of the read head and a grounded slider substrate and a low resistance interconnection between the lower pole piece of the write head and the substrate. The capacitances between the pole piece and the upper shield, the upper shield and the lower shield and the lower shield and the substrate are made equal by either forming the shields and pole piece with equal surface areas and separating them with dielectrics of equal thicknesses, or by keeping the ratio of area to insulator thicknesses equal.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: July 1, 2008
    Assignees: Headway Technologies, Inc., SAE Magnetics (HK) Ltd.
    Inventors: Eric Cheuk Wing Leung, Anthony Wai Yuen Lai, Pak Kin Wong, David Hu, Moris Dovek, Rod Lee
  • Patent number: 7389577
    Abstract: A method to fabricate a tunneling magnetoresistive (TMR) read transducer is disclosed. An insulative layer is deposited on a wafer substrate, and a bottom lead is deposited over the insulative layer. A laminated TMR layer, having a plurality of laminates, is deposited over the bottom lead. A TMR sensor having a stripe height is defined in the TMR layer, and a parallel resistor and first and second shunt resistors are also defined in the TMR layer. A top lead is deposited over the TMR sensor. The parallel resistor is electrically connected to the bottom lead and to the top lead. The first shunt resistor is electrically connected to the bottom lead and the wafer substrate, and the second shunt resistor is electrically connected to the top lead and the wafer substrate.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: June 24, 2008
    Assignee: Western Digital (Fremont), LLC
    Inventors: Changhe Shang, Yun-Fei Li, Yining Hu, Yong Shen
  • Patent number: 7386934
    Abstract: Double photolithography is used to produce an under-layer of protective and filtering photoresist over a substrate that will have channels milled with a FIB. Secondary layers are applied with precision on top of the first layer in order to define the precise patterns to be milled and to provide targeting and alignment fiducials.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: June 17, 2008
    Assignee: Advanced Research Corporation
    Inventors: Matthew P. Dugas, Joseph Tersteeg
  • Patent number: 7367109
    Abstract: A method for achieving a nearly zero net magnetic moment of pinned layers in GMR sensors, such as Co—Fe/Ru/Co—Fe, is described. The method determines a thickness of the first pinned layer which will yield the desired net magnetic moment for the pinned layers. A series of test structures are deposited on a substrate such as glass. The test structures include the seed layers, pinning layers and pinned layers and have varying thicknesses of the first pinned layer. The compositions of the materials and the thicknesses of all of the other films remain constant. The net areal magnetic moment of each test structure is measured and plotted versus the thickness of the first pinned layer. The thickness of the first pinned layer which corresponds most closely to zero net areal magnetic moment is chosen as the design point for the sensor.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: May 6, 2008
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Jinshan Li, Tsann Lin
  • Patent number: 7367111
    Abstract: A method and structure for a spin valve transistor (SVT) comprises a magnetic field sensor, an insulating layer adjacent the magnetic field sensor, a bias layer adjacent the insulating layer, a non-magnetic layer adjacent the bias layer, and a ferromagnetic layer over the non-magnetic layer, wherein the insulating layer and the non-magnetic layer comprise antiferromagnetic materials. The magnetic field sensor comprises a base region, a collector region adjacent the base region, an emitter region adjacent the base region, and a barrier region located between the base region and the emitter region. The bias layer is between the insulating layer and the non-magnetic layer. The bias layer is magnetic and is at least three times the thickness of the magnetic materials in the base region.
    Type: Grant
    Filed: January 25, 2006
    Date of Patent: May 6, 2008
    Assignee: Hitachi Global Storage Technologies Netherland BV
    Inventors: Robert E. Fontana, Jr., Jeffrey S. Lille
  • Patent number: 7343668
    Abstract: A method of manufacturing a perpendicular magnetic recording head is provided. The method accurately defines a gap layer. The method includes forming a lower gap layer made of a non-magnetic material on a main magnetic pole layer. An upper gap layer is formed on the lower gap layer, the upper gap layer being made of the non-magnetic material. A resist layer is formed on the upper gap layer, and the resist layer is removed from an end surface. The upper gap layer not covered with the resist layer is removed, while exposing a new film surface by removing a surface oxidation layer of the resist layer. A return path layer is formed by plating on the exposed lower gap layer, the upper gap layer, and the resist layer through the plating underlayer.
    Type: Grant
    Filed: September 21, 2006
    Date of Patent: March 18, 2008
    Assignee: Alps Electric Co., Ltd
    Inventor: Kiyoshi Kobayashi
  • Patent number: 7322095
    Abstract: A process for reducing fringe field effects of a main write pole by shielding it on all four sides, with the regular return pole also serving as the leading edge shield, is described. The main pole may also be tapered and the leading edge and side shields may be magnetically connected to each other.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: January 29, 2008
    Assignee: Headway Technologies, Inc.
    Inventors: Lijie Guan, Yaw Shing Tang, Hung Liang Hu
  • Patent number: 7320168
    Abstract: Problems such as thermal pole tip protrusion result from thermal mismatch between the alumina and pole material during the writing process. This, and similar problems due to inadequate heat dissipation, have been overcome by dividing the bottom shield into two pieces both of which sit on top of a non-magnetic heat sink. Heat generated by the coil during writing is transferred to the non-magnetic heat sink whence it gets transferred to the substrate. With this approach, the head not only benefits from less field disturbance due to the small shield but also improves heat dissipation from the additional heat sink.
    Type: Grant
    Filed: October 29, 2003
    Date of Patent: January 22, 2008
    Assignee: Headway Technologies, Inc.
    Inventors: Cherng-Chyi Han, Rod Lee, Mao-Min Chen, Pokang Wang
  • Publication number: 20080000076
    Abstract: A method is presented for fabricating a write pole for a magnetic recording head, wherein a photoresist layer is formed on a wafer stack. A target P2 pole configuration is provided, and a photomask having a pattern is produced, and the pattern is transferred to the photoresist to create a patterned photoresist having at least one photoresist channel. A layer of photoresist channel shrinking film used to produce a reduced width photoresist channel in an expanded photoresist. A P2 pole tip is formed within the reduced width photoresist channel. The P2 pole tip is then compared to the target P2 pole configuration to identify distortions, which are then used to produce a distortion-corrected photomask. The distortion-corrected photomask is then used to produce a distortion-corrected expanded photoresist, which is then used to produce a distortion-corrected P2 pole tip.
    Type: Application
    Filed: June 29, 2006
    Publication date: January 3, 2008
    Inventors: Kim Y. Lee, Jyh-Shury Lo
  • Patent number: 7313857
    Abstract: A method of manufacturing a magneto-resistive device is provided for reducing a degradation in device characteristics due to annealing. The method includes the steps of depositing constituent layers, which make up a magneto-resistive layer on a base, patterning one or more layers of the constituent layers, forming an insulating layer in a region in which the one or more layers of the constituent layers have been removed by the patterning. For forming the insulating layer, the insulating layer is deposited while irradiating an ion beam of a gas mainly containing a rare gas toward the base after the step of patterning.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: January 1, 2008
    Assignee: TDK Corporation
    Inventors: Takayasu Kanaya, Takeo Kagami
  • Patent number: 7301734
    Abstract: A GMR sensor having improved longitudinal biasing is provided as is a method of forming it. The improved biasing is provided by longitudinal biasing structures in which a soft magnetic layer is interposed between a hard magnetic biasing layer and the lateral edge of the GMR sensor element. The soft magnetic layer eliminates the need for a seed layer directly between the hard magnetic layer and the GMR element and provides improved coupling to the free layer of the GMR element and a substantial reduction in random domain variations.
    Type: Grant
    Filed: August 24, 2005
    Date of Patent: November 27, 2007
    Assignee: Headway Technologies, Inc.
    Inventors: Yimin Guo, Li-Yan Zhu
  • Patent number: 7296339
    Abstract: A method and system for manufacturing a perpendicular magnetic recording head is disclosed. The method and system include providing a chemical mechanical planarization (CMP) uniformity structure having an aperture therein and forming a perpendicular magnetic recording pole within the aperture. The CMP uniformity structure may include a CMP barrier layer. The method and system further include fabricating an insulator after formation of the perpendicular magnetic recording pole and performing a CMP to remove a portion of the insulator, expose a portion of the perpendicular magnetic recording pole and planarize an exposed surface of the perpendicular magnetic recording head.
    Type: Grant
    Filed: September 8, 2004
    Date of Patent: November 20, 2007
    Assignee: Western Digital (Fremont), LLC
    Inventors: Danning Yang, Yingjian Chen, Brant Nease, Kyusik Sin
  • Patent number: 7296338
    Abstract: A method and apparatus for providing a reverse air bearing surface head with trailing shield design for perpendicular recording. A reverse air bearing surface head for perpendicular recording is provided with an inversed bevel shape to handle skew when recording data on a magnetic recording medium.
    Type: Grant
    Filed: July 30, 2004
    Date of Patent: November 20, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Quang Le, James L. Nix, Aron Pentek, Walter E. Weresin, Mason L. Williams, III
  • Patent number: 7266880
    Abstract: A method for fabricating a multi-track thin-film magnetoresistive tape head with precisely-aligned read/write track-pairs fabricated on a monolithic substrate wafer is provided. The wafer is fabricated using modified standard thin-film processes for fabricating direct access storage device heads and modified substrate lapping procedures. Gap-to-gap separation within each read/write track-pair is reduced to nearly the thickness of the substrate wafer. Fabricating on both sides of the wafer, may enable hundreds or thousands of head elements to be aligned in one step of the fabrication process while reducing the number of pieces in the completed head assembly.
    Type: Grant
    Filed: September 26, 2003
    Date of Patent: September 11, 2007
    Assignee: International Business Machines Corporation
    Inventors: Robert Glenn Biskeborn, James Howard Eaton
  • Patent number: 7254885
    Abstract: A method is used for fabricating sliders for use in a disc drive actuation system, the sliders having bonds pads formed on either a top surface or side faces of the slider. The method comprises providing a substrate having a top surface. Trenches are formed in the substrate and filled with a bond pad material to form slider bond pads. Excess bond pad material is removed from the trenches such that the slider bond pads are flush with the top surface of the substrate. A transducer is fabricated on the top surface of the substrate. Finally, the slider bond pads are exposed.
    Type: Grant
    Filed: October 3, 2002
    Date of Patent: August 14, 2007
    Assignee: Seagate Technology, LLC
    Inventors: Roger L. Hipwell, Jr., Wayne A. Bonin, Kyle M. Bartholomew, John R. Pendray, Zine-Eddine Boutaghou
  • Patent number: 7249408
    Abstract: The method of manufacturing a thin-film magnetic head in accordance with the present invention comprises the steps of forming a first magnetic pole layer; removing both sides in a track width direction of the first magnetic pole layer so as to leave a predetermined residual area in the first magnetic pole layer; forming an insulating layer about the residual area of the first magnetic pole layer; forming a gap layer made of a nonmagnetic material; forming a second magnetic pole layer magnetically connected to the first magnetic pole; and patterning the second magnetic pole layer by etching while using a mask.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: July 31, 2007
    Assignees: Headway Technologies, Inc., SAE Magnetics (H.K.) Ltd.
    Inventors: Yoshitaka Sasaki, Takehiro Kamigama, Hironori Araki
  • Patent number: 7228617
    Abstract: The GMR read head includes a GMR read sensor and a longitudinal bias (LB) stack in a read region, and the GMR read sensor, the LB stack and a first conductor layer in two overlay regions. In its fabrication process, the GMR read sensor, the LB stack and the first conductor layer are sequentially deposited on a bottom gap layer. A monolayer photoresist is deposited, exposed and developed in order to open a read trench region for the definition of a read width, and RIE is then applied to remove the first conductor layer in the read trench region. After liftoff of the monolayer photoresist, bilayer photoresists are deposited, exposed and developed in order to mask the read and overlay regions, and a second conductor layer is deposited in two unmasked side regions. As a result, side reading is eliminated and a read width is sharply defined by RIE.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: June 12, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands, B.V.
    Inventors: Tsann Lin, Daniele Mauri
  • Patent number: 7200918
    Abstract: Embodiments include a slider having a silicon body and at least one carbide pad structure embedded therein. At least one head structure for reading and/or writing data is located on the silicon body. The silicon body includes an air bearing surface on which the head is located. The air bearing surface also includes at least a portion of the carbide pad structure thereon. In one aspect, the metal carbide structure may be made from a material such as titanium carbide, zirconium carbide, vanadium carbide, tungsten carbide, or molybdenum carbide. In another aspect, the head may be located on the air bearing surface between carbide pad structures.
    Type: Grant
    Filed: June 20, 2003
    Date of Patent: April 10, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey S. Lille
  • Patent number: 7181829
    Abstract: A main magnetic pole layer is formed on an insulating layer flattened into a high-flatness surface, and a yoke layer having a large film thickness is formed under the main magnetic pole layer independently of the main magnetic pole. The main magnetic pole layer has a front end surface formed in a shape with a width size gradually increasing in a direction of track width as the front end surface departs farther away from an auxiliary magnetic pole layer. A perpendicular magnetic recording head can be provided which can suppress the occurrence of fringing in a recording pattern, and can form the main magnetic pole layer with high pattern accuracy, and can satisfactorily introduce a recording magnetic field to a fore end of the main magnetic pole layer.
    Type: Grant
    Filed: September 8, 2005
    Date of Patent: February 27, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventors: Toru Takahashi, Hisayuki Yazawa, Hideki Gochou, Kiyoshi Kobayashi, Minoru Yamada, Kiyoshi Sato, Toshinori Watanabe
  • Patent number: 7181826
    Abstract: A system and method are provided for manufacturing a magnetic head. Initially, a coil structure, a first pole layer, and a gap layer are formed. A second pole layer is then deposited to form a pair of flanking portions flanking a central portion of the second pole layer. Thereafter, the second pole layer is masked with a photoresist layer. During manufacture, the flanking portions of the second pole layer work in conjunction with the photoresist layer to substantially protect the coil structure from damage.
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: February 27, 2007
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Wenchein Hsiao, Edward Hin Pong Lee, Bradley D. Webb
  • Patent number: 7178222
    Abstract: Insulating layers are formed on both sides of a multilayer film, and bias layers are formed in contact with at least portions of both end surfaces of a free magnetic layer. The bias layers are formed so as not to extend to the upper surface of the multilayer film. In this construction, a sensing current from electrode layers appropriately flows through the multilayer film, and a bias magnetic field can be supplied to the free magnetic layer from the bias layers through both side surfaces of the free magnetic layer. Furthermore, the magnetic domain structure of the free magnetic layer can be stabilized to permit an attempt to decrease instability of the reproduced waveform and Barkhausen noise.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: February 20, 2007
    Assignee: Alps Electric Co., Ltd.
    Inventor: Naoya Hasegawa
  • Patent number: 7152305
    Abstract: A magnetoresistive (MR) read head is disclosed including a shield layer with a recessed portion and a protruding portion defined by the recessed portion. Also included is an MR sensor located in vertical alignment with the protruding portion of the shield layer. Further provided is at least one gap layer situated above and below the MR sensor. At least one of such gap layers is positioned in the recessed portion of the shield layer. By this design, a combined thickness of the gap layers is thinner adjacent to the MR sensor and the protruding portion of the shield layer, while being thicker adjacent to the recessed portion of the shield layer. As such, optimum insulation is provided while maintaining planar gap layer surfaces to avoid the detrimental ramifications of reflective notching and the swing curve effect.
    Type: Grant
    Filed: June 19, 2003
    Date of Patent: December 26, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Douglas Werner
  • Patent number: 7150093
    Abstract: A method of initializing a magnetic sensor and storage system implementing such a magnetic sensor. The method includes heating and cooling dual antiferromagnetic layers in the presence of a magnetic field.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: December 19, 2006
    Assignee: International Business Machines Corporation
    Inventor: Robert S. Beach
  • Patent number: 7140093
    Abstract: A magneto-resistive (MR) sensor is provided including a pinned layer, and a free layer disposed above the pinned layer. Also included is a pair of leads disposed over portions of the free layer. Further, a pinning layer is disposed below the pinned layer. Disposed below the pinning layer is an underlayer. For enhanced operation, first portions of the pinned layer disposed below the leads have a first pinned layer magnetization parallel with a free layer magnetization associated with the free layer in the absence of an external field. Further, a second portion of the pinned layer has a second pinned layer magnetization perpendicular with the free layer magnetization in the absence of the external field.
    Type: Grant
    Filed: September 3, 2004
    Date of Patent: November 28, 2006
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventor: Jeffrey G. McCord
  • Patent number: 7137191
    Abstract: A first insulating layer is formed on a main magnetic pole used as a magnetic pole layer to have a protruding portion and a flat portion formed around the protruding portion. A second insulating layer is formed on the flat portion, and then the protruding portion of the first insulating layer is cut to expose the upper surface of the main magnetic pole and to form the same planarized surface including the upper surfaces of the main magnetic pole and the second insulating layer. Polishing is stopped using the second insulating layer as a marker, thereby permitting precise control of the amount of polishing.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: November 21, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventors: Kiyoshi Sato, Kiyoshi Kobayashi
  • Patent number: 7120989
    Abstract: For PMR (Perpendicular Magnetic Recording) design, one of the major technology problems is the use of CMP to fabricate the pole structure. If the device is under-polished there is a danger of leaving behind a magnetic shorting layer while if it is over-polished there may be damage to the main pole. This problem has been overcome by surrounding the main pole, write gap, stitched write head pillar with a layer of CMP etch stop material which, using optical inspection alone, allows CMP (performed under a first set of conditions) to be terminated just as the stitched write head gets exposed. This is followed by a second CMP step (performed under a second set of conditions) for further fine trimming of the stitched head, as needed.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: October 17, 2006
    Assignee: Headway Technologies, Inc.
    Inventors: Danning Yang, Cherng-Chyi Han
  • Patent number: 7114241
    Abstract: A method of manufacturing a magnetic head device includes forming a thin film magnetic head element over a substrate, the thin film magnetic head element including a magnetoresistance (MR) element. The substrate is cut such that the MR element is exposed on a side surface of the substrate. The side surface is then polished. Afterward, a magnetically degenerated layer is removed from the thin film magnetic head element along the side surface. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: October 3, 2006
    Assignee: Western Digital (Fremont), Inc.
    Inventors: Kazuyoshi Kubota, Masayuki Hamakawa
  • Patent number: 7111384
    Abstract: A method for manufacturing a magnetic recording head includes the steps of forming a first lifting layer and a second lifting layer on a bottom core layer, forming an inorganic insulating layer in a gap between the first lifting layer and the second lifting layer, forming a groove in the inorganic insulating layer to form a coil layer, and forming the coil layer in the groove and over the groove by plating.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: September 26, 2006
    Assignee: Alps Electric Co., Ltd.
    Inventor: Minoru Yamada
  • Patent number: 7103963
    Abstract: A magnetic tunnel junction (MTJ) sensor in which the free layer longitudinal biasing elements are coupled, without insulation, to the free layer outside of the MTJ stack to provide reliable non-shunting MTJ free layer stabilization without extremely thin dielectric layers. In one embodiment, hard magnetic (HM) layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In another embodiment, antiferromagnetic (AFM) bias layers are disposed in contact with the free layer outside of and separated from the MTJ stack active region by a thick dielectric layer. In other embodiments, nonconductive HM layers are disposed either in contact with the free layer outside of the MTJ stack active region and/or in abutting contact with the MTJ stack active region.
    Type: Grant
    Filed: June 30, 2003
    Date of Patent: September 12, 2006
    Assignee: Hitachi Global Storage Technologies
    Inventor: Wipul Jayasekara