Adjustable Magnetic Structure Patents (Class 310/191)
  • Publication number: 20120286616
    Abstract: A clutch mechanism moving together with an actuator allows coupling or decoupling an inner rotor to or from a power shaft, thereby controlling a rotation angle. This structure allows a polarity of a magnetic pole of the inner rotor to be the same as that of an opposing magnetic pole of an outer rotor when the motor is driven at a low rpm, so that magnetic fluxes inter-linking with windings can be increased, which results in greater torque. When the motor is driven at a high rpm, the structure allows the polarity of the magnetic pole of the inner rotor to be different from that of the opposing magnetic pole of the outer rotor, so that an amount of leakage flux is increased, and the magnetic fluxes inter-linking with the winding are decreased. As a result, an induction voltage is lowered and a high rpm range is widened.
    Type: Application
    Filed: March 7, 2011
    Publication date: November 15, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Hu Li, Yuichi Yoshikawa, Hiroshi Murakami, Hideaki Matsuo, Yuichiro Tashiro
  • Publication number: 20120264554
    Abstract: An electric motor assembly includes a rotor hub, and a rotor supported on the rotor hub. The rotor hub has first and second hub portions, and the rotor has first and second annular rotor segments supported for rotation on the respective first and second hub portions. Each of the rotor segments has a respective set of magnets spaced circumferentially therearound. The rotor hub and the rotor segments are configured so that at least one of the rotor segments moves about the axis of rotation relative to the other of the rotor segments as the rotor hub rotates. The movement of the at least one of the rotor segments is an amount that increases as the speed of the rotor hub increases to reduce back electromotive force. The movement may be due to centrifugal force, which increases as speed increases, without requiring a control system to effect the movement.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 18, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Peter J. Savagian, Alan G. Holmes, Mark A. Theobald
  • Patent number: 8288908
    Abstract: A reconfigurable electric motor includes a rotor containing rotatable permanent magnets or non-magnetically conducting shunting pieces. The magnets and/or shunting pieces have a first position producing a weak magnetic field for asynchronous induction motor operation at startup and a second position producing a strong magnetic field for efficient synchronous operation. The motor includes a squirrel cage for induction motor operation at startup with the permanent magnets and/or shunting pieces positioned to product the weak magnetic field to not interfere with the startup. When the motor approaches or reaches synchronous RPM, the permanent magnets and/or shunting pieces rotate to produce a strong magnetic field for high efficiency synchronous operation.
    Type: Grant
    Filed: October 15, 2010
    Date of Patent: October 16, 2012
    Inventors: Louis J. Finkle, Andrea Furia
  • Patent number: 8269389
    Abstract: An electrical energy generator for generating optimal electrical energy at very low wind speeds and at very high wind speeds. The electrical energy generator includes a support assembly having an elongate support member, and also includes a rotor assembly being rotatably disposed upon the support assembly and having a plurality of vanes being movable by air for rotating the rotor assembly, and further includes a stator assembly being mounted upon the support assembly and including a stator member being movably disposed upon the support assembly for generating energy in cooperation with the rotor assembly, and an assembly for moving the stator member relative to the rotor assembly upon the support assembly.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: September 18, 2012
    Inventor: Cris D. Somerville
  • Patent number: 8242736
    Abstract: A device and method for matching the rates of speed at which an electric motor that is drivingly connected to a worm gear raises and lowers a window in an automobile power window assembly. By axially displacing the motor's armature, and/or by varying the thread and tooth profiles of the worm and the gear, the amount of torque produced by the motor and transmitted through the worm gear can be altered. In order to compensate for the effect of gravity on the motor load and on the window's speed of ascent and descent, more torque is provided when the window is being raised and less torque is provided when the window is being lowered.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: August 14, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Joseph Whinnery, Dave Peterson, Ken Burns
  • Patent number: 8242653
    Abstract: A rotor surface has magnetic salient poles and island-shaped magnetic poles alternately in circumferential direction, and the island-shaped magnetic pole is constituted so that a magnetic flux coming from an external source does not flow through. A magnetic excitation part magnetizes the island-shaped magnetic poles and the magnetic salient poles collectively in the same direction, and then control a flux amount flowing through an armature. The armature has armature coils that face the magnetic salient pole and the island-shaped magnetic pole simultaneously so that driving torque fluctuation or power generation voltage waveform distortion is controlled. The magnetic excitation part changes magnetization state of a field magnet irreversibly, or changes an excitation current to an excitation coil to control a flux flowing through the armature.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: August 14, 2012
    Assignee: Kura Laboratory Corporation
    Inventor: Yoshikazu Ichiyama
  • Patent number: 8228020
    Abstract: An apparatus and method for controlling a hybrid motor, The hybrid motor, uses a permanent magnet instead of a field coil for a rotor, winds a coil round a stator in a multi-phase independent parallel manner, fixes a rectifying type encoder to the rotor and connects a sensor to a driving circuit. The apparatus comprises: an encoder attached to a rotor in cooperation with a pole sensor a speed input unit for generating a speed instruction signal a power switching circuit to generate motor driving signals; a drive module receiving the speed instruction signal and the sensor signal and outputting the speed instruction signal synchronized with the sensor signal as a driving motor signal; a power supply for applying a DC voltage to the power switching circuit; A logic power supply for converting the DC voltage into a logic voltage, and applying logic voltage to the drive module. The motor has n phases, n power switching circuits and n drive modules.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: July 24, 2012
    Assignee: Eni Co., Ltd.
    Inventors: Dong-Ryul Shin, Pyeong-Hun Cho
  • Patent number: 8222789
    Abstract: A brushless D.C. disk motor has one or more disk rotor assemblies and pairs of stator assemblies for each rotor assembly. Each disk rotor assembly has a disk and a plurality of permanent magnets distributed along two or more circular paths in the disk inboard of the peripheral edge of the rotor. Each stator assembly has a plurality of pole pieces and coils distributed along a mounting plate in corresponding circular paths. The disk is rotatably mounted to a support member; while the stator sub-assemblies are fixed to the support member. The coils are selectively activated by commutated power control signals generated in response to a vehicle condition parameter, such as vehicle speed or disk motor load, to optimize power drain from the source of electrical power in accordance with the value of the vehicle condition parameter. The stator assembly pole pieces are movably mounted on the stator mounting plate to improve motor efficiency.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 17, 2012
    Assignee: Silicon Valley Micro M Corporation
    Inventors: Shengbo Zhu, Su Shiong Huang
  • Patent number: 8207645
    Abstract: In a magnet-exciting rotating electric machine system, a rotor surface has magnetic salient poles and island-shaped magnetic poles alternately in circumferential direction, and the island-shaped magnetic poles are constituted so that magnetic flux coming from an external source does not flow through. A magnetic excitation part magnetizes the island-shaped magnetic poles and the magnetic salient poles collectively in the same direction, and then control a flux amount flowing through an armature. The armature has armature coils that face the magnetic salient pole and the island-shaped magnetic pole simultaneously so that driving torque fluctuation or power generation voltage waveform distortion is controlled. The magnetic excitation part changes magnetization state of a field magnet irreversibly, or changes an excitation current to an excitation coil to control a flux crossing the armature.
    Type: Grant
    Filed: December 24, 2009
    Date of Patent: June 26, 2012
    Assignee: Kura Laboratory Corporation
    Inventor: Yoshikazu Ichiyama
  • Patent number: 8198774
    Abstract: A motor includes: a stator (12) having coils; a rotor (11), which is disposed inside the stator and has a plurality of magnets; and a magnetic path switching part (18), which is provided in the rotor (11) and switches a magnetic path of the rotor (11) to select intense field control as a forward salient-pole structure or weak field control as an inverse salient-pole structure. The magnetic path switching part (18) is formed by use of a member having magnetic anisotropy, which is arranged on a magnetic path connecting magnets (13) of the same pole and a magnetic path connecting magnets (13) of different poles in the rotor (11). By changing the magnetic anisotropy of the member, the forward salient-pole structure and the inverse salient-pole structure are switched therebetween.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: June 12, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Hiroshi Takashima, Yuki Nakajima
  • Patent number: 8188629
    Abstract: A magnetic transmission assembly is adapted to integration with a motor or generator. The magnetic transmission assembly includes a rotor, a stator, and a magnetically conductive element. The rotor and the stator are sleeved coaxially and respectively have R and ST1 pole pairs. The magnetically conductive element is located between the rotor and the stator, and has steel pieces. When the magnetically conductive element is actuated, the magnetically conductive element selectively enables PN1 or PN2 steel pieces to be corresponding to the rotor and the stator. The steel pieces corresponding to the rotor and the stator interact with magnetic fields of the R and ST1 pole pairs to generate a predetermined variable-speed ratio. The magnetic transmission assembly can be integrated into the motor, so as to improve the drive power density.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: May 29, 2012
    Assignee: Industrial Technology Research Institute
    Inventors: Ming-Tsan Peng, Li-Ju Cheng
  • Publication number: 20120126740
    Abstract: A permanent-magnet electrical machine is disclosed in which the rotor has a fixed back iron and movable back iron segments. When the movable back iron segments are in a first position, such as in contact with the fixed back iron, the field strength is high. When the movable back iron segments are in a second position in which the movable back iron segments are displaced away from the fixed back iron, the field strength is low. The ability to weaken the field strength causes the constant-power, speed ratio to be increased and thereby increases the utility of the motor for applications in which a wide speed range is desired. The disclosure applies to both permanent-magnet motors and generators. In an alternative embodiment, the stator ring is provided with a fixed portion and at least one movable stator segment.
    Type: Application
    Filed: December 9, 2011
    Publication date: May 24, 2012
    Applicant: CURRENT MOTOR COMPANY, INC.
    Inventor: Erik Kauppi
  • Publication number: 20120074913
    Abstract: Apparatus and method for tuning the magnetic field of windmill generators to obtain efficient operation over a broad RPM range. The windmill generator includes fixed windings (or stator) inside a rotating rotor carrying permanent magnets. The permanent magnets are generally cylindrical and have North and South poles formed longitudinally in the magnets. Magnetically conducting circuits are formed by the magnets residing in magnetic conducting pole pieces (for example, low carbon or soft steel, and/or laminated insulated layers, of non-magnetizable material). Rotating the permanent magnets, or rotating non-magnetically conducting shunting pieces, inside the pole pieces, either strengthens or weakens the resulting magnetic field to adjust the windmill generators for low RPM torque or for efficient high RPM efficiency. Varying the rotor magnetic field adjusts the voltage output of the windmill generators allowing the windmill generator to maintain a fixed voltage output.
    Type: Application
    Filed: December 1, 2011
    Publication date: March 29, 2012
    Inventor: Louis J. Finkle
  • Patent number: 8106548
    Abstract: The electric motor device is provided. The electric motor device includes: a first drive member that has a plurality of permanent magnets; a second drive member that has a plurality of electromagnetic coils; and a clearance controller that shifts at least either one of the first drive member and the second drive member, thereby changing a size of a clearance formed between the first drive member and the second drive member.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: January 31, 2012
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Patent number: 8093776
    Abstract: A rotary electrical machine has a mechanism capable of varying an output characteristic, without increasing mechanical loss, or without consuming the electric power that does not contribute to increasing torque. The rotary electrical machine has a rotor with N pole and S pole magnets alternately and fixedly disposed thereon. An end surface, (which opposes the rotor), of each of a plurality of first teeth positioned on a first stator section is broader than that of the opposite surface thereof, and a winding is wound around a portion between both of the end surfaces. A second stator section has second teeth, corresponding the number of the first teeth, and which has no winding. The second teeth are disposed to oppose the end surfaces of the respective first teeth, and each second tooth is reciprocally movable between a reference position at which the second tooth directly opposes the respective first tooth and a maximum movable position located at the right center position between the respective end surfaces.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: January 10, 2012
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Haruyoshi Hino, Keiko Murota
  • Patent number: 8069784
    Abstract: A device for use in a printing unit of a printing machine, with that printing unit comprising at least one roller of an inking unit or of a dampening unit of the printing unit and with at least one traverse drive for generating an axial traversing stroke of the roller, and also with at least one drive for the moving of the roller in a rotary manner. A magnetic coupling, which is comprised of an inner rotor and an outer rotor, is arranged between the roller and the drive. In order to compensate for the traversing stroke of the roller, the inner rotor and the outer rotor are movable relative to each other in the direction of the axis of rotation of the roller.
    Type: Grant
    Filed: January 26, 2009
    Date of Patent: December 6, 2011
    Assignee: Koenig & Bauer Aktiengesellschaft
    Inventors: Erich Max Karl Gerner, Bernhard Wilhelm Ernst
  • Patent number: 8072113
    Abstract: The electric machine comprises a rotor and stator, the rotor and stator having generally equal axial lengths. The stator has at least one primary and at least one control winding disposed around the stator. The electric machine comprises a stator extension of a magnetic material. The stator extension is disposed coaxially with the stator and has only the at least one control winding wrapped therearound. The stator extension extends axially adjacent the stator beyond an axial terminus of the rotor and defines a magnetic circuit around the at least one control winding. The stator extension is configured such that in use, the magnetic circuit remains unsaturated thereby increasing inductance of at least one control winding in an electric alternator/motor.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: December 6, 2011
    Assignee: Pratt & Whitney Canada Corp.
    Inventors: Kevin Allan Dooley, Joshua David Bell
  • Patent number: 7999432
    Abstract: In a magnet-exciting rotating electric machine system, every magnetic salient pole group to be magnetized in a same polarity is collectively magnetized by a magnetic excitation part. In the magnetic excitation part, a main magnetic flux path in which a magnetic flux circulates through the armature and a bypass magnetic flux path are connected to the field magnet in parallel. Magnetic flux amount in each path is controlled by mechanical displacement. Thereby, the rotating electric machine system and the magnetic flux amount control method in which magnetic field control is easy are provided. Also, means and method are provided so that a power required for the displacement may be made small by adjusting magnetic resistance of the above magnetic flux path.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: August 16, 2011
    Assignee: Kura Laboratory Corporation
    Inventor: Yoshikazu Ichiyama
  • Patent number: 7990008
    Abstract: The electric rotating machine includes a fixed stator fixed to the inner circumferential side of a housing, a moving stator rotatably supported on the inner circumferential side of the housing, a rotor disposed concentrically on the inner circumferential side of the fixed stator and the moving stator, and a moving stator drive formed of a gear and a motor for rotating the moving stator by a predetermined angle. The moving stator drive is detachable with respect to the housing. Coil leader lines are stored in an internal part of the housing so that the moving stator is capable of rotating by a predetermined angle.
    Type: Grant
    Filed: March 8, 2007
    Date of Patent: August 2, 2011
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shinichirou Yoshida, Akira Hashimoto, Kouki Naka, Masao Morita
  • Patent number: 7973502
    Abstract: A drive unit includes a rotating electrical machine; a rotation sensor that detects a rotational position of a rotor of the rotating electrical machine, and a storage medium. In an inspecting step of measuring a counter electromotive force by mechanically driving the rotating electrical machine after the rotating electrical machine and the rotation sensor are assembled together, positional error information of the rotation sensor obtained based on information of the counter electromotive force and output information from the rotation sensor is stored in the storage medium. The storage medium is integrally provided to the drive unit in such a state that the storage medium is readable upon assembling a control device that controls the rotating electrical machine.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: July 5, 2011
    Assignee: Aisin Aw Co., Ltd.
    Inventors: Yoshinari Nakagawa, Tomoo Atarashi, Takafumi Koshida
  • Patent number: 7965006
    Abstract: A device for generating and varying stiffness, which may be applied to a joint of a robot manipulator, the stiffness generating device having a rotating shaft connected to a driven member; a rotor fixed to the rotating shaft and having arms comprising a magnetic element; a stator disposed to surround the rotor outside the arms and being connected to a drive motor; electromagnets fixed to an inner periphery of the stator and being opposed to each other about the rotating shaft, each having a core and a coil wound around the core; and means for applying current to the coils. One half of the electromagnets has N-poles at their inward ends and the other half of the electromagnets has S-poles at their inward ends. Current regulating means regulates the current being applied to the coils.
    Type: Grant
    Filed: December 7, 2006
    Date of Patent: June 21, 2011
    Assignee: Korea Institute of Science and Technology
    Inventors: Sung Chul Kang, Munsang Kim, Seung Jong Kim, Seung Kook Yun, Jeonghoon Yoo
  • Patent number: 7960888
    Abstract: An electric motor comprising a rotor, a stator and a field weakening device. The rotor has a plurality of magnets mounted thereto, and the stator is located adjacent to the rotor and has a plurality of slots defined therein. The slots define raised teeth and are wound with electrical wiring to generate a magnetic field when the wiring is energized with current. The field weakening device is made from a highly magnetically permeable material and a comparatively lower magnetically permeable material. The field weakening device is disposed between the rotor and the stator and is selectively movable between a first position to align the highly magnetically permeable material between the teeth of the stator and the magnets of the rotor and a second position to align the comparatively lower magnetically permeable material between the teeth of the stator and the magnets of the rotor.
    Type: Grant
    Filed: February 12, 2007
    Date of Patent: June 14, 2011
    Assignee: The Timken Company
    Inventors: Xiaolan Ai, Bradley Mularcik, Richard Knepper
  • Publication number: 20110133592
    Abstract: A rotary electrical machine has a mechanism capable of varying an output characteristic, without increasing mechanical loss, or without consuming the electric power that does not contribute to increasing torque. The rotary electrical machine has a rotor with N pole and S pole magnets alternately and fixedly disposed thereon. An end surface, (which opposes the rotor), of each of a plurality of first teeth positioned on a first stator section is broader than that of the opposite surface thereof, and a winding is wound around a portion between both of the end surfaces. A second stator section has second teeth, corresponding the number of the first teeth, and which has no winding. The second teeth are disposed to oppose the end surfaces of the respective first teeth, and each second tooth is reciprocally movable between a reference position at which the second tooth directly opposes the respective first tooth and a maximum movable position located at the right center position between the respective end surfaces.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 9, 2011
    Applicant: YAMAHA HATSUDOKI KABUSHIKI KAISHA
    Inventors: Haruyoshi HINO, Keiko MUROTA
  • Patent number: 7948141
    Abstract: The electric motor device is provided. The electric motor device includes: a first drive member that has a plurality of permanent magnets; a second drive member that has a plurality of electromagnetic coils; and a clearance controller that shifts at least either one of the first drive member and the second drive member, thereby changing a size of a clearance formed between the first drive member and the second drive member.
    Type: Grant
    Filed: November 14, 2008
    Date of Patent: May 24, 2011
    Assignee: Seiko Epson Corporation
    Inventor: Kesatoshi Takeuchi
  • Patent number: 7948144
    Abstract: An electric motor 1 comprises a rotator 20 rotating relative to a stator 10 and a plurality of teeth 11 winding an exciting coil 12 in the stator 10. The teeth 11 generate a magnetic field directed to the rotator 20 from tip faces 11a and comprise a radially extending part 11A extending in a radial direction of the rotator 20 and a coil winding part 11B formed to be bent from the radially extending part 11A.
    Type: Grant
    Filed: August 9, 2006
    Date of Patent: May 24, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Tatsuya Noda
  • Publication number: 20110101815
    Abstract: Apparatus and method for tuning the magnetic field of brushless motors and alternators to obtain efficient operation over a broad RPM range. The motor or alternator includes fixed windings (or stator) around a rotating rotor carrying permanent magnets. The permanent magnets are generally cylindrical and have North and South poles formed longitudinally in the magnets. Magnetically conducting circuits are formed by the magnets residing in magnetic conducting pole pieces (for example, low carbon or soft steel, and/or laminated insulated layers, of non-magnetizable material). Rotating the permanent magnets, or rotating non-magnetically conducting shunting pieces, inside the pole pieces, either strengthens or weakens the resulting magnetic field to adjust the motor or alternator for low RPM torque or for efficient high RPM efficiency. Varying the rotor magnetic field adjusts the voltage output of the alternators allowing, for example, a windmill generator, to maintain a fixed voltage output.
    Type: Application
    Filed: October 15, 2010
    Publication date: May 5, 2011
    Inventors: Louis J. Finkle, Andrea Furia
  • Publication number: 20110074238
    Abstract: A mechanical structure (16) for enabling a rotor (28) in a permanent magnet electric motor A to be moved axially relative to a stator (14) under an actuating force, without experiencing frictional sliding during such a movement. As the rotor (28) is moved away from the stator (14), the motor magnetic field is weakened, enabling the motor A to operate efficiently at elevated speeds, extending speed coverage under constant power.
    Type: Application
    Filed: July 24, 2007
    Publication date: March 31, 2011
    Applicant: The Timken Company
    Inventors: Xiaolan Ai, Richard Knepper, Don Remboski, Chris Van Dress, Brad Mularcik
  • Patent number: 7906884
    Abstract: A rotary electrical machine has a mechanism capable of varying an output characteristic, without increasing mechanical loss, or without consuming the electric power that does not contribute to increasing torque. The rotary electrical machine has a rotor with N pole and S pole magnets alternately and fixedly disposed thereon. An end surface, (which opposes the rotor), of each of a plurality of first teeth positioned on a first stator section is broader than that of the opposite surface thereof, and a winding is wound around a portion between both of the end surfaces. A second stator section has second teeth, corresponding the number of the first teeth, and which has no winding. The second teeth are disposed to oppose the end surfaces of the respective first teeth, and each second tooth is reciprocally movable between a reference position at which the second tooth directly opposes the respective first tooth and a maximum movable position located at the right center position between the respective end surfaces.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: March 15, 2011
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Haruyoshi Hino, Keiko Murota
  • Patent number: 7893588
    Abstract: A magnetic electron exciter includes a rotor adapted to be rotated within a preselected range of rotational speeds, and having a plurality of magnets mounted therein preselected distances from the rotational axis of the rotor. A plurality of coils are positioned adjacent to the rotor, whereby rotation of the rotor creates an electrical current in the coils. First and second electrodes are spaced apart a predetermined distance, and are electrically connected with the coils to create an arc between the electrodes when the rotor is rotated relative to the coils.
    Type: Grant
    Filed: February 19, 2008
    Date of Patent: February 22, 2011
    Assignee: Galaxy, LLC
    Inventor: Johnnie L. Jones
  • Patent number: 7876014
    Abstract: Disclosed is a rotor of a generator or motor having an auxiliary coil provided around a rotor body, thereby preventing the distortion of output voltage waveforms according to the variation of load, and thereby allowing the fine adjustment of the output voltages of the generator by the control of the current flowing to the auxiliary coil. The rotor of a generator or motor includes: a rotor body adapted to axially rotate together with a rotor shaft; at least one set of N-polar and S-polar permanent magnet groups arranged along the circumferential direction of the rotor body at predetermined intervals; and a plurality of magnetic flux-increasing elements formed on the lines of magnetic force formed by the N-polar and S-polar permanent magnet groups around one side of the rotor body.
    Type: Grant
    Filed: April 26, 2007
    Date of Patent: January 25, 2011
    Assignee: Sun Tech Generator Co., Ltd.
    Inventor: Sun-Hyu Lee
  • Patent number: 7863789
    Abstract: A permanent magnet motor/generator that includes a stator, a rotor provided with a plurality of permanent magnets at a peripheral surface thereof and having a central axis which coincides with the central axis of the stator, a rotatable shaft upon which the rotor is coupled, and an actuator for moving the rotor with respect to the stator axially along the rotatable shaft a sufficient distance to completely decouple the rotor from the stator so as to eliminate magnet induced torque drag. When the permanent magnet/generator is used in parallel hybrid vehicles, the ability to completely decouple the rotor from the stator greatly improves range and efficiency. In addition, by progressively engaging the rotor with the stator a desired voltage output can be obtained upon deceleration.
    Type: Grant
    Filed: October 19, 2006
    Date of Patent: January 4, 2011
    Assignee: Dura-Trac Motors, Inc.
    Inventors: Lawrence P. Zepp, Jerry W. Medlin
  • Publication number: 20100314963
    Abstract: The invention relates to a permanently-excited electrical machine with a stator and a rotor. The stator has a coil arrangement and the rotor is provided with permanent magnet elements, or the rotor comprises a coil arrangement and the stator is provided with permanent magnet elements. An air gap is formed between the stator and the rotor, which is defined by the permanent magnet elements and magnetically conductive teeth of the stator, which are aligned with these in certain positions. The coil arrangement comprises at least one hollow cylindrical winding which is at least partially accommodated in the stator. The rotor has a magnetic return on the sides of the permanent magnet elements, which are remote from the air gap. The magnetic return is formed of rings which are oriented in the circumferential direction of the rotor, and which in the axial direction of the rotor are not wider than individual ones of the permanent magnet elements.
    Type: Application
    Filed: November 12, 2008
    Publication date: December 16, 2010
    Inventors: Andreas Gruendl, Bernhard Hoffmann
  • Patent number: 7834496
    Abstract: The motor including a stator having a stator core, and an insulator provided to the stator core for winding a coil thereon, a rotor rotatably provided with respect to the stator, and a tap terminal provided to the insulator for positioning an end of the coil, wherein the coil includes a core wire of aluminum.
    Type: Grant
    Filed: March 21, 2007
    Date of Patent: November 16, 2010
    Assignee: LG Electronics Inc.
    Inventors: Sung Yong Shin, Jeong Uk Byun, Sung Jung Kim
  • Patent number: 7816833
    Abstract: A method and device for using radial relative displacement between a magnet and coil to generate electricity from fluid motion. The device includes a support structural component, a movable magnetic structure, a rotating structural component, and bearings. The movable magnetic structure is coupled to the support structural component. The rotating structural component rotates relative to the support structural component. The bearings are coupled to or disposed with the rotating structural component. The rotation of the rotating structural component results in forces applied by the bearings on the movable magnetic structure and movement of the movable magnetic structure.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: October 19, 2010
    Assignee: Oscilla Power Inc.
    Inventor: Balakrishnan Nair
  • Patent number: 7800277
    Abstract: A vehicle drive unit includes a crank case with a crank shaft operatively disposed therein and an attached axial gap type rotating machine. The crank shaft is driven via internal combustion to rotate about a center axis. The axial gap type rotating machine includes a rotor fixed to an end of the crank shaft that extends outside of the crank case and a stator fixed to the crank case and facing the rotor. The stator includes a first stator that has first teeth that form the magnetic flux generating area and a second stator that has second teeth. A gap between the first teeth and the second teeth can be varied to vary magnetic resistance by rotating the second stator relative to the first stator. Preferably, a drive mechanism is provided to rotate the second stator relative to the first stator.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: September 21, 2010
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Hiroyuki Kaminokado
  • Patent number: 7800262
    Abstract: A combined centrifugal fan and valve to exhaust air outside of a building when running and to prevent air from escaping when not running. The electrical motor design is to allow the rotating parts of the motor to slide along the motor shaft axis. The vertical position of the motor will allow the sliding capacity of the motor to utilize the weight of the fan, motor shaft and motor armature to hold the base plate of the fan tightly against the inlet opening when the motor is not running and lift the fan, motor shaft and motor armature when running by the magnetic forces of the motor windings.
    Type: Grant
    Filed: May 5, 2009
    Date of Patent: September 21, 2010
    Inventor: John Leo Larson
  • Publication number: 20100231081
    Abstract: A motor is provided with: an inner rotor having inner permanent magnets arranged in a peripheral direction and an outer rotor having outer permanent magnets arranged in the peripheral direction, the mutual axes of rotation of the inner rotor and the outer rotor being arranged coaxially, and a rotating device capable of making at least one of the inner rotor and the outer rotor rotate around the axes of rotation so as to change the relative phase between the rotors, wherein the rotating device includes: a first member which is integrally and rotatably provided with respect to the outer rotor; and a second member which is integrally and rotatably provided with respect to the inner rotor and which defines pressure chambers inside the inner rotor with the first member, and wherein a working fluid is supplied to the pressure chambers, thereby changing the relative phase between the rotors.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 16, 2010
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Kazuyuki Iwata, Hiromitsu Sato, Naohisa Morishita, Satoru Shinzaki, Tamotsu Kawamura, Masato Fujioka
  • Patent number: 7750527
    Abstract: A motor/generator is basically provided with a stator, a first rotor member and a magnetic resistance changing mechanism. The stator has a plurality of coils configured and arranged to be energized with a composite electrical current to form first and second magnetic fields. The first rotor member is configured and arranged to be rotated with respect to the stator using the first magnetic field. The magnetic resistance changing mechanism is configured and arranged to change a magnetic resistance between the stator and the first rotor member using the second magnetic field.
    Type: Grant
    Filed: March 12, 2007
    Date of Patent: July 6, 2010
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Yuichi Shibukawa
  • Patent number: 7737591
    Abstract: A coaxial twin variable field permanent magnetic dynamoelectric machine comprising first and second stators displaced from each other and first and second permanent magnet rotors. The rotors comprising hydraulic actuators mounted within the rotors for axially displacing the outer and inner surfaces of the first and second rotors, respectively, with the inner and outer surfaces of the first and second stators, respectively, in order to change magnetic flux interaction between the first stator and rotor and the second stator and rotor. Both stators have magnetic shields covering outer and inner surfaces of the first and second stators, respectively. The first axial hydraulic actuator displaces the first rotor outer surface within the second stator magnetic shield and the second axial hydraulic actuator displaces the second rotor inner surface over the first stator magnetic shield with reduced first rotor-second stator and second rotor-first stator magnetic flux interaction.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: June 15, 2010
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Richard A. Himmelmann, Mohammad Shahamat
  • Patent number: 7671503
    Abstract: A rotating electric machine whose output characteristics can be easily and freely adjusted and varied even in operation. The rotating electric machine is received in a housing of an electrically driven two-wheeled vehicle. A rotating shaft is connected to a rotor so as to form an axle. A stator is positioned opposite a rotor. A movable member is connected to a rotating member rotated about the rotating shaft by a regulating motor. The movable member is moved in the axial direction of the rotating shaft by the rotation of the rotating member. This movement causes the rotor to be rotatingly moved in the axial direction of the rotating shaft, changing relative position of the rotor and the stator.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: March 2, 2010
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Shinya Naito, Haruyoshi Hino, Keiko Murota
  • Patent number: 7642684
    Abstract: A dynamoelectric machine comprises a first rotor shaft, a second rotor shaft and a central element. The first rotor shaft rotates about a central axis of the machine and has a first magnetic drive element disposed about an outer circumference of the first rotor shaft. The second rotor shaft rotates about the first rotor shaft and has a second magnetic drive element disposed about an inner circumference of the second rotor shaft. The central element is disposed between the first rotor shaft and the second rotor shaft and is configurable to remain stationary while the first rotor shaft and the second rotor shaft rotate about the central axis. The central element also includes a third magnetic drive element for interacting with the first magnetic drive element, and a fourth magnetic drive element for interacting with the second magnetic drive element.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: January 5, 2010
    Assignee: Hamilton Sunstrand Corporation
    Inventors: Richard A. Himmelmann, Mohammad Shahamat
  • Publication number: 20090295250
    Abstract: There is provided a magnet type brushless generator capable of particularly controlling an output voltage to be uniform even in a driving operation at a variable rpm from a low-speed rotation to a high-speed rotation. The magnet type brushless generator includes a stator 20 having a plurality of stator magnetic poles around which winding wires for generating a rotation magnetic field are wound; a rotor 30 having a first field magnet 32 and a second field magnet 34 disposed coaxially with the first field magnet 32 in an opposed manner so as to be rotatable relative to the first field magnet; and a planetary gear mechanism 40 configured to control a relative rotation position of the first field magnet 32 and the second field magnet 34.
    Type: Application
    Filed: March 29, 2007
    Publication date: December 3, 2009
    Applicant: Shinko Electric Co., Ltd.
    Inventors: Kazumasa Nakanishi, Manabu Seta, Masaya Wakita
  • Patent number: 7573172
    Abstract: A magnetic drive apparatus, which has a rotor; and a stator having a stator magnetic flux generator, and a stator magnetic guidepath for guiding magnetic flux from the stator magnetic flux generator to the rotor, and which rotationally drives the rotor relative to the stator by controlling the flow of the magnetic flux of the stator magnetic flux generator, the magnetic drive apparatus being constituted such that it further has magnetic flux controlling means, which is respectively stacked onto and bridges the rotor side end tip of the stator magnetic guidepath and a magnetic pole tip which is arranged at a prescribed angular location on the periphery of the rotor with a first gap with this end tip part, and magnetic flux controlling means has a function for magnetically reconnecting to the magnetic pole tip after controlling the flow of magnetic flux, which is blocked by the first gap.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: August 11, 2009
    Assignee: Citizen Holdings Co., Ltd.
    Inventor: Toshinari Maeda
  • Patent number: 7567006
    Abstract: In a magnet-exciting rotating electric machine, a magnetic field pole part opposing an armature is composed to be divided into a surface magnetic pole part and a magnetic excitation part so as to be capable of being relatively displaced. The magnetic excitation part supplies a magnetic flux to a magnetic salient pole. The magnetic flux from the field magnet is divided into a main magnetic flux pathway that circulates through the armature side and a bypass magnetic flux pathway that does not pass through the armature, and thereby, the magnetic flux of the main magnetic flux pathway is changed. The magnetic resistances of the main magnetic flux pathway and the bypass magnetic flux pathway are composed so that total magnetic flux amount from the field magnet is maintained constant, and then a magnetic force preventing the relative displacement is maintained small.
    Type: Grant
    Filed: February 14, 2008
    Date of Patent: July 28, 2009
    Assignee: Kura Laboratory Corporation
    Inventor: Yoshikazu Ichiyama
  • Patent number: 7550894
    Abstract: A rotary electrical machine has a mechanism capable of varying an output characteristic, without increasing mechanical loss, or without consuming the electric power that does not contribute to increasing torque. The rotary electrical machine has a rotor with N pole and S pole magnets alternately and fixedly disposed thereon. An end surface, (which opposes the rotor), of each of a plurality of first teeth positioned on a first stator section is broader than that of the opposite surface thereof, and a winding is wound around a portion between both of the end surfaces. A second stator section has second teeth, corresponding the number of the first teeth, and which has no winding. The second teeth are disposed to oppose the end surfaces of the respective first teeth, and each second tooth is reciprocally movable between a reference position at which the second tooth directly opposes the respective first tooth and a maximum movable position located at the right center position between the respective end surfaces.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: June 23, 2009
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventors: Haruyoshi Hino, Keiko Murota
  • Publication number: 20090127963
    Abstract: An electric motor comprising a rotor, a stator and a field weakening device. The rotor has a plurality of magnets mounted thereto, and the stator is located adjacent to the rotor and has a plurality of slots defined therein. The slots define raised teeth and are wound with electrical wiring to generate a magnetic field when the wiring is energized with current. The field weakening device is made from a highly magnetically permeable material and a comparatively lower magnetically permeable material. The field weakening device is disposed between the rotor and the stator and is selectively movable between a first position to align the highly magnetically permeable material between the teeth of the stator and the magnets of the rotor and a second position to align the comparatively lower magnetically permeable material between the teeth of the stator and the magnets of the rotor.
    Type: Application
    Filed: February 12, 2007
    Publication date: May 21, 2009
    Applicant: THE TIMKEN COMPANY
    Inventors: Xiaolan Ai, Bradley Mularcik, Richard Knepper
  • Patent number: 7528514
    Abstract: A centrifugal magnetic clutch device includes, an input shaft and, a plurality of input magnets that are rotatable about an axis of the input shaft, and are radially movable relative to the input shaft axis, and are rotationally fixed to the input shaft. The device further includes, a plurality of output magnets rotatable about the input shaft axis and in axial alignment with the plurality of input magnets, and an output shaft rotationally fixed to the plurality of output magnets. The device further includes, a housing for fluidically sealing the plurality of output magnets and the output shaft relative to the plurality of input magnets and the input shaft.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: May 5, 2009
    Assignee: International Business Machines Corporation
    Inventors: Ethan E. Cruz, Timothy M. Trifilo
  • Publication number: 20090108712
    Abstract: According to one embodiment of the present invention, an electric machine includes a stator and a rotor. The stator includes a stator pole including a first leg and a second leg, and a gap defined between the first and second legs. The rotor includes a rotor pole. The rotor is configured to rotate relative to the stator such that the rotor pole rotates through the gap defined between the first and second legs of the stator pole. The stator pole includes a laminar stator pole structure including multiple lamination layers.
    Type: Application
    Filed: July 25, 2008
    Publication date: April 30, 2009
    Inventors: Mark T. Holtzapple, George A. Rabroker
  • Patent number: 7518278
    Abstract: A method and apparatus in which a rotor (11) and a stator (17) define a radial air gap (20) for receiving AC flux and at least one DC excitation coil (23, 24) positioned near the stator end turn to produce DC flux in axial air gaps (21, 22) additive to the AC flux. Side magnets (16) and flux-guiding magnets (14) are provided as boundaries separating the side poles (12a, 12b) of opposite polarity from other portions of the rotor (11) and from each other to define PM poles (12a, 12b) for conveying the DC flux to or from the primary air gap (20) and for inhibiting flux from leaking from said pole portions prior to reaching the primary air gap (20). Side magnets (16), side poles (12a and 12b), flux-guiding magnets (14), ferromagnetic end plates (11c), non-magnetic end plates (12c), and ring bands (37) are optionally provided for performance improvement.
    Type: Grant
    Filed: September 21, 2005
    Date of Patent: April 14, 2009
    Assignee: UT-Battelle, LLC
    Inventor: John S. Hsu
  • Publication number: 20090045691
    Abstract: In a magnet-exciting rotating electric machine, a magnetic excitation part for supplying a magnetic flux between a magnetic salient pole and an armature is composed to be divided into two so as to be capable of being relatively displaced. In this structure, the magnetic flux from the field magnet is divided into a main magnetic flux pathway that passes through the armature side and a bypass magnetic flux pathway that does not pass through the armature, and thereby, the magnetic flux of the main magnetic flux pathway is changed. The magnetic resistances of the main magnetic flux pathway and the bypass magnetic flux pathway are composed to be approximately equal, and then a magnetic force preventing the relative displacement is suppressed small. Thereby, the rotating electric machine system and the magnetic field control method in which magnetic field control is easy are provided.
    Type: Application
    Filed: February 1, 2008
    Publication date: February 19, 2009
    Applicant: Kura Laboratory Corporation
    Inventor: Yoshikazu ICHIYAMA