Plural Windings Patents (Class 310/198)
  • Patent number: 8471428
    Abstract: A rotating electrical machine includes a rotor, in which a plurality of magnetic poles are provided in circumferential direction, and a stator, within which the rotor is disposed. In the stator, two stator magnetic poles are formed by winding coils of one phase and by a stator core of the stator within 360° of electrical angle defined by the magnetic poles of the rotor. The coils that form respective stator magnetic poles have angular widths in circumferential direction of less than 180° of electrical angle, the coils that form the respective two stator magnetic poles are provided so as not to mutually overlap and are wound so that adjacent ones of the stator magnetic poles have mutually opposite polarities, and, in the stator, each winding of each coil consists of an external bridge wire, a turn portion, an internal bridge wire, and a turn portion, in that order.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: June 25, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Takashi Naganawa, Kenji Miyata, Takashi Ishigami, Yoshihisa Ishikawa
  • Publication number: 20130154397
    Abstract: A high efficiency magnetic core electrical machine includes magnet and coil assemblies that may be axially stacked to form modules. The magnet sub-assemblies include magnet locators on which multiple permanent magnets are arranged, and the coil sub-assembly includes a pair of bobbin holders supporting multiple bobbins and magnetic cores that extend through the bobbins and through openings in the bobbin holders to form magnetic poles that face the permanent magnets. The permanent magnets and magnetic poles may be arranged in various zero-cogging configurations, including one in which the permanent magnets on opposite sides of the coil assembly are skewed relative to each other to cause cogging force cancellation. In addition, a power matching circuit may be used to optimize the output power of the electrical machine to rotor speed when the electrical machine is used as a generator.
    Type: Application
    Filed: December 19, 2011
    Publication date: June 20, 2013
    Inventor: John T. SULLIVAN
  • Publication number: 20130140934
    Abstract: A manufacturing method for manufacturing a rotating electrical machine equipped with a stator that includes a continuously wound coil unit achieved by continuously winding concentrated winding-type coils via cross wires, with coil wire having a rectangular section.
    Type: Application
    Filed: June 6, 2011
    Publication date: June 6, 2013
    Applicant: Hitachi, Ltd.
    Inventors: Yuichiro Tanaka, Takashi Ishigami
  • Publication number: 20130127284
    Abstract: An aircraft includes a propeller and an electric motor which is constructed in the form of a drive for the propeller. The electric motor includes at least two air gaps that can be used for cooling. The air gaps define an axis of symmetry which corresponds to an axis of rotation of the propeller.
    Type: Application
    Filed: July 26, 2011
    Publication date: May 23, 2013
    Applicant: Siemens Aktiengeselschaft
    Inventors: Jens Hamann, Wolfgang Wolter
  • Patent number: 8424193
    Abstract: A wiring assembly having a conductor positioned about an axis in a helical-like configuration to provide a repetitive pattern which rotates around the axis. In one embodiment, when a current passes through the conductor, a magnetic field having an orientation orthogonal to the axis changes direction as a function of position along the axis.
    Type: Grant
    Filed: July 26, 2011
    Date of Patent: April 23, 2013
    Assignee: Advanced Magnet Lab, Inc.
    Inventor: Rainer Meinke
  • Patent number: 8421282
    Abstract: It is an object of the invention to provide a technique for easily controlling the output characteristic of a brushless motor in a power tool by adjusting the number of turns of a coil that forms a stator winding. A power tool has a brushless motor which includes a rotor 133 having a permanent magnet, a cylindrical stator, and three-phase stator windings which are installed on an inner circumferential side of the stator and rotationally drive the rotor. A plurality of slots are formed in an inside surface of the stator at predetermined intervals in a circumferential direction. Each of the three stator windings is formed by a plurality of coils wound through the slots of the stator and connected to each other. The total number of turns of the coils wound through the slots in each phase is the same in the three phases and not a multiple of the number of the slots in each phase.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: April 16, 2013
    Assignee: Makita Corporation
    Inventor: Kenichi Ota
  • Publication number: 20130088103
    Abstract: A synchronic generator comprises at least a stator and at least two windings placed opposite and parallel to its rotation axis and at least a refrigeration system. The design of this generator allows a better use of the space close to the external diameter of the generator, allowing a power increase and minimizing the weight without increasing the external diameter of the generator. Depending on wind conditions, one or both windings can work at the same time, which optimizes yield, versatility and reliability.
    Type: Application
    Filed: December 16, 2011
    Publication date: April 11, 2013
    Applicant: INDUSTRIAS METALURGICAS PESCARMONA S.A.I.C. Y F.
    Inventor: Enrique PESCARMONA
  • Publication number: 20130076190
    Abstract: A stator winding is disclosed for a multiple-phase alternating current machine with several parallel winding groups (U1, V1, W1; U2, V2, W2; U3, V3, W3), each of which can be supplied with separate power sources. Locations of the winding groups can be cyclically shifted when moving from one pole to another. The number of parallel winding groups (U1, V1, W1; U2, V2 ,W2 ;U3 ,V3 , W3) can be higher than two, and the number of poles of the alternating current machine can be an even figure that is a multiple of the number of winding groups.
    Type: Application
    Filed: November 26, 2012
    Publication date: March 28, 2013
    Applicant: ABB Oy
    Inventor: ABB Oy
  • Publication number: 20130076189
    Abstract: A polyphase electric motor has a rotor, a stator with a plurality of slots, a plurality of main windings and a plurality of auxiliary windings installed in slots of the stator, and a main winding and an auxiliary winding that correspond to a selected phase of an alternating current power source. The auxiliary windings are connected to the motor terminals through a plurality of capacitors, and the auxiliary windings and corresponding capacitors are connected in parallel to the main windings. The main winding and the auxiliary winding of the selected phase are offset by about 60 to about 120 electrical degrees. A power of the plurality of main windings is at least 75% of a power of the polyphase electric motor at full load rating and the power of the plurality of main windings is motoring at 25% of the full load rating.
    Type: Application
    Filed: December 15, 2011
    Publication date: March 28, 2013
    Applicant: REVOLUTION MOTOR TECHNOLOGY, LLC
    Inventor: Sergei Kolomeitsev
  • Publication number: 20130069473
    Abstract: An alternator comprising a rotor having plural magnetic poles in the circumferential direction; and a stator whose teeth are disposed opposite to the periphery of the rotor, with an air gap interposed between the rotor and the stator, wherein the coil conductors are wound on the stator so that two stator magnetic poles may be formed by two coil units of a phase wound around stator teeth within the range of 360 electrical degrees subtended by the magnetic poles of the rotor; each of the two coil units forming the stator magnetic poles spans an electrical angle less than 180 electrical degrees; the two coil turns forming the two stator magnetic poles are laid out so that they may not overlap each other; and the coil conductors are so wound that the adjacent stator magnetic poles exhibit opposite magnetic polarities.
    Type: Application
    Filed: November 15, 2012
    Publication date: March 21, 2013
    Applicant: HITACHI, LTD.
    Inventor: HITACHI, LTD.
  • Patent number: 8400044
    Abstract: An electromotive machine (200, 900) comprises a rotor (230; 800; 920) and a stator (210, 220; 500; 600; 700; 910, 920). The stator (210, 220; 500; 600; 700; 910, 920) comprises a first group of primary windings (260a, 240b, 240d; 520; 640a, 640b, 650a, 650b, 660a, 660b; 930a, 930b, 933a, 933b, 937a, 937b), which are concentrated windings, arranged on a first side of the rotor (230; 800; 920) and a second group of primary windings (240a, 250a, 240c; 530; 740a, 740b, 750a, 750b, 760a, 760b; 941a, 941b, 943a, 943b, 947a, 947b) that are concentrated windings arranged on a second, opposite, side of the rotor (230; 800; 920). The primary windings of each group comprise a plurality of coils that, in use, are supplied with current and produce a magnetic field.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: March 19, 2013
    Assignee: Force Engineering Limited
    Inventor: John Frederick Eastham
  • Patent number: 8395294
    Abstract: An AC motor having loop windings is provided, which is able to reduce unbalance of three-phase impedance to enhance the motor efficiency. Three loop windings of the three phases are interlinked with magnetic fluxes ?u, ?v and ?w of the respective phases to provide magnetic paths of the three phases. The magnetic paths of the three phases are connected to the respective stator poles of the three phases to configure the motor. The magnetic path of each of the three phases is formed by processing an electromagnetic steel plate using bending to provide a motor configuration having multiple stator poles. Magnetic fluxes of two or more stator poles of the same phase are collected to a single magnetic path to form a three-dimensional three-phase magnetic path without allowing close contact with a magnetic path of a different phase.
    Type: Grant
    Filed: December 22, 2009
    Date of Patent: March 12, 2013
    Assignee: Denso Corporation
    Inventors: Masayuki Nashiki, Shinji Makita, Yoshinobu Kamada, Eisuke Takahashi
  • Patent number: 8390165
    Abstract: Provided is a synchronous motor including a rotor having magnetic poles distributed circumferentially along a rotation direction of the rotor at equal intervals, and a stator having stator teeth arranged circumferentially along the rotation direction of the rotor, each tooth wound with a stator coil by concentrated winding. Every M consecutive stator teeth belong to one of stator teeth groups arranged at equal intervals. The M consecutive stator teeth in each stator teeth group are arranged at intervals different from the intervals of the magnetic poles of the rotor. The stator coils wound around the M consecutive stator teeth are connected to separate terminals. A motor driver supplies currents of different phases to the stator coils via the respective terminals.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: March 5, 2013
    Assignee: Panasonic Corporation
    Inventors: Noriyoshi Nishiyama, Masaki Tagome, Yasuhiro Kondo, Makoto Kitabatake, Shun Kazama
  • Publication number: 20130049515
    Abstract: A stator includes a stator core, a stator winding, and insulation paper sheets. The stator winding is constructed by forming a Y connection of phase windings each of which is constructed by inserting conductor segments into slots from a lower end side of the stator core and joining distal end portions of the conductor segments which protrude from an upper end side of the stator core. One of the insulation paper sheets is disposed between radially adjacent ones of joint portions that constitute a group of joint portions in a U-phase winding that are the nearest to a U-phase terminal. In the same manner, the other insulation paper sheets are disposed with respect to a V-phase winding and a W-phase winding. Surfaces of the other joint portions are covered with an insulation resin. Insulation paper sheets are disposed between joint portions that need long creepage distances and the insulation resin is used to cover surfaces of the other joint portions that do not need a long creepage distance.
    Type: Application
    Filed: April 5, 2011
    Publication date: February 28, 2013
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Tomokazu Hisada, Ryosuke Utaka, Naoto Koshino, Yoshiyuki Kawasaki, Norimoto Minoshima, Taketo Takeuchi
  • Patent number: 8384263
    Abstract: A rotating electrical machine includes a stator including at least two element coils of the same phase each having a plurality of turns and connected to each other through a coil-to-coil connection wire, the element coils being arranged in adjacent slots, respectively; and a rotor rotatably provided to the stator through a gap. The element coils of the same phase are fitted in the adjacent slots so that wound around portions of the element coils partially overlap each other. The coil-to-coil connection wire connects at a coil end portion conductor wires extending from linear conductor wire portions of innermost wires of the element coils contained in the slots.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: February 26, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Hiromichi Hiramatsu, Takashi Ishigami, Yasuyuki Saito, Yuichiro Tanaka, Kenichi Nakayama, Yutaka Matsunobu, Noriaki Hino
  • Patent number: 8378547
    Abstract: In an electric motor, magnets (4) have two pairs of poles, the number of teeth (9) is 18, and the number of segments (14) of a commutator is 18. Winding wires (12, 25) for forming an armature coil (7) are formed by a first conductive wire (110) or a second conductive wire (120). The winding wire (25) has a first coil winding wire (7A) and a second coil winding wire (7B). The coil winding wires are each wound around four teeth (9) adjacent to each other. An end (31) of the second coil winding wire is connected to a segment (14) adjacent to a segment arranged at a position which is point symmetric with respect to a segment to which an end (30) of the first coil winding wire is connected. According to the invention, in the electric motor capable of changing the rotational speed of the armature by switching application of an electric current among three brushes, vibration and operating noise can be reduced, and mounting of the connecting wires and the winding wires can be facilitated.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 19, 2013
    Assignee: Mitsuba Corporation
    Inventors: Kenji Sakata, Yoshichika Kawashima
  • Publication number: 20130038168
    Abstract: A stator manufacturing method for a motor includes a preliminary step, a winding step, a rolling step and a shaping step. The preliminary step provides a strip plate having at least one wound portion. The winding step provides and winds a coil unit around the wound portion. The rolling step roll ups the strip plate into an unshaped sleeve having a central hole. The shaping step fixes a shape of the unshaped sleeve to form a shaped sleeve. An outer sleeve may be provided to receive the unshaped sleeve, and a separation member is inserted between two ends of the strip plate. Alternatively, an outer sleeve with a protruding pole may be provided, or the strip plate may form at least one outer wound portion that is wound with an outer coil unit. In addition, methods for manufacturing the stators are also disclosed.
    Type: Application
    Filed: October 15, 2012
    Publication date: February 14, 2013
    Applicant: Sunonwealth Electric Machine Industry Co., Ltd.
    Inventor: Sunonwealth Electric Machine Industry Co., Ltd.
  • Patent number: 8371020
    Abstract: A plurality of shaped wires, which are obtained by shaping electric wires, are assembled to form a wire assembly 47. The wire assembly 47 is then rolled around a core member 6 with aligning members 7 being inserted into spaces 472 formed between adjacent ones of straight superposed parts 471 of the wire assembly 47.
    Type: Grant
    Filed: March 11, 2009
    Date of Patent: February 12, 2013
    Assignee: Denso Corporation
    Inventors: Tetsuya Gorohata, Keigo Moriguchi, Akito Akimoto, Masahiro Takada, Masaomi Dobashi, Youichi Kamakura, Shuzo Muraki, Atsuo Ishizuka
  • Publication number: 20130026875
    Abstract: A field coil segment for an electric machine including a rotor and a stator includes a first wire element having a first cross sectional area electrically connected in parallel with a second wire element having a second cross sectional area greater than the first cross sectional area.
    Type: Application
    Filed: July 26, 2011
    Publication date: January 31, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventor: Lei Hao
  • Patent number: 8350438
    Abstract: The invention relates to a stator for an electric motor comprising several poles (P) that are directed inwards towards the motor axis (2) and that surround a rotor (1), each pole (P) being provided with one winding (L) and the coils of the windings (L) being wound around the poles (P) one after the other without interruption. The stator (20) contains at least three pole groups (n), having at least three poles (P) and each group having the same number of poles (P). The windings (L) run out from the end face at least at the respective beginning and end of a pole group and are contacted there in such a way that the windings (L) associated with each pole group contain their own connection pair (U-U?, V-V?, W-W?) and one connection (U?, V?, W?) of each of these connection pairs is connected to a star point (Y) on the end face of the stator (20).
    Type: Grant
    Filed: September 2, 2008
    Date of Patent: January 8, 2013
    Assignee: Thyssenkrupp Presta AG
    Inventor: Christian Staudenmann
  • Patent number: 8350437
    Abstract: A motor is provided that includes magnetic poles, an armature core, armature coils, a commutator, and power supply brushes. The armature core includes teeth arranged in the circumferential direction to extend in a radial pattern. The armature coils include inner layer coils and outer layer coils. Each of the inner layer coils is wound around radially proximal end portions of two circumferentially adjacent teeth or a radially proximal end portion of one of the teeth. The inner layer coils are arranged in the circumferential direction without overlapping each other in the radial direction. Each of the outer layer coils is wound around radially distal end portions of two circumferentially adjacent teeth by distributed winding. The outer layer coils are arranged radially outward of the inner layer coils and are arranged in the circumferential direction without overlapping each other in the radial direction.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: January 8, 2013
    Assignee: Asmo Co., Ltd.
    Inventors: Yoshiaki Doushita, Keita Kawai, Kazumitsu Moriya, Toshio Yamamoto, Masaya Horikawa, Masaaki Shimizu
  • Patent number: 8350427
    Abstract: A stator of a rotary electrical machine includes a core unit configured by a plurality of core assemblies, around which wires are respectively wound to form the coils, including low voltage side terminals, which connect first ends of the coils, and a bus ring attached to the core unit so as to connect second ends of the coils to electricity supply wires by high voltage side terminals. Each terminal accommodating portion is individually formed relative to each of the core assemblies at an external side of the coils. Each of the terminal accommodating portions is filled with an insulating resin material in a state where at least one of a connecting portion of the first end and each of the low voltage side terminals and a connecting portion of the second end and each of the high voltage side terminals is accommodated within each of the terminal accommodating portions.
    Type: Grant
    Filed: March 4, 2010
    Date of Patent: January 8, 2013
    Assignee: Aisin Seiki Kabushiki Kaisha
    Inventors: Toshiya Sugiyama, Jun Abiko, Yasutoshi Yamada, Hiroyuki Nagata
  • Patent number: 8344575
    Abstract: The disclosed embodiments relate to a stator and manufacturing method of the stator in which the coil conducts of the stator have three phases (a U phase, V phase, and W phase), which are arranged in a distributed winding form in a plurality of slots of a stator core. The coil conductors of the three phases each include a slot conductor portion that is disposed in the slot, and a pair of coil end conductor portions disposed on both axial sides of the stator core to connect the slot conductor portions disposed in the different slots. The stator also includes a first side transition wire portion in each phase that is disposed further toward a radial inner side than an inner peripheral end surface of a tooth provided on each circumferential side of the slot so as to overlap another first side transition wire portions in the axial direction.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: January 1, 2013
    Assignee: Aisin AW Co., Ltd.
    Inventors: Kiyotaka Koga, Masaki Saito
  • Patent number: 8302286
    Abstract: A stator winding is manufactured by a forming step, a winding step, and a expanding step. In the forming step, an S-shaped offset shape is formed on a conductor part corresponding to a coil end part. Thereby, in a coil end part, it is possible to provide an expected shape stably at the coil end part. The conductor is wound around a bobbin in the winding step. In the winding step, a twisted shape is given to the conductor parts to be the inclined part of the coil end and the conductor part to be accommodated in a slot. In the expanding step, a preform product removed from the bobbin is expanded into a shape of the stator winding.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: November 6, 2012
    Assignee: Denso Corporation
    Inventor: Takashi Tokizawa
  • Publication number: 20120274171
    Abstract: An object is to provide a rotating electric machine offering a high output and high efficiency by balancing inductance of each phase even if a stator is used in which stator windings of different phases are disposed in a slot of a stator core in a three-phase winding. A stator 5 includes a stator core 6 having a plurality of slots arrayed circumferentially and opening to an inner peripheral surface and a stator winding 7 wound in each of the slots. The stator winding 7 is divided into at least two for each phase (7U-A, 7U-B, 7V-A, 7V-B, 7W-A, 7W-B). After insertion of the stator core 6, the stator winding of each phase is connected in parallel or in series. The stator winding of each phase is disposed in slots such that combined inductance of different phases is equalized.
    Type: Application
    Filed: August 11, 2010
    Publication date: November 1, 2012
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Toshio Ishikawa, Yasuhiko Kimura, Yoshimi Mori, Masahiko Honma, Yosuke Umesaki
  • Patent number: 8299674
    Abstract: In an electric rotating machine, a stator coil is comprised of first and second winding groups. The stator coil is wound around a stator core in a concentrated winding manner so that the phase difference in electrical angle between each corresponding pair of windings of the first and second winding groups is equal to ?/6. Further, the windings of the first and second winding groups are connected to form ?-Y connections. Consequently, the sixth harmonic components of the electromagnetic forces created by the windings of the first winding group can be offset by those of the electromagnetic forces created the windings of the second winding group. As a result, the total magnetic noise and torque ripple generated in the machine can be reduced. Moreover, the machine can be driven with only a single three-phase inverter to achieve the effects of reducing the total magnetic noise and torque ripple.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: October 30, 2012
    Assignee: Denso Corporation
    Inventors: Asuka Tanaka, Makoto Taniguchi
  • Patent number: 8283831
    Abstract: A brushless DC motor has at least three stator sections and a single rotor rotating with the three stator sections. Each stator section is wound with three parallel windings having respective three nodes. Each stator section has nine terminals providing independent access to each node so that separate voltages and currents are applied to each parallel winding in the stator section. Thus, the current applied to each stator section is divided substantially equally among the three parallel windings, thereby reducing the current in each winding for the same power requirement for the motor, which reduces the I2R losses in the windings and the supply wiring and reduces the power handling requirements in the electronic switches providing the supply voltages. The three parallel windings are connected to external terminals of the motor to form either a delta winding configuration or a wye (star) winding configuration.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: October 9, 2012
    Assignee: Electro-Mariner Corp.
    Inventors: Ilya Kaminsky, Robert J. Ferran
  • Publication number: 20120248922
    Abstract: The stator winding includes: a first three-phase wye-delta hybrid winding that is configured by connecting phase windings of a first wye winding to respective output ends of a first delta winding; and a second three-phase wye-delta hybrid winding that is configured by connecting phase windings of a second wye winding to respective output ends of a second delta winding. The phase windings of the first and second wye windings are configured by connecting two winding portions in parallel, and those two winding portions are configured such that distributions of radial positions inside slots of conductor wires that constitute the winding portions are equal.
    Type: Application
    Filed: August 17, 2011
    Publication date: October 4, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Yoshiro IMAZAWA, Kazunori TANAKA
  • Publication number: 20120248923
    Abstract: A stator winding is configured by connecting a first three-phase stator winding and a second three-phase stator winding in parallel. A U1-phase winding of the first three-phase stator winding is configured by connecting a U1-1-phase winding portion and a U1-2-phase winding portion in series, and a U2-phase winding of the second three-phase stator winding is configured by connecting a U2-1-phase winding portion and a U2-2-phase winding portion in series. The U1-1-phase winding portion and the U2-2-phase winding portion are m-turn wave windings, and the U2-1-phase winding portion and the U1-2-phase winding portion are n-turn wave windings (where n does not equal m). The U1-1-phase winding portion and the U2-1-phase winding portion are mounted into a first slot group, and the U1-2-phase winding portion and the U2-2-phase winding portion are mounted into a second slot group.
    Type: Application
    Filed: August 18, 2011
    Publication date: October 4, 2012
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Takahiro KIMURA, Kazunori TANAKA, Yukiyoshi OONISHI
  • Publication number: 20120248924
    Abstract: In an electric rotating machine, a stator coil is comprised of first and second winding groups. The stator coil is wound around a stator core in a concentrated winding manner so that the phase difference in electrical angle between each corresponding pair of windings of the first and second winding groups is equal to ?/6. Further, the windings of the first and second winding groups are connected to form ?-Y connections. Consequently, the sixth harmonic components of the electromagnetic forces created by the windings of the first winding group can be offset by those of the electromagnetic forces created the windings of the second winding group. As a result, the total magnetic noise and torque ripple generated in the machine can be reduced. Moreover, the machine can be driven with only a single three-phase inverter to achieve the effects of reducing the total magnetic noise and torque ripple.
    Type: Application
    Filed: June 15, 2012
    Publication date: October 4, 2012
    Applicant: DENSO CORPORATION
    Inventors: Asuka TANAKA, Makoto Taniguchi
  • Patent number: 8274193
    Abstract: The windings (12) wound around each of the teeth (9) form two coil groups (71, 72) of three-phase concentrated windings which are disposed point-symmetrically to each other with respect to the rotational shaft. Each of the coil groups (71, 72) includes a first coil (33), in which the windings (12) are wound around the teeth in a forward direction, and a second coil (34), in which the windings (12) are wound around the teeth in a reverse direction. When each of the teeth (9) is allocated with a U phase, a V phase, and a W phase in this order in a circumferential direction so that the first coil (33) wound for each phase is set to be coils of the U phase, the V phase, and the W phase, and the second coil (34) wound for each phase is set to be coils of the ?U phase, the ?V phase, and the ?W phase, the coils of the U, ?W, V, ?U, W and ?V phases are electrically connected between the adjacent segments (14) in this order.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: September 25, 2012
    Assignee: Mitsuba Corporation
    Inventors: Yoshichika Kawashima, Naoki Shioda
  • Publication number: 20120228972
    Abstract: In some aspects, the present disclosure provides an electric machine including a rotor assembly having a plurality of rotor poles, and a stator assembly having a plurality of stator modules, each stator module including multiple, independently energizeable stator segments each corresponding to a segment position within the stator module. The stator modules are electrically connected to form sets of interconnected stator segments, each stator segment set including at least one stator segment from each of multiple stator modules and corresponding to a different electrical phase of the machine, and each stator segment set includes segments from different segment positions within their respective stator assemblies.
    Type: Application
    Filed: September 7, 2010
    Publication date: September 13, 2012
    Applicant: GREEN RAY TECHNOLOGIES LLC
    Inventors: Hector Luis Moya, David Christopher Baker, Ramon Anthony Caamaño
  • Patent number: 8258667
    Abstract: A reverse electromotive force generating motor includes a stator yoke; a rotor disposed in the stator yoke; a first coil disposed in the stator yoke and connected to a first input line of a power source with a first phase; a second coil disposed in the stator yoke and connected to the first coil in series, said second coil being connected to a first neutral point; a third coil disposed in the stator yoke and connected to the first neutral point; a fourth coil disposed in the stator yoke and connected to the third coil in series, said fourth coil being connected to a first output line for outputting power; and a rotational shaft disposed in the rotor.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: September 4, 2012
    Inventor: Toshio Goda
  • Patent number: 8222784
    Abstract: An electric machine provided with: a stator, equipped with a single stator winding; at least two shafts, which are independent of one another and are mounted so that they can turn; at least two rotors, which are independent of one another, are magnetically coupled to the stator, and are mounted on the shafts; and a single electronic power converter, which is connected to the stator winding for supplying the stator winding itself with a total electric current.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: July 17, 2012
    Assignee: Magneti Marelli S.p.A.
    Inventors: Giovanni Serra, Angelo Tani, Luca Zarri, Marco Raimondi, Marco Greco, Paolo Cominetti
  • Publication number: 20120175990
    Abstract: A motor is provided. When m is half of a number of slots of one phase and n is a divisor of m, the overall parallel winding of a total number of parallels p is equally divided n-fold into partial parallel windings Ni, having a number of parallels p/n, each partial parallel winding Ni comprises m sub-coils, the m sub-coils including n types of m/n sub-coils having a number of turns tj, at least one of the sub-coils differing in number of turns from the other sub-coils, and, for each pair of the slots in the stator, one sub-coil of each partial parallel winding Ni is wound around the pair of slots, and n sub-coils wound around the pair of the slots include every one of the n types of the sub-coils of the numbers of tj.
    Type: Application
    Filed: December 13, 2011
    Publication date: July 12, 2012
    Applicant: Okuma Corporation
    Inventor: Takanori YOKOCHI
  • Patent number: 8217548
    Abstract: A DC motor, has a stator housing accommodating a permanent magnet stator; a rotor, rotatably mounted confronting the stator, the rotor having a shaft, a rotor core fitted to the shaft and having laminations forming salient poles, a commutator fitted to the shaft adjacent one end of the rotor core, windings wound about poles of the rotor core and terminated on the commutator, the windings each being wound around a single pole of the rotor; and brush gear comprising brushes in sliding contact with the commutator for transferring electrical power to the windings.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: July 10, 2012
    Assignee: Johnson Electric S.A.
    Inventors: Ruifeng Qin, Ling Yang, BaoTing Liu, TingTuan Xu
  • Patent number: 8212507
    Abstract: The present invention relates to a method and a control system for driving a three-strand brushless, electronically commutated electric motor (2), wherein a line AC voltage (UN) is rectified and fed via a slim DC link (8) with minimum DC link reactance as a DC link voltage (UZ) to an inverter (10) that can be driven to supply and commutate the electric motor (2). A pulsating DC voltage (UG) initially generated by rectifying the line AC voltage (UN) is dynamically increased with respect to its instantaneous values by a step-up chopper (18) in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U18/U1) over time. The control system consists of a network rectifier (6), a downstream slim DC link (8) with minimum DC link reactance and a controllable inverter (10) that can be supplied via the DC link and driven to commutate the electric motor (2).
    Type: Grant
    Filed: June 21, 2010
    Date of Patent: July 3, 2012
    Assignee: EBM-Papst Mulfingen GmbH & Co. KG
    Inventors: Ralph Wystup, Helmut Lipp
  • Publication number: 20120161568
    Abstract: A superconducting rotating electrical machine has a rotor with superconducting windings and a stator disposed around the rotor. The stator has a number of teeth disposed at a regular interval about a rotational axis of the rotor to define slots each between adjacent teeth and a plurality of windings, each winding having a strip-like wire member, the wire member having a plurality of rectangular cross-section wires in which said rectangular wires are arranged in parallel to each other and electrically insulated away from each other, the winding being constructed by winding the strip-like wire member a plurality of times to have first and second winding portions having a cross section in which the rectangular wires are positioned in matrix.
    Type: Application
    Filed: September 10, 2010
    Publication date: June 28, 2012
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Katsuya Umemoto, Kiyoshi Aizawa, Minoru Yokoyama, Yousuke Kimura
  • Publication number: 20120146447
    Abstract: A stator includes a ring-shaped stator core and a stator winding. The stator core has a plurality of slots arranged in a circumferential direction. The stator winding has a plurality of phase windings. Each phase winding is composed of a plurality of segment conductors 41 disposed such as to be inserted into the slots and connected in series. The segment conductor is divided into two. The phase winding is configured by two divided phase windings connected to each other in parallel. The divided phase windings are respectively configured by a plurality of segment conductors respectively connected in series such that the two divided segment conductors are in parallel with each other.
    Type: Application
    Filed: December 13, 2011
    Publication date: June 14, 2012
    Applicant: DENSO CORPORATION
    Inventors: Masahiro SEGUCHI, Yuuichirou ITOU
  • Patent number: 8196286
    Abstract: A coil-holding assembly for an electrical machine has coil holders made of plastic and on which coils of a stator can be wound. The coil holders are formed and pivotal on an outer edge of a planar central plastic support by integral film hinges between a winding position parallel to a plane of the support and a bent-up position perpendicular to the plane. Thus the coils can be wound on the holders in the parallel position thereof and the holders are then moved into the bent-up position for use in the electric machine.
    Type: Grant
    Filed: July 17, 2007
    Date of Patent: June 12, 2012
    Assignee: Wilo AG
    Inventors: Thomas Materne, Guenter Strelow, Uwe Dreihaus, Stephan Hoheisel
  • Patent number: 8193673
    Abstract: A brush motor includes a stator with 2P magnetic poles and a rotor which includes a rotor core, a commutator and windings wound on the rotor core. The rotor core includes N teeth with a slot formed between adjacent teeth. The commutator includes M segments represented by Z1 . . . ZX . . . ZY . . . ZM, wherein M, N, P, Y and X are integers and M is odd and greater than N. Each winding includes a start connected to a segment ZX and an end connected to another segment ZY. Each winding includes at least one coil wound about a corresponding tooth or set of teeth. Some of the windings include a plurality of coils wound on different teeth. The total number of turns of the coils for each winding is substantially the same. A winding unit consisting of a plurality of windings is connected between each pair of adjacent segments. ZX and ZY satisfy the following equation: |Y?X|=(M±1)/P.
    Type: Grant
    Filed: July 16, 2010
    Date of Patent: June 5, 2012
    Assignee: Johnson Electric S.A.
    Inventors: Jian Zhao, Yong Li, Yue Li, Mao Xiong Jiang, Li Sheng Liu
  • Patent number: 8183734
    Abstract: An electric machine system includes an electric machine and a companion device. The electric machine has a stationary member and a movable member that, by interaction of magnetic fields, at least one of moves relative to the stationary member or generates electricity when moved relative to the stationary member. One of the stationary member and the movable member comprising a permanent magnet. The companion device is coupled to the electric machine to communicate mechanical movement with the movable member. In certain instances, the electric machine system has adaptations for operation of the electric machine system subsea and/or in a corrosive environment. The electric machine includes a stator that carries a conductive winding having multiple coils. A first subset of the coils are in a first configuration, and a second subset of the coils are in a second configuration.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: May 22, 2012
    Assignee: Direct Drive Systems, Inc.
    Inventors: Daniel M. Saban, John Stout
  • Publication number: 20120119690
    Abstract: A synchronous motor drive system improves the design flexibility regarding torque characteristics as compared with conventionally available design flexibility. A synchronous motor has a rotor and a stator. Each of at least two adjacent stator teeth has a slit formed at the tip thereof. Each of a plurality of stator teeth has a main coil wound therearound in concentrated winding. Between each two adjacent teeth having a slit, a sub-coil is wound around in a manner of being accommodated in the respective slits. The drive device separately controls electric current supplied to the main coils and electric current supplied to the sub-coil.
    Type: Application
    Filed: February 15, 2011
    Publication date: May 17, 2012
    Inventors: Noriyoshi Nishiyama, Makoto Kitabatake
  • Publication number: 20120119606
    Abstract: A motor stator includes a stator unit and an auxiliary induction unit. The stator unit includes a circuit substrate, and a plurality of induction coils embedded within the circuit substrate. The auxiliary induction unit includes an insulating member, a magnetic conductor, and at least one coil winding assembly. The coil winding assembly includes a conductive rod and an auxiliary coil. The rod has an insert rod section extending through the magnetic conductor, the insulating member, and the circuit substrate, and a wound rod section permitting the auxiliary coil to be wound thereon, such that the auxiliary coil is disposed outwardly of the magnetic conductor. During assembly, the induction coil assembly is mounted to the magnetic conductor, and the insulating member is superposed on the circuit substrate. Subsequently, the rod is inserted through the insulating member and into the circuit substrate.
    Type: Application
    Filed: April 25, 2011
    Publication date: May 17, 2012
    Applicant: YEN SUN TECHNOLOGY CORP
    Inventors: Chien-Jung CHEN, Hsien-Wen LIU, Chih-Tsung HSU, Tzu-Wen TSAI, Cheng- Tien SHIH, Hsin-Hsien WU, Jia-Ching LEE
  • Patent number: 8174159
    Abstract: An electrical motor or generator asymmetrical armature winding configuration generating a multi-phase balanced power output. Each winding group for each pole, and the conductors constituting each winding group, are chosen individually according to their magnetomotive force (MMF) vector relationship to provide a balanced power output even though the individual windings may not be balanced or symmetrical.
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: May 8, 2012
    Assignee: Honeywell International, Inc.
    Inventors: Ming Xu, Wayne Pearson, Cristian Anghel
  • Patent number: 8174160
    Abstract: A group of three stator windings for a stator of an electric machine, a stator arrangement, a generator, and wind turbine are provided. The first winding head segments of the three stator windings differ in form such that the first winding head segments of at least two of the three stator windings are differently tilted in radial direction of the electric machine and the length of the three stator windings is substantially the same.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: May 8, 2012
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Publication number: 20120098379
    Abstract: A motor formed as a 10-pole 12-slot brushless motor includes: six delta-connected coils that are among twelve motor coils, and arranged in a circular pattern such that any two of the delta-connected coils, which are next to each other in the circumferential direction, are different in winding direction; and six star-connected coils that the remaining six motor coils, and arranged between the delta-connected coils by connecting one ends of the star-connected coils to respective six connection lines providing connection between the delta-connected coils such that any two of the star-connected coils, which are next to each other in the circumferential direction, are different in winding direction. Terminals of the star-connected coils are grouped into sets each including three terminals that are next to each other in the circumferential direction, and three-phase driving voltages are applied to the other ends of the star-connected coils in each set.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Applicant: JTEKT CORPORATION
    Inventor: Shigetoshi YAMAGUCHI
  • Patent number: 8154166
    Abstract: A dual-winding layer arrangement for a three-phase, four pole motor is provided.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: April 10, 2012
    Assignee: Tesla Motors, Inc.
    Inventors: Yifan Tang, Shyi-Perng Phillip Luan
  • Publication number: 20120068570
    Abstract: A stator winding for an electric machine includes two or more conductors defining one or more phases about the stator winding. Each phase includes at least two conductors of the two or more conductors arranged in an electrically switchable relationship. An end of each conductor of the two or more conductors extends to an exterior of the electric machine and is configured for independent electrical connection to a component at the exterior of the electric machine. An electric machine includes a stator having a stator winding including two or more conductors defining one or more phases about the stator winding including at least two conductors of the two or more conductors arranged in an electrically switchable relationship. An end of each conductor of the two or more conductors extends to an exterior of the electric machine for independent electrical connection to a component at the exterior of the electric machine.
    Type: Application
    Filed: September 20, 2010
    Publication date: March 22, 2012
    Applicant: REMY TECHNOLOGIES, L.L.C.
    Inventors: Brad Chamberlin, David A. Fulton
  • Patent number: 8134271
    Abstract: An adaptive winding configurations and control method is disclosed for the electromagnetic poles of electric machines, including motors and generators. Motors utilizing the inventive adaptive winding configuration and control method are able to dynamically adjust their operating characteristics to maintain a constant rated power over a large operating speed range with high efficiency. Generators employing the inventive adaptive winding configuration and control method are able to dynamically adjust their operating characteristics in response to a variable driving force to achieve maximum power conversion efficiency. These generators are also able to dynamically change their output voltage and current (thus charging speed) when charging batteries depending on the charged state of the battery, and on the expected duration of the input power.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: March 13, 2012
    Inventor: Panchien Lin