Electrode Materials Patents (Class 310/363)
  • Patent number: 10270024
    Abstract: A crystal resonator element 2 has excitation electrodes 23a, 23b formed on front and back main surfaces of a crystal resonator plate. Each of the excitation electrodes is made of a ternary alloy containing silver as a major component, a first additive, and a second additive. The first additive is a metal element having a lower sputtering yield than silver and being resistant to corrosion in an etching liquid. The second additive is an element for forming a solid solution with silver. Outer peripheries of the excitation electrodes are first additive-rich regions 9 in which the first additive is rich.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: April 23, 2019
    Assignee: DAISHINKU CORPORATION
    Inventor: Naoki Kohda
  • Patent number: 10243135
    Abstract: A piezoelectric device includes a substrate, a lower electrode disposed above the substrate, a lower bonding layer disposed on the lower electrode, a piezoelectric layer containing a piezoelectric material disposed on an upper surface of the lower bonding layer, and an upper electrode disposed above the piezoelectric layer. The lower bonding layer includes an electrode material portion containing an electrode material of the lower electrode and a piezoelectric material portion containing a piezoelectric material. The electrode material portion and the piezoelectric material portion interdigitate with each other in the lower bonding layer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: March 26, 2019
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takafumi Fukui, Kiyoshi Yamakoshi, Yoshiko Higashi
  • Patent number: 10193526
    Abstract: A bulk acoustic resonator includes a substrate, a first electrode disposed above the substrate, a piezoelectric body disposed on the first electrode and including a plurality of piezoelectric layers each including aluminum nitride with a doping material, and a second electrode disposed on the piezoelectric body, where at least one of the piezoelectric layers is a compressive piezoelectric layer formed under compressive stress.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: January 29, 2019
    Assignee: Samsung Electro-Machanics Co., Ltd.
    Inventors: Tae Kyung Lee, In Young Kang, Ran Hee Shin, Jin Suk Son
  • Patent number: 10193054
    Abstract: A piezoelectric ceramic that contains an alkali niobate compound as its main ingredient. The alkali niobate compound has a perovskite crystal structure represented by AmBO3 and contains an alkali metal. There exists Sn in part of site A, and Zr in part of site B. A radial distribution function obtained from a K-edge X-ray absorption spectrum of Sn has a first peak intensity P1 at a first distance from a Sn atom and a second peak intensity P2 at a second distance from the Sn atom. The second distance is greater than the first distance, and the peak intensity ratio P1/P2 is 2.7 or less.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: January 29, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shinichiro Kawada, Shoichiro Suzuki, Hideki Ishii, Hiroyuki Hayashi, Suetake Omiya, Takashi Oyama
  • Patent number: 10186652
    Abstract: There is provided a piezoelectric element which includes a first electrode, a piezoelectric layer which is formed on the first electrode by using a solution method, and is formed from a compound oxide having a perovskite structure in which potassium, sodium, and niobium are provided, and a second electrode which is provided on the piezoelectric layer. A cross-sectional SEM image of the piezoelectric layer is captured at a magnification of 100,000. When evaluation is performed under a condition in which a measured value in a transverse direction is set to 1,273 nm, two or more voids are included in the piezoelectric layer, a difference between the maximum value and the minimum value among diameters of the voids to be largest in a film thickness direction is equal to or smaller than 14 nm, and the maximum value is equal to or smaller than 24 nm.
    Type: Grant
    Filed: April 27, 2016
    Date of Patent: January 22, 2019
    Assignee: Seiko Epson Corporation
    Inventors: Tomohiro Sakai, Koji Sumi, Tetsuya Isshiki, Toshiaki Takahashi, Tomokazu Kobayashi, Kazuya Kitada
  • Patent number: 10181554
    Abstract: A piezoelectric thin film contains potassium sodium niobate represented by general formula (K1-xNax)NbO3 and CaTiO3, wherein the lattice spacing calculated from the diffraction peak of the (001) plane in an X-ray diffraction profile of the piezoelectric thin film is 3.975 ? or less, and the ratio I101/I001 of the diffraction peak intensity I101 of the (101) plane to the diffraction peak intensity I001 of the (001) plane in the X-ray diffraction profile of the piezoelectric thin film 3 satisfies the relationship log10(I101/I001)??2.10.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: January 15, 2019
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Shinsuke Ikeuchi, Toshimaro Yoneda, Yoshitaka Matsuki, Naoyuki Endo
  • Patent number: 10134977
    Abstract: A piezoelectric element has, from a substrate side, a first electrode, a piezoelectric layer containing a composite oxide of an ABO3 type perovskite structure containing Mg, and a second electrode, which are laminated, in which the first electrode includes a diffusion suppressing layer which suppresses diffusion of the Mg and a diffusion layer which diffuses the Mg as compared with the diffusion suppressing layer, and the diffusion suppressing layer is provided on the substrate side relative to the diffusion layer.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: November 20, 2018
    Assignee: Seiko Epson Corporation
    Inventors: Takayuki Yonemura, Tsutomu Asakawa
  • Patent number: 10079561
    Abstract: A unique, environmentally-friendly energy harvesting element is provided for generating autonomous renewable energy, or a renewable energy supplement, in electronic systems, electronic devices and electronic system components. The energy harvesting element includes a first conductor layer, a low work function layer, a dielectric layer, and a second conductor layer that are particularly configured in a manner to promote electron migration from the low work function layer, through the dielectric layer, to the facing surface of the second conductor layer in a manner that develops an electric potential between the first conductor layer and the second conductor layer. Electric leads are provided to connect the energy harvesting element to a load to power the load with the energy harvesting element. An energy harvesting component is also provided that includes a plurality of energy harvesting elements electrically connected to one another to increase a power output of the electric harvesting component.
    Type: Grant
    Filed: April 9, 2016
    Date of Patent: September 18, 2018
    Assignee: Face International Corporation
    Inventor: Clark D Boyd
  • Patent number: 9889652
    Abstract: An actuator as a piezoelectric device has a bonding layer including titanium, a lower electrode including platinum, a piezoelectric thin film, and an upper electrode formed in this order on a substrate. Ti particles precipitate from the bonding layer onto the lower electrode. Pt that forms the lower electrode has a crystal grain size of 75 nm to 150 nm.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: February 13, 2018
    Assignee: KONICA MINOLTA, INC.
    Inventor: Kazuki Shibuya
  • Patent number: 9882117
    Abstract: An actuator capable of preventing occurrence of insulation breakdown while achieving an appropriate operation performance of a dielectric elastomer is provided. Electrode films to be bonded to a dielectric elastomer are formed such that a characteristic of a change in thickness d of the elastomer with an increase in an applied voltage of the elastomer shows a first voltage range in which a decline rate of to the increase in is high and a second voltage range, including a voltage higher than the first voltage range, in which the decline rate of d to the increase in is low, and a voltage value at which the insulation breakdown of the elastomer occurs falls within the second voltage range.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: January 30, 2018
    Assignee: HONDA MOTOR CO., LTD.
    Inventor: Atsuo Orita
  • Patent number: 9873609
    Abstract: A polymer actuator element includes an electrolyte layer and electrode layers, in which the electrode layer includes an activated carbon nanofiber and a carbon nanohorn.
    Type: Grant
    Filed: June 26, 2015
    Date of Patent: January 23, 2018
    Assignee: Alps Electric Co., Ltd.
    Inventors: Tomomasa Takatsuka, Isao Takahashi, Teppei Sugawara, Kenichi Mitsumori, Kinji Asaka, Takushi Sugino
  • Patent number: 9834853
    Abstract: A PZT precursor solution is used for forming a PZT film by a sol-gel method. The PZT precursor solution includes a solvent; a component that forms a crystal of PZT by crystallization, the component being dissolved in the solvent; and an element that inhibits crystal growth of PZT, the element being dissolved in the solvent.
    Type: Grant
    Filed: December 19, 2016
    Date of Patent: December 5, 2017
    Assignee: Ricoh Company, Ltd.
    Inventors: Yoshikazu Akiyama, Akira Shimofuku, Keiji Ueda
  • Patent number: 9793463
    Abstract: Disclosed herein is a piezoelectric vibration module capable of improving adhesion between a piezoelectric element and an external electrode disposed on the piezoelectric element, the piezoelectric vibration module, including: a piezoelectric element printing patterns of a first internal electrode and a second internal electrode therein and having a first external electrode electrically connected to the first internal electrode and a second external electrode electrically connected to the second internal electrode on an external surface thereof, wherein the first external electrode and the second external electrode are made of silver (Ag) and are formed on the external surface of the piezoelectric element.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: October 17, 2017
    Assignee: MPLUS CO., LTD.
    Inventors: Yeon Ho Son, Jae Kyung Kim, Jun Kun Choi
  • Patent number: 9773969
    Abstract: Provided is a method of manufacturing an electrostrictive element by which an electrostrictive element including an expandable and contradictable film electrode having a thin and uniform thickness can be easily formed. In a method of manufacturing an electrostrictive element 1, screen printing is performed while a first jig 12 contacts with a face of a dielectric film 2 opposite to a face where screen printing is performed such that the first jig 12 surrounds an area where the screen printing is performed. Thus, a film electrode 3 is formed.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: September 26, 2017
    Assignees: THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY, HONDA MOTOR CO., LTD.
    Inventors: Mark R. Cutkosky, Atsuo Orita
  • Patent number: 9685602
    Abstract: The present invention provides a piezoelectric thin film element having a pair of electrode layers and a piezoelectric thin film sandwiched between the pair of electrode layers, wherein the pair of electrode layers are composed of platinum (Pt), oxide particles are contained in at least one of the electrode layers, and the oxide particles are oxide particles of at least one element constituting the piezoelectric thin film or oxide particles of Pt.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: June 20, 2017
    Assignee: TDK CORPORATION
    Inventors: Hitoshi Sakuma, Ryu Ohta
  • Patent number: 9668392
    Abstract: A method for producing a housing structure at least partially enclosing at least one component, wherein the housing structure is produced with a construction process utilizing at least one of repeated layered deposition and solidification of material, which is interrupted at least once before completion of the housing structure, and during at least one interruption at least one component, which is not produced by the construction process, is joined to or disposed in a partially finished housing structure, and the construction process is then continued after the interruption until the housing is completed, wherein at least one of an actuator and sensor comprising at least partially a transformer material selected as the at least one component to be joined to or disposed in the housing structure.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: May 30, 2017
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V., TECHNISCHE UNIVERSITAET DARMSTADT
    Inventors: Matthias Rauschenbach, David Flaschentraeger, Tobias Melz, Eberhard Abele, Jakob Fischer, Hanns Stoffregen
  • Patent number: 9613773
    Abstract: An electrical component includes at least one external contact having a first metallization and a second metallization. The metallizations are fired and the second metallization only partly covers the first metallization. Furthermore, an electrical component includes at least one frame-shaped metallization. Furthermore, an electrical component includes a first and second metallization that have a different wettability with solder material.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: April 4, 2017
    Assignee: EPCOS AG
    Inventors: Marion Ottlinger, Robert Krumphals, Andreas Stani
  • Patent number: 9612434
    Abstract: A piezoelectric device includes a substrate; an insulating layer provided on the substrate; a lower electrode layer provided on the insulating layer; a piezoelectric structure provided on the lower electrode layer, the piezoelectric structure including at least one conductive layer and multiple piezoelectric layers sandwiching the conductive layer, the conductive layer having the same crystal structure as that of the piezoelectric layers; and an upper electrode layer provided on the piezoelectric structure.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: April 4, 2017
    Assignee: STANLEY ELECTRIC CO., LTD.
    Inventor: Yoshiaki Yasuda
  • Patent number: 9484403
    Abstract: A semiconductor-on-insulator (SOI) structure that includes a cap layer composed of a boron-rich compound or doped boron nitride located between a top semiconductor layer and a buried insulator layer is provided. The cap layer forms a conductive path between the top semiconductor layer and the buried insulator layer in the SOI structure to dissipate total ionizing dose (TID) accumulated charges, thus advantageously mitigating TID effects in fully depleted SOI transistors.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: November 1, 2016
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alfred Grill, Deborah A. Neumayer, Kenneth P. Rodbell
  • Patent number: 9450167
    Abstract: An acoustic resonator comprises: an acoustic resonator device comprises: a composite first electrode disposed over a substrate, the composite first electrode comprising: a first electrically conductive layer provided over the substrate; a first interlayer disposed on the first electrical conductive layer; a buried temperature compensation layer disposed over the first interlayer; a second interlayer disposed over the temperature compensation layer; a second electrically conductive layer disposed over the second interlayer, a piezoelectric layer disposed over the composite first electrode; and a second electrode disposed over the piezoelectric layer.
    Type: Grant
    Filed: September 27, 2013
    Date of Patent: September 20, 2016
    Assignee: Avago Technologies General IP (Singapore) Pte. Ltd.
    Inventors: Qiang Zou, Donald Lee, Martha K. Small, Frank Bi, Tina L. Lamers, Richard C. Ruby
  • Patent number: 9401470
    Abstract: Various embodiments include apparatus and methods of providing a piezoelectric element having a surface front surface to operate as an active surface of a transducer on which a number of separate electrodes are disposed such that the electrodes on the front surface provide an effectively flat surface to the transducer. Additional apparatus, systems, and methods are disclosed.
    Type: Grant
    Filed: April 11, 2011
    Date of Patent: July 26, 2016
    Assignee: Halliburton Energy Services, Inc.
    Inventor: Voldi E. Maki, Jr.
  • Patent number: 9299908
    Abstract: A piezoelectric actuator that includes a piezoelectric substrate, first and second electrodes, and a conductive layer. The first and second electrodes are configured to apply a voltage to the piezoelectric substrate. The conductive layer is formed on the first electrode. The conductive layer is made of a metal or an alloy different in color from the second electrode.
    Type: Grant
    Filed: November 13, 2012
    Date of Patent: March 29, 2016
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Kimitoshi Nakamura, Hiroshi Nakatani, Masanaga Nishikawa, Sachio Kitagawa
  • Patent number: 9270207
    Abstract: A nanogenerator with at least one nanostructure and method of manufacturing the same are provided. The method of manufacturing the nanogenerator includes forming at least one nanostructure including an organic piezoelectric material on a substrate.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: February 23, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jung-inn Sohn, Seung-nam Cha, Sung-min Kim, Sang-woo Kim, Ju-seok Seo
  • Patent number: 9214620
    Abstract: A piezoelectric actuator of a multilayer design has a stack of piezoelectric layers and electrode layers arranged in between. The electrode layers are contacted by way of two outer electrodes, which have a multiplicity of wires. The outer electrodes are fastened in fastening regions on first side faces of the stack and are led around the edge of the stack that is closest to the respective fastening region.
    Type: Grant
    Filed: October 2, 2009
    Date of Patent: December 15, 2015
    Assignee: EPCOS AG
    Inventors: Stefan Brantweiner, Siegfried Fellner
  • Patent number: 9147826
    Abstract: An object is to increase the amount of displacement of a thin-film piezoelectric element including a piezoelectric thin film having an uneven-shaped contact surface with the planar shape and the layer structure of the thin-film piezoelectric element kept unchanged. The thin-film piezoelectric element includes a pair of electrode layers and a piezoelectric thin film sandwiched between the pair of electrode layers, in which a surface roughness P-V of an interface between the piezoelectric thin film and at least one of the pair of electrode layers is 220 nm or more and 500 nm or less.
    Type: Grant
    Filed: January 23, 2014
    Date of Patent: September 29, 2015
    Assignee: TDK CORPORATION
    Inventors: Hitoshi Sakuma, Kazuhiko Maejima
  • Publication number: 20150145379
    Abstract: An ultrasound vibration device is provided with a stacked transducer in which a plurality of piezoelectric single crystal element layers are stacked between two metal blocks. Since each of the two metal blocks and the plurality of piezoelectric single crystal element layers is fusion-bonded relative to a stack direction by bonding metal having a melting point corresponding to half a Curie point of the plurality of piezoelectric single crystal element layers or below, it is possible to use non-lead material, reduce a processing cost and realize inexpensiveness.
    Type: Application
    Filed: February 2, 2015
    Publication date: May 28, 2015
    Applicant: OLYMPUS CORPORATION
    Inventor: Hiroshi ITO
  • Publication number: 20150130327
    Abstract: A method of producing a fully active multilayer element including producing a fully active stack, and optionally sintering of the fully active stack or a green precursor thereof; applying outer electrodes onto sides A? and C? of the fully active stack and contacting of the uncoated inner electrodes so that the two outer electrodes electrically connect to the uncoated inner electrode layers.
    Type: Application
    Filed: May 22, 2013
    Publication date: May 14, 2015
    Applicant: EPCOS AG
    Inventors: Franz Rinner, Dieter Somitsch
  • Publication number: 20150114703
    Abstract: In a multilayer ceramic electronic component, a size of a step portion on a first main surface and a size of a step portion on a second main surface are different from each other. A first outer electrode includes a plating film containing Cu. A length of a portion of the plating film containing Cu that is positioned on the first main surface in a length direction and a length of a portion of the plating film containing Cu that is positioned on the second main surface in the length direction are different from each other.
    Type: Application
    Filed: October 22, 2014
    Publication date: April 30, 2015
    Inventor: Kotaro SHIMIZU
  • Publication number: 20150120051
    Abstract: A sensor device includes a charge output element including a plurality of piezoelectric bodies and an internal electrode formed between the piezoelectric bodies, a package that houses the charge output element, first conductive paste electrically connected to a plurality of the internal electrodes, and second conductive paste that electrically connects the first conductive paste and an output terminal and has a modulus of elasticity lower than a modulus of elasticity of the first conductive paste. A Young's modulus of the first conductive paste is equal to or higher than 3.4 GPa and equal to or lower than 5.0 GPa and a Young's modulus of the second conductive paste is equal to or higher than 0.1 GPa and equal to or lower than 0.2 GPa.
    Type: Application
    Filed: October 24, 2014
    Publication date: April 30, 2015
    Inventors: Akira MATSUZAWA, Toshiyuki KAMIYA, Hiroki KAWAI
  • Patent number: 9013092
    Abstract: Energy harvesting elements or membranes are provided that use a layer of electrodes with a mixture of carbon nanotubes (CNT). The energy harvesting device of this type can be used as in sensor-based system in which on application of a bending load, the energy harvesting device produces a voltage across the electrodes. The energy harvesting device may include an electrode coating including carbon nanotubes (CNT) substantially homogenously dispersed in epoxy resin system to form a CNT-epoxy electrode coating. The CNT-epoxy electrode can be realized by dispersing about 5% CNT (by weight) in an epoxy-resin system, followed by mixing the system to achieve a near-homogenous dispersion resulting in a CNT-epoxy mixture. The CNT-epoxy mixture can then be uniformly coated on surfaces of a polymer to form electrodes.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 21, 2015
    Assignee: Indian Institute of Science
    Inventors: Debiprosad Roy Mahapatra, Arvind Krishnaswamy
  • Patent number: 8998390
    Abstract: Provided is an NBT-BT lead-free piezoelectric film having a high crystalline orientation and a high piezoelectric constant. The present invention is a piezoelectric film comprising a NaxM1-x layer and a (Bi, Na)TiO3—BaTiO3 layer. The (Bi, Na) TiO3—BaTiO3 layer is formed on the NaxM1-x layer, where M represents Pt, Ir, or PtIr and x represents a value of not less than 0.002 and not more than 0.02. Both of the NaxM1-x layer and the (Bi, Na) TiO3—BaTiO3 layer have a (001) orientation only, a (110) orientation only, or a (111) orientation only.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: April 7, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Takakiyo Harigai, Yoshiaki Tanaka, Hideaki Adachi, Eiji Fujii
  • Publication number: 20150084486
    Abstract: Disclosed is a piezoelectric element wherein a lower electrode made of Pt, a buffer layer made of PLT, and a piezoelectric thin film to be a perovskite ferroelectric thin film are formed in this order on a substrate. The average crystal grain size of Pt forming the lower electrode is not smaller than 50 nm and not larger than 150 nm.
    Type: Application
    Filed: April 19, 2013
    Publication date: March 26, 2015
    Applicant: KONICA MINOLTA, INC.
    Inventor: Hideyuki Eguchi
  • Patent number: 8987975
    Abstract: A lead type piezoelectric resonator device includes a piezoelectric resonator plate and a lead terminal that supports the piezoelectric resonator plate. The piezoelectric resonator plate is provided with a terminal electrode that is electrically connected to the lead terminal, and the lead terminal is provided with a bonding layer that is electrically connected to the piezoelectric resonator plate. The piezoelectric resonator plate and the lead terminal are electromechanically bonded to each other by the terminal electrode and the bonding layer. A bonding material containing an Sn—Cu alloy is produced from the terminal electrode and the bonding layer by the bonding of the terminal electrode and the bonding layer.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 24, 2015
    Assignee: Daishinku Corporation
    Inventors: Tatsuya Murakami, Tadataka Koga, Koichi Kishimoto
  • Publication number: 20150076967
    Abstract: The present disclosure relates to a multilayer piezoelectric element which includes a plurality of piezoelectric layers with a thickness of 15 ?m to 100 ?m each; and internal electrodes interposed between the plurality of piezoelectric layers and laminated to alternately form an anode and a cathode.
    Type: Application
    Filed: September 16, 2014
    Publication date: March 19, 2015
    Inventors: Boum Seock KIM, Hui Sun PARK, Jung Wook SEO
  • Patent number: 8981627
    Abstract: A piezoelectric device has a first electrode film, a piezoelectric film provided on the first electrode film, and a second electrode film provided on the piezoelectric film. At least one of the pair of electrode films is composed of an alloy, and a major component of the alloy is a metal selected from the group consisting of Ti, Al, Mg, and Zn.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: March 17, 2015
    Assignee: TDK Corporation
    Inventors: Hitoshi Sakuma, Katsuyuki Kurachi, Yasuhiro Aida, Kazuhiko Maejima, Mayumi Nakajima
  • Publication number: 20150062257
    Abstract: A sodium niobate powder includes sodium niobate particles having a shape of a cuboid and having a side average length of 0.1 ?m or more and 100 ?m or less, wherein at least one face of each of the sodium niobate particles is a (100) plane in the pseudocubic notation and a moisture content of the sodium niobate powder is 0.15 mass % or less. A method for producing a ceramic using the sodium niobate powder is provided. A method for producing a sodium niobate powder includes a step of holding an aqueous alkali dispersion liquid containing a niobium component and a sodium component at a pressure exceeding 0.1 MPa, a step of isolating a solid matter from the aqueous dispersion liquid after the holding, and a step of heat treating the solid matter at 500° C. to 700° C.
    Type: Application
    Filed: April 3, 2013
    Publication date: March 5, 2015
    Inventors: Tomoaki Masubuchi, Toshiaki Aiba, Toshihiro Ifuku, Makoto Kubota, Takayuki Watanabe, Tatsuo Furuta, Jumpei Hayashi
  • Patent number: 8970094
    Abstract: A piezoelectric ceramic material has the general formula: P1-c-dDcZd(PbO)w where: 0<c?0.025; 0?d?0.05; 0?w?0.05; where P stands for a compound having the formula [Pb1-vAgIv][(Zr1-yTiy)1-uCuIIu]O3, where 0.50?1?y?0.60; 0<u?0.0495; 0?v?0.02, and D stands for a component of the general formula [(M1O)1-p(M2O)p]a[Nb2O5]1-a, where M1 stands for Ba1-tSrt, where 0?t?1, M2 stands for Sr and/or Ca, and 0<p<1 and ?<a<1 and Z stands for a compound of the general formula: Pb(L1Rr)O3 where L is present in the oxidation state II or III, and R is present in the oxidation state VI or V, and: LII is selected from among Fe, Mg, Co, Ni and Cu in combination with RVI=W, where 1=½ and r=½, or LIII is selected from among Fe, Cr and Ga in combination with RV=Nb, Ta or Sb, where 1=½ and r=½, or LIII is selected from among Fe, Cr and Ga in combination with RVI=W, where 1=? and r=?.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: March 3, 2015
    Assignee: EPCOS AG
    Inventors: Michael Schossmann, Adalbert Feltz
  • Publication number: 20150053885
    Abstract: A piezoelectric ceramic contains a main component, Mn as a first auxiliary component, and a second auxiliary component containing at least one element selected from the group consisting of Cu, B, and Si. The main component contains a perovskite metal oxide having the following general formula (1): (Ba1-xCax)a(Ti1-yZry)O3(0.100?x?0.145,0.010?y?0.039)??(1) The amount b (mol) of Mn per mole of the metal oxide is in the range of 0.0048?b?0.0400, the second auxiliary component content on a metal basis is 0.001 parts by weight or more and 4.000 parts by weight or less per 100 parts by weight of the metal oxide, and the value a of the general formula (1) is in the range of 0.9925+b?a?1.0025+b.
    Type: Application
    Filed: March 21, 2013
    Publication date: February 26, 2015
    Applicant: Canon Kabushiki Kaisha
    Inventors: Hiroshi Saito, Shunsuke Murakami, Miki Ueda, Hidenori Tanaka, Takanori Matsuda, Takayuki Watanabe, Makoto Kubota
  • Publication number: 20150054387
    Abstract: Multi-layered thin film piezoelectric material stacks and devices incorporating such stacks. In embodiments, an intervening material layer is disposed between two successive piezoelectric material layers in at least a portion of the area of a substrate over which the multi-layered piezoelectric material stack is disposed. The intervening material may serve one or more function within the stack including, but not limited to, inducing an electric field across one or both of the successive piezoelectric material layers, inducing a discontinuity in the microstructure between the two successive piezoelectric materials, modulating a cumulative stress of the piezoelectric material stack, and serving as a basis for varying the strength of an electric field as a function of location over the substrate.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Inventor: Youming Li
  • Publication number: 20150035414
    Abstract: A film-type piezoelectric/electrostrictive element which is a fired object includes a body part, a pair of side-surface electrodes and an electrode exposed surface. The body part has n+1 layered piezoelectric/electrostrictive films and n layered internal electrode layer(s). The piezoelectric/electrostrictive films are composed of ceramic. The piezoelectric/electrostrictive films and the internal electrode layer(s) are stacked in an alternating manner. The n is an integer equal to 1 or more. The pair of side-surface electrodes is positioned on two opposing side surfaces of the body part. The two opposing side surfaces extend in a stacking direction of the body part. The internal electrode layer(s) is/are exposed on an electrode exposed surface of the body part. The electrode exposed surface extends in the stacking direction. An electrode exposure ratio of the internal electrode layer(s) on the electrode exposed surface as defined by Formula (1) being more than 0% and less than or equal to 10%.
    Type: Application
    Filed: October 17, 2014
    Publication date: February 5, 2015
    Inventors: Kohji SHIBAYAMA, Haruhiko ITO
  • Patent number: 8946975
    Abstract: A piezoelectric vibrating piece includes an excitation unit in a rectangular shape, a framing portion, and a connecting portion. The excitation unit includes two principal surfaces, a pair of excitation electrodes on the principal surfaces, a first side extending in a first direction, and a second side extending in a second direction. The second side is longer than the first side, and is perpendicular to the first direction. The framing portion surrounds the excitation unit. The connecting portion connects the excitation unit to the framing portion. The connecting portion has a third side which is connected to the first side and extends in the first direction and a fourth side which is connected to the framing portion and extends in the first direction. A thickness of the connecting portion is thinner than that of the framing portion. The third side has a different length from that of the fourth side.
    Type: Grant
    Filed: October 28, 2012
    Date of Patent: February 3, 2015
    Assignee: Nihon Dempa Kogyo Co., Ltd.
    Inventors: Takumi Ariji, Takehiro Takahashi
  • Publication number: 20150028249
    Abstract: Provided is a lead-free piezoelectric ceramics having enhanced mechanical quality factor (Qm) and mechanical strength. The piezoelectric ceramics, includes at least a first crystal grain and a second crystal grain. The first crystal grain has an average equivalent circle diameter of 2 ?m or more and 30 ?m or less. The first crystal grain includes a perovskite-type metal oxide represented by the following general formula (1) as a main component, and the second crystal grain includes a perovskite-type metal oxide represented by the following general formula (2) as a main component: (1) xBaTiO3-yCaTiO3-zCaZrO3; and (2) x?BaTiO3-y?CaTiO3-z?CaZrO3, provided that x, y, z, x?, y?, and z? satisfy x+y+z=1, x?+y?+z?=1, 0?x??0.15, 0.85?y??1, 0?z?0.05, x>x?, 0<y<y?, and z>0.
    Type: Application
    Filed: March 26, 2013
    Publication date: January 29, 2015
    Applicant: CANON KABUSHIKI KAISHA
    Inventors: Mikio Shimada, Toshiaki Aiba, Toshihiro Ifuku, Takanori Matsuda, Makoto Kubota, Tatsuo Furuta, Jumpei Hayashi
  • Publication number: 20150022275
    Abstract: A vibrator element includes a base portion, a vibrating arm extending from the base portion, a first electrode provided on the vibrating arm, a second electrode provided above the first electrode, a piezoelectric body arranged between the first electrode and the second electrode, and an insulating film arranged between the first electrode and the piezoelectric body, in which the material of the first electrode contains TiN, the material of the insulating film contains SiO2, and the material of the piezoelectric body contains AlN.
    Type: Application
    Filed: July 14, 2014
    Publication date: January 22, 2015
    Inventors: Takashi YAMAZAKI, Akihiko EBINA, Tsuyoshi TABATA, Hidekazu YANAGISAWA
  • Publication number: 20150015120
    Abstract: There is provided a piezoelectric element, including: a porous fluororesin film made of a first fluororesin; and a nonporous fluororesin layer stacked on at least one surface of the porous fluororesin film and made of a second fluororesin, wherein the first fluororesin is different in type from the second fluororesin, and when 50 pores are selected in descending order from a pore having the longest thickness-direction length, of pores present in a cut surface of the porous fluororesin film in a thickness direction, an average value A50 of thickness-direction lengths of the 50 pores is 3 ?m or smaller.
    Type: Application
    Filed: January 28, 2013
    Publication date: January 15, 2015
    Inventors: Shingo Kaimori, Jun Sugawara, Yoshiro Tajitsu
  • Publication number: 20150015643
    Abstract: A piezoelectric material contains a main component containing a perovskite-type metal oxide having the formula (1); a first auxiliary component composed of Mn; and a second auxiliary component composed of Bi or Bi and Li, wherein the Mn content is 0.04 parts by weight or more and 0.400 parts by weight or less on a metal basis per 100 parts by weight of the metal oxide, the Bi content is 0.042 parts by weight or more and 0.850 parts by weight or less on a metal basis per 100 parts by weight of the metal oxide, and the Li content is 0.028 parts by weight or less (including 0 parts by weight) on a metal basis per 100 parts by weight of the metal oxide. (Ba1-xCax)a(Ti1-y-zSnyZrz)O3??(1) (wherein 0?x?0.080, 0.013?y?0.060, 0?z?0.040, and 0.986?a?1.020.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: Kanako Oshima, Takayuki Watanabe, Shunsuke Murakami, Hidenori Tanaka, Jumpei Hayashi, Hiroshi Saito, Takanori Matsuda
  • Publication number: 20150015113
    Abstract: A polymer actuator device includes a device part including an electrolyte layer, first and second electrode layers disposed on either surface of the electrolyte layer in a thickness direction, and a reference electrode layer disposed between the first and second electrode layers and in contact with the electrolyte layer. The device part bends in response to a voltage applied between the first and second electrode layers.
    Type: Application
    Filed: July 30, 2014
    Publication date: January 15, 2015
    Inventors: Yorihiko SASAKI, Teppei SUGAWARA, Nobuaki HAGA, Kinji ASAKA, Takushi SUGINO, Tetsuo NISHIDA
  • Publication number: 20150015642
    Abstract: There is provided a piezoelectric material not containing any lead component, having stable piezoelectric characteristics in an operating temperature range, a high mechanical quality factor, and satisfactory piezoelectric characteristics. The piezoelectric material according to the present invention includes a main component containing a perovskite-type metal oxide that can be expressed using the following general formula (1), and subcomponents containing Mn, Li, and Bi. When the metal oxide is 100 parts by weight, the content of Mn on a metal basis is not less than 0.04 parts by weight and is not greater than 0.36 parts by weight, content ? of Li on a metal basis is equal to or less than 0.0012 parts by weight (including 0 parts by weight), and content ? of Bi on a metal basis is not less than 0.042 parts by weight and is not greater than 0.850 parts by weight (Ba1-xCax)a(Ti1-y-zZrySnz)O3??(1) (in the formula (1), 0.09?x?0.30, 0.025?y?0.085, 0?z?0.02, and 0.986?a?1.02).
    Type: Application
    Filed: July 10, 2014
    Publication date: January 15, 2015
    Inventors: Hidenori Tanaka, Takayuki Watanabe, Shunsuke Murakami, Tatsuo Furuta, Hisato Yabuta
  • Publication number: 20140375173
    Abstract: A ceramic electronic component includes a rectangular or substantially rectangular parallelepiped shaped laminate in which a ceramic layer and an internal electrode are alternately laminated and an external electrode provided on a portion of a surface of the laminate and electrically connected to the internal electrode. The external electrode includes an inner external electrode covering a portion of the surface of the laminate and including a mixture of a resin component and a metal component and an outer external electrode covering the inner external electrode and including a metal component.
    Type: Application
    Filed: June 16, 2014
    Publication date: December 25, 2014
    Inventors: Kenichi HAMANAKA, Kota ZENZAI, Taku DEKURA, Kiyotaka MAEKAWA
  • Publication number: 20140375172
    Abstract: A piezoelectric material, comprising: a piezoelectric self-assembling monolayer of oligopeptides; a conductive surface; and a substrate, wherein the conductive surface is located between the piezoelectric self-assembling monolayer of oligopeptides and the substrate. A touch sensitive device, comprising: a first piezoelectric material, comprising: a piezoelectric self-assembling monolayer of oligopeptides containing a dipole moment; a conductive surface; and a substrate; a second piezoelectric material, comprising: a piezoelectric self-assembling monolayer of oligopeptides containing a dipole moment; a conductive surface; and s substrate, wherein the oligopeptides making up the self-assembling monolayer of the first and second piezoelectric materials, respectively, have the same amino acid sequence but have an equal and opposite dipole moment.
    Type: Application
    Filed: December 6, 2013
    Publication date: December 25, 2014
    Applicant: University of Pittsburgh- Of The Commonwealth System of Higher Education
    Inventors: Geoffrey R. Hutchison, Xinfeng Quan
  • Publication number: 20140368090
    Abstract: A piezoelectric device is provided with: a piezoelectric ceramic layer that is obtained by firing a piezoelectric ceramic composition which contains a perovskite composition and an Ag component; and a conductor layer that sandwiches the piezoelectric ceramic layer, wherein Ag is segregated in voids in a sintered body of the perovskite composition in the piezoelectric ceramic layer. The piezoelectric ceramic composition preferably contains a perovskite composition which is represented by (Pba.Rex){Zrb.Tic,.(Ni1/3Nb2/3)d.(Zn1/3Nb2/3)e}O3 (wherein Re represents La and/or Nd, and a-e and x satisfy the following conditions 0.95?a?1.05, 0?x?0.05, 0.35?b?0.45, 0.35?c?0.45, 0<d?0.10, 0.07?e?0.20 and b+c+d+e=1) and 0.05-0.3% by mass of an Ag component in terms of oxides relative to the perovskite composition.
    Type: Application
    Filed: November 27, 2012
    Publication date: December 18, 2014
    Applicant: TAIYO YUDEN CO., LTD.
    Inventors: Shinichiro Ikemi, Yutaka Doshida