Non-dynamoelectric Patents (Class 310/300)
  • Patent number: 11189779
    Abstract: The invention provides an electroactive polymer actuator comprising a capacitance compensation means adapted to at least partially offset any changes in the capacitance across the member induced by its deformation. In this way, the electronic control of the device is rendered much simpler, since a varying capacitance across the actuator member does not have to be accounted for when driving the actuator to perform a particular deformation.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: November 30, 2021
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Achim Hilgers, Mark Thomas Johnson
  • Patent number: 11179732
    Abstract: An electrodischarge apparatus has a nozzle that includes a discharge chamber that has an inlet for receiving a liquid and an outlet. The apparatus has a first electrode extending into the discharge chamber that is electrically connected to one or more high-voltage capacitors. A second electrode is proximate to the first electrode to define a gap between the first and second electrodes. A switch causes the one or more capacitors to discharge across the gap between the electrodes to create a plasma bubble which expands to form a shockwave that escapes from the nozzle ahead of the plasma bubble.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: November 23, 2021
    Assignee: VLN Advanced Technologies Inc.
    Inventor: Mohan Vijay
  • Patent number: 11133755
    Abstract: A triboelectric nanogenerator according to the present invention includes an electrode layer, a storage layer disposed to be in contact with a top of the electrode layer, a contact layer disposed to be in contact with a top of the storage layer, and a counterpart layer disposed above the contact layer in a spaced manner to face the contact layer and brought into contact with the contact layer by an external force, wherein the storage layer is formed by an electrochemical reaction of the electrode layer.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: September 28, 2021
    Assignee: AGENCY FOR DEFENSE DEVELOPMENT
    Inventors: Insang Song, Woonbong Hwang, Dongsung Kim, Jeongwon Lee, Dowan Kim
  • Patent number: 11114953
    Abstract: A method for manufacturing a charge pump-based artificial lightning generator comprises the steps of: forming a second electrode on a prepared substrate; forming a negatively charged body having a sponge structure under the second electrode; removing spherical polymer particles from the negatively charged body using a toluene solution; allowing metal particles to penetrate into the negatively charged body; forming a positively charged body in a location which is at a predetermined distance below the negatively charged body in order to generate charges; nano-structuring the surface of the positively charged body; coating the nano-structured surface of the positively charged body with second metal particles; forming a ground layer for charge separation while maintaining a constant distance in the downward direction from one side of the positively charged body; and forming a first electrode for charge accumulation in a location which is at a predetermined distance below the positively charged body.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: September 7, 2021
    Assignees: Samsung Electronics Co., Ltd., UNIST (ULSAN NATIONAL INSTITUTE OF SCIENCE AND TECHNOLOGY)
    Inventors: Jeong Min Baik, Jin Sung Chun, Byeong Uk Ye
  • Patent number: 11095820
    Abstract: A micro-electrical-mechanical system (MEMS) actuator configured to provide multi-axis movement, the micro-electrical-mechanical system (MEMS) actuator including: a first portion, a second portion, wherein the first portion and the second portion are displaceable with respect to each other, and a locking assembly configured to releasably couple the first portion and the second portion to attenuate displacement between the first portion and the second portion.
    Type: Grant
    Filed: September 11, 2019
    Date of Patent: August 17, 2021
    Assignee: MEMS Drive, Inc.
    Inventors: Xiaolei Liu, Matthew Ng, Guiqin Wang
  • Patent number: 11018602
    Abstract: A power generating element is provided. The power generating element includes a pair of electrodes, an intermediate layer being insulating, and a substrate being flexible. The intermediate layer is disposed between the electrodes. The substrate is configured to support the electrodes and the intermediate layer. When the substrate undergoes a deformation, the intermediate layer is separated from or pressed against one of the electrodes.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: May 25, 2021
    Assignee: Ricoh Company, Ltd.
    Inventors: Mizuki Otagiri, Tsuneaki Kondoh, Tomoaki Sugawara, Yuko Arizumi, Junichiro Natori, Mayuka Araumi, Takahiro Imai, Hideyuki Miyazawa, Makito Nakashima, Megumi Kitamura
  • Patent number: 11012003
    Abstract: A variable speed drive for an electrostatic motor provides feedback control according to rotor position and/or rotor rotational rate deduced from back currents (back-MMF). Extraction of the back currents is performed by a modeling of the stator and the development of isolated stator voltages from plate voltage measurements.
    Type: Grant
    Filed: September 10, 2019
    Date of Patent: May 18, 2021
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Daniel Colin Ludois, Aditya N. Ghule, Peter Killeen
  • Patent number: 10978966
    Abstract: A vibration wave actuator has a vibration member including an elastic member and an electro-mechanical energy transducer, and a contact member in contact with the vibration member, and the contact member and the vibration member move relative to each other. The vibration wave actuator includes a detected portion configured to move, together with the contact member, relative to the vibration member, and a detection unit configured to move, together with the vibration member, relative to the contact member to detect displacement information or position information for the detected portion. The vibration member has two projections provided side by side in a direction intersecting with the direction of the relative movement. The contact member contacts the two projections. The detection unit and the detected portion are located between the contact member and the vibration member when viewed from the direction of the relative movement.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: April 13, 2021
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yuki Shinzato
  • Patent number: 10961119
    Abstract: A MEMS device comprising a substrate comprising a die and a plurality of side-walls disposed upon the MEMS die, a proof-mass coupled to the substrate, the proof-mass is configured to be displaced within a first plane that is parallel to the die, wherein the proof-mass is configured to contact at least a sidewall, wherein the proof-mass is configured to adhere to the side-wall as a result of stiction forces, a driving circuit configured to provide a driving voltage in response to a driving signal indicating that the proof-mass is adhered to the side-wall, and an actuator coupled to the driving circuit disposed upon the side-wall, wherein the actuator is configured to receive a driving voltage and to provide an actuator force to the proof mass within the first plane in a direction away from the side-wall in response to the driving voltage, wherein the actuator force exceeds the stiction forces.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: March 30, 2021
    Assignee: mCube, Inc.
    Inventors: Shih-Wei Lee, Wen-Chih Chen
  • Patent number: 10938324
    Abstract: Provided is an electrostatic energy harvester Including a lower electrode; a ferroelectric material layer which is disposed on the lower electrode and formed of a poled ferroelectric material; a friction-charged body which is adapted to be repeatedly contacted with and separated from the ferroelectric material layer and has an electric susceptibility different from an electric susceptibility of the ferroelectric material layer; and an upper electrode provided on the friction-charged body.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: March 2, 2021
    Assignee: SAMSUNG ELECTRONICS CO.. LTD.
    Inventors: Sangwoo Kim, Keun Young Lee, Seongsu Kim, Juhyuck Lee
  • Patent number: 10931210
    Abstract: Techniques for energy production are disclosed. A kinetic fabric for use in a kinetically-activated energy production system is implemented. The kinetic fabric comprises a three-dimensional, layer-based flexible matrix that regains shape after deformation. The fabric further comprises a kinetically activated energy source layer supported between layers of the flexible matrix. The fabric further includes a flexible electrical connection that provides an electrical path between the energy source layer and a terminal on the flexible matrix. The kinetic fabric is deformed with mechanical agitation, and energy is harvested from the energy source layer through the terminal on the flexible matrix. Various embodiments are disclosed including flags, moving vehicles, and shade structures, among others.
    Type: Grant
    Filed: June 19, 2019
    Date of Patent: February 23, 2021
    Assignee: Glen Raven, Inc.
    Inventors: Cameron Andrews Arnett, Harold W Hill, Jr., Elizabeth Paige Mullis Enochs, Nan-Wei Gong
  • Patent number: 10879817
    Abstract: A paper-based triboelectric nanogenerator and a method of manufacturing the same are disclosed. The paper-based triboelectric nanogenerator of the present disclosure includes a sandwich structure including a first paper, conductive papers formed on the first paper and each including an electrode composed of a mesh-type conductive nanomaterial, and a second paper formed on the conductive papers; and a polymer film formed in a selective area on the second paper, wherein the number of the conductive papers formed on the first paper is two; the two conductive papers are formed so as to be spaced apart from each other in the horizontal direction; and the polymer film formed in the selective area is formed only in the upper area of one of the two conductive papers.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: December 29, 2020
    Assignee: Industry-University Cooperation Foundation Hanyang University
    Inventors: Tae Whan Kim, Chaoxing Wu, Jae Hyeon Park
  • Patent number: 10873276
    Abstract: Apparatuses and methods for harvesting ambient energy involve repeated circuit reconfiguration. An apparatus includes a primary charge storage device, a first secondary charge storage device, a second secondary charge storage device, and switching circuitry. The switching circuitry is configured to cyclically alter connection of the first and second secondary charge storage devices between a series state and a parallel state. First and second moveable electrically conductive elements may include electrically conductive liquid droplets of materials such as water or mercury. At least one of the primary storage device, the first secondary charge storage device, or the second secondary charge storage device includes a capacitance that varies in response to receipt of ambient energy. Concurrently altering relative capacitance and circuit configuration results in exponential growth of harvested energy.
    Type: Grant
    Filed: November 17, 2017
    Date of Patent: December 22, 2020
    Assignee: UNIVERSITY OF HAWAII
    Inventors: Tianwei Ma, Jian Yu, Enze Ma
  • Patent number: 10868344
    Abstract: A capacitor is configured to be in thermal contact with an electrical load. A controller is configured to charge and discharge the capacitor to change a temperature of the capacitor. The controller is configured to selectively discharge the capacitor at a discharge current at which entropic cooling of the capacitor is greater than Joule heating of the capacitor to provide cooling for the electrical load.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: December 15, 2020
    Assignee: Ford Global Technologies, LLC
    Inventors: Alvaro Masias, James Matthew Marcicki
  • Patent number: 10848079
    Abstract: Systems, apparatuses and methods for harvesting ambient energy involve an electrically conductive charge-carrying movable electrode. An apparatus includes an electrically conductive charge-carrying electrode, a first dielectric interface region, a second dielectric interface region, and at least one reference electrode. The first and second dielectric interface regions differ in surface charge density. In certain aspects, the movable electrode moves proximate and relative to the first and second dielectric interface regions in response to receipt of ambient energy, thereby providing first and second capacitances. The first capacitance differs from the second capacitance, and/or the first surface charge density differs from the second surface charge density. Movement of the movable electrode in combination with the differing capacitances and/or charge densities results in energy accumulation, thereby enabling ambient energy to be harvested efficiently and effectively.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: November 24, 2020
    Assignee: UNIVERSITY OF HAWAII
    Inventors: Tianwei Ma, Jian Yu, Enze Ma
  • Patent number: 10770990
    Abstract: A triboelectric generator includes a first electrode and a second electrode spaced apart from each other, a first charging part on the first electrode, a second charging part on the second electrode, and a grounding unit. The first charging part and the second charging part may be configured to contact each other through a sliding motion. The grounding unit may be configured to intermittently connect a charge reservoir to the second charging part. The grounding unit may be configured to vary the electric potential of the second charging part so as to amplify current flowing between electrodes of the triboelectric generator.
    Type: Grant
    Filed: May 8, 2017
    Date of Patent: September 8, 2020
    Assignees: Samsung Electronics Co., Ltd., UNIST (Ulsan National Institute of Science and Technology)
    Inventors: Kyungeun Byun, Jaeyoung Kim, Minsu Seol, Hyeonjin Shin, Jeongmin Baik, Woojung Yang, Byeonguk Ye, Jaewon Lee, Jinpyo Lee, Kyeongnam Kim
  • Patent number: 10770637
    Abstract: An energy harvest is disclosed. The disclosed energy harvest includes: a first charging member including a plurality of first protruding parts; and a second charging member including a plurality of second protruding parts arranged between the first protruding parts and including a material different from that of the first protruding parts. When at least one of the first and second charging members moves, side surfaces of the first protruding parts and side surfaces of the second protruding parts come into contact with each other, or gaps between the side surfaces of the first protruding parts and the side surfaces of the second protruding parts are changed. The energy harvest generates electrical energy from the contact or the gap change.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: September 8, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-jun Park, Jin-hyoung Park, Yun-kwon Park, Ho-seong Seo, Sang-wook Kwon
  • Patent number: 10752497
    Abstract: The present disclosure, in some embodiments, relates to an integrated chip structure. The integrated chip structure has a plurality of interconnect layers disposed within a dielectric structure over a substrate. A passivation layer is over the dielectric structure. A sensing electrode and a bonding electrode have bottom surfaces directly contacting the passivation layer. A microelectromechanical systems (MEMS) substrate is vertically separated from the sensing electrode. The bonding electrode is electrically connected to the MEMs substrate and to one or more of the plurality of interconnect layers. An electrode extension via is configured to electrically connect the sensing electrode to one or more of the plurality of interconnect layers.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: August 25, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu-Chia Liu, Chia-Hua Chu, Chun-Wen Cheng, Jung-Huei Peng
  • Patent number: 10746612
    Abstract: A printed stretchable strain sensor is provided. The printed stretchable strain sensor has a stretchable substrate and a composite ink coupled to a surface of the stretchable substrate to form a strain-sensitive conductive structure. The composite ink includes both a nanowire and a metal flake. The capability of the fabricated strain sensor, printed in two design configurations: straight line and wavy line, was investigated by studying its electro-mechanical response towards varying elongations of 1 mm, 2 mm, and 3 mm.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: August 18, 2020
    Assignee: The Board of Trustees of Western Michigan University
    Inventors: Massood Atashbar, Mohammed Mudher Mohammed Ali, Binu Baby Narakathu, Ali Eshkeiti
  • Patent number: 10734922
    Abstract: A power generating element 1 according to an embodiment includes a displacement member 10, a displacement member 20, and a fixed member 30. The displacement member 10 and the displacement member 20 are connected via an elastic deformation body 41. The displacement member 10 is connected to an attachment section 51 via an elastic deformation body 42. The displacement member 10 and/or the displacement member 20 includes a first power generation surface. The fixed member 30 includes a second power generation surface opposed to the first power generation surface. An electret material layer is provided on one surface of the first power generation surface and the second power generation surface. A counter electrode layer is provided on the other surface.
    Type: Grant
    Filed: April 5, 2017
    Date of Patent: August 4, 2020
    Assignee: TRI-FORCE MANAGEMENT CORPORATION
    Inventors: Kazuhiro Okada, Miho Okada
  • Patent number: 10720655
    Abstract: A system includes a fuel cell stack having a plurality of fuel cells and designed to receive a fluid and to heat the fluid. The system also includes an actuator to increase or decrease a fluid temperature of the fluid and an ECU. The ECU can determine a temperature control signal corresponding to a desired temperature of the fluid and perform a feedforward control of the actuator to increase or decrease the fluid temperature towards the desired temperature. The ECU can also determine a temperature difference between the fluid temperature and the desired temperature, and can determine a sensitivity that corresponds a change in a parameter value or the actuator position to a change in the fluid temperature. The ECU can also apply the sensitivity to the temperature difference to determine an error signal, and control the actuator based on the error signal.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: July 21, 2020
    Assignee: TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: Jared Farnsworth, Daniel Folick, Naoki Tomi, Shigeki Hasegawa, Kentaro Fukuda
  • Patent number: 10700262
    Abstract: A piezoelectric resonator includes a piezoelectric thin film including a functional conductor, a fixing layer provided on a principal surface of the piezoelectric thin film to define a void that overlaps a functional portion region, and a support substrate on a principal surface of the fixing layer. A sacrificial layer is provided on a principal surface of a piezoelectric substrate and the fixing layer is provided on the principal surface of the piezoelectric substrate to cover the sacrificial layer. The support substrate is attached to a surface of the fixing layer and the piezoelectric thin film is peeled from the piezoelectric substrate. The functional conductor is provided on the piezoelectric thin film, a through hole is provided in the piezoelectric thin film to straddle a boundary between the fixing layer and the sacrificial layer, and the sacrificial layer is removed by wet etching using the through hole to form the void.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: June 30, 2020
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventor: Yutaka Kishimoto
  • Patent number: 10641252
    Abstract: The disclosure relates to an actuator based on carbon nanotubes and actuating system using the same. The actuator includes: a carbon nanotube layer and a vanadium dioxide layer stacked with each other. Because the drastic, reversible phase transition of VO2, the actuator has giant deformation amplitude and fast response. An actuating system using the actuator is also provided.
    Type: Grant
    Filed: September 25, 2017
    Date of Patent: May 5, 2020
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: He Ma, Yang Wei, Kai Liu, Kai-Li Jiang, Shou-Shan Fan
  • Patent number: 10583462
    Abstract: A method of producing an electromechanical transducer includes forming an insulating film on a first electrode, forming a sacrificial layer on the insulating film, forming a first membrane on the sacrificial layer, forming a second electrode on the first membrane, forming an etching-hole in the first membrane and removing the sacrificial layer through the etching-hole, and forming a second membrane on the second electrode, and sealing the etching-hole. Forming the second membrane and sealing the etching-hole are performed in one operation.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: March 10, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Kazutoshi Torashima, Takahiro Akiyama, Toshio Tomiyoshi
  • Patent number: 10587307
    Abstract: Systems and methods for communicating a signal over a hydraulic line in a vehicle are provided. In one embodiment, a system can include a hydraulic line. The hydraulic line can include at least one communication medium for propagating a communication signal. The system can also include at least one signal communication device configured to receive the communication signal communicated over the hydraulic line. The system can also include at least one vehicle component in communication with the at least one signal communication device.
    Type: Grant
    Filed: November 8, 2016
    Date of Patent: March 10, 2020
    Assignee: GE Aviation Systems, LLC
    Inventors: Pavlo Bobrek, Eric Rankin Gardner
  • Patent number: 10575735
    Abstract: An object information acquiring apparatus according to the present invention includes: an acoustic wave detecting element which detects an acoustic wave propagating from an object and which outputs an acoustic signal; a reference element which receives an input of electrical noise corresponding to electrical noise input to the acoustic wave detecting element and which outputs a reference signal; a noise reducer which reduces a component derived from the electrical noise by subtracting the reference signal from the acoustic signal; and a processor which generates image data representing characteristic information of the object using the acoustic signal in which the component derived from the electrical noise has been reduced.
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 3, 2020
    Assignee: CANON KABUSHIKI KAISHA
    Inventor: Takeshi Suwa
  • Patent number: 10558057
    Abstract: In one example, a camera is provided that includes: a plurality of MEMS electrostatic comb actuators, each actuator operable to exert a force on at least one lens; and an optical image stabilization (OIS) algorithm module operable to command the plurality of actuators to actuate the at least one lens responsive to motion of the camera.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: February 11, 2020
    Assignee: DigitalOptics Corporation MEMS
    Inventors: Xiaolei Liu, Roman C. Gutierrez, Pat K Leang, Jose A. Mendez, Corneliu Zaharia, Alexandru F. Drimbarean, Petronel Gheorghe Bigioi
  • Patent number: 10524717
    Abstract: Embodiments of the present disclosure provide a detection device. The detection device includes: a fixed member fixedly mounted to a target position; a first movable member arranged to face towards and in parallel with the fixed member, and movably connected to the fixed member by a first elastic member; at least one first electrode, having one end being fixed to the fixed member and the other end extending towards the first movable member along a first direction; and at least one second electrode, having one end being fixed to the first movable member and the other end extending towards the fixed member in a second direction, the second direction being parallel to the first direction. Embodiments of the present disclosure also provide a fatigue detection system.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: January 7, 2020
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventor: Lin Zhu
  • Patent number: 10501312
    Abstract: An embodiment device includes a body structure having an interior cavity, a control chip disposed on a first interior surface of the interior cavity, and a sensor attached, at a first side, to a second interior surface of the interior cavity opposite the first interior surface. The sensor has a mounting pad on a second side of the sensor that faces the first interior surface, and the sensor is vertically spaced apart from the control chip by an air gap, with the sensor is aligned at least partially over the control chip. The device further includes an interconnect having a first end mounted on the mounting pad, the interconnect extending through the interior cavity toward the first interior surface, and the control chip is in electrical communication with the sensor by way of the interconnect.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: December 10, 2019
    Assignee: Infineon Technologies AG
    Inventors: Sook Woon Chan, Chau Fatt Chiang, Kok Yau Chua, Swee Kah Lee, Chee Yang Ng
  • Patent number: 10504656
    Abstract: A switched capacitive device includes a stationary portion including a plurality of first electrodes extending at least partially in a longitudinal dimension. Each first electrode has a first substantially active electrode volume. The device also includes a translatable portion including a plurality of second electrodes proximate the plurality of first electrodes. Each second electrode has a second substantially active electrode volume. The first active electrode volume is greater than the second active electrode volume. The second electrodes are translatable with respect to the first electrodes. The second electrodes extend at least partially in the longitudinal dimension. The first electrodes are configured to induce substantially linear motion of the second electrodes in the longitudinal dimension through the use of an electric field induced by at least a portion of the first electrodes.
    Type: Grant
    Filed: April 29, 2015
    Date of Patent: December 10, 2019
    Assignee: General Electric Company
    Inventors: Stefan Grubic, Nathaniel Benedict Hawes, Manoj Ramprasad Shah, Martin Kin-Fei Lee, Rui Zhou, Kevin Michael Grace, Qin Chen
  • Patent number: 10466841
    Abstract: A curved touch panel and a display device including the same are provided. The touch panel includes a flat region in which first sensing cells are arranged; and a curved region in which second sensing cells are arranged that are different from the first sensing cells in terms of at least one of an arrangement pattern and a shape.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: November 5, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyung-wan Park, Shi-yun Cho, In-kwon Kang, Ga-eun Lee, Ji-hyun Jung
  • Patent number: 10442091
    Abstract: A gripping device 18 is provided at the front end of an arm of an assembly robot 2. The gripping device 18 includes a pair of grippers 20 and 22 capable of opening and closing. The side configured to come into contact with a part 4, of each gripper 20, 22 includes a pressure-sensitive sensor 24. The pressure-sensitive sensor 24 includes a first electrode and a second electrode serving as a pair of electrodes and an intermediate layer formed of rubber or a rubber composition between the pair of electrodes. The intermediate layer is configured to generate electricity when deformed by contact with an object (part 4). The side configured to come into contact with the object, of the intermediate layer is subjected to a surface modification treatment and has a higher hardness than the opposite side.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: October 15, 2019
    Assignee: Ricoh Company, Ltd.
    Inventors: Tsuneaki Kondoh, Tomoaki Sugawara, Yuko Arizumi, Mayuka Araumi, Mizuki Otagiri, Junichiro Natori, Megumi Kitamura, Takahiro Imai, Hideyuki Miyazawa, Makito Nakashima
  • Patent number: 10433055
    Abstract: The present invention discloses a speaker system with a moving voice coil. A conductive material layer is disposed on a front cover of the speaker system and constitutes a fixed electrode plate. A vibrating component comprises a flexible circuit board secured to one side of a vibrating diaphragm. A metal layer is disposed in the middle of the flexible circuit board and constitutes a movable electrode plate. The fixed electrode plate is electrically connected to an external circuit by means of an external terminal disposed on a front cover solder pad. The flexible circuit board extends to the outside of the speaker system and is provided with a solder pad electrically connected to the external circuit. A capacitance monitoring chip is disposed in the speaker system and electrically connected to a capacitor.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: October 1, 2019
    Assignee: GOERTEK, INC.
    Inventors: Guodong Zhao, Pengcheng Ji, Xinfeng Yang
  • Patent number: 10388462
    Abstract: A tunable reactance device and methods of manufacturing and using the same are disclosed. The tunable reactance device includes a substrate, a microelectromechanical (MEM) structure supported on the substrate and comprising a conductive material, and a driver configured to move the MEM structure with respect to the substrate upon application of an electrostatic force to the driver. A gap between the MEM structure and the substrate is maintained when the driver moves the MEM structure. The tunable reactance device has (i) a first reactance and a first electromagnetic field topology when the electrostatic force is applied to the driver and (ii) a different reactance and a different electromagnetic field topology when a different electrostatic force is applied to the driver.
    Type: Grant
    Filed: July 7, 2016
    Date of Patent: August 20, 2019
    Inventor: Michael J. Dueweke
  • Patent number: 10367431
    Abstract: A triboelectric generator includes a first contact charging member and a second contact charging member. The first contact charging member includes a first contact layer and a conductive electrode layer. The first contact layer includes a material that has a triboelectric series rating indicating a propensity to gain electrons due to a contacting event. The conductive electrode layer is disposed along the back side of the contact layer. The second contact charging member is spaced apart from and disposed oppositely from the first contact charging member. It includes an electrically conductive material layer that has a triboelectric series rating indicating a propensity to lose electrons when contacted by the first contact layer during the contacting event. The electrically conductive material acts as an electrode. A mechanism maintains a space between the first contact charging member and the second contact charging member except when a force is applied thereto.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 30, 2019
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Sihong Wang, Long Lin, Guang Zhu, Zong-Hong Lin
  • Patent number: 10324488
    Abstract: An actuator comprising two devices each comprising an out-of-plane deformable element, said deformable element comprising a first fixed end anchored on a substrate and a second free end relative to the substrate, said device also comprising means to guide the second free end in in-plane translation along a first direction, the first deformable element being capable of deforming out-of-plane through application of a stimulus so that the second free end draws close to the first fixed end following in-plane translational movement. The actuator also comprises an element mobile in rotation about an axis orthogonal to the plane and mechanically linked to the free ends of the deformable elements, and a translationally mobile element mechanically linked to the rotationally mobile element.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 18, 2019
    Assignee: Commissariat à l'énergie atomique et aux énergies alternatives
    Inventor: Thierry Hilt
  • Patent number: 10284169
    Abstract: An object is to improve insulation in a bonding layer and to improve a bonding strength of a supporting body and piezoelectric single crystal substrate, in a bonded body having the supporting body made of a polycrystalline material or single crystal material, the piezoelectric single crystal substrate and the bonding layer provided between the supporting body and piezoelectric single crystal substrate, wherein the bonded body includes the supporting body, piezoelectric single crystal substrate and the bonding layer provided between the supporting body and piezoelectric single crystal substrate, and the bonding layer has a composition of Si(1-x)Ox (0.008?x?0.408).
    Type: Grant
    Filed: August 13, 2018
    Date of Patent: May 7, 2019
    Assignee: NGK INSULATORS, LTD.
    Inventors: Masashi Goto, Yudai Uno, Keiichiro Asai, Tomoyoshi Tai
  • Patent number: 10272470
    Abstract: CMOS Ultrasonic Transducers and processes for making such devices are described. The processes may include forming cavities on a first wafer and bonding the first wafer to a second wafer. The second wafer may be processed to form a membrane for the cavities. Electrical access to the cavities may be provided.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: April 30, 2019
    Assignee: Butterfly Network, Inc.
    Inventors: Jonathan M. Rothberg, Keith G. Fife, Tyler S. Ralston, Gregory L. Charvat, Nevada J. Sanchez
  • Patent number: 10218291
    Abstract: A device for generating electricity by friction and a manufacturing method thereof. The device comprises a first substrate and a second substrate arranged oppositely, and a plurality of elastic columns arranged between the first substrate and the second substrate to support them. A surface of the first substrate facing the second substrate is provided with a first conductive electrode and an insulating polymeric membrane layer which are stacked. A surface of the second substrate facing the first substrate is provided with a second conductive electrode. At least one surface of the two opposite surfaces of the second conductive electrode and the insulating polymeric membrane layer is formed into a surface with a concave-convex structure. The friction area between the second conductive electrode and the insulating polymeric membrane layer can be increased upon relative movement between the first substrate and the second substrate.
    Type: Grant
    Filed: July 20, 2015
    Date of Patent: February 26, 2019
    Assignee: BOE TECHNOLOGY GROUP CO., LTD.
    Inventors: Fang He, Tian Yang, Yanbing Wu
  • Patent number: 10181805
    Abstract: Power generated by a vibration power generator utilizing an electret is efficiently supplied to a power supply load. A vibration power generator includes a first substrate and a second substrate configured to be moved relative to each other by external vibration while remaining opposite each other, a group of a plurality of electrets arranged in the relative movement direction on one surface side of the first substrate, and a group of electrodes arranged in the relative movement direction on a surface side of the second substrate opposite to the group of electrets, and including a first current collecting electrode and a second current collecting electrode. A power supply load to which power generated by the external vibration is supplied and which has an impedance lower than an internal impedance of the vibration power generator is electrically connected to each of the first and second current collecting electrodes.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: January 15, 2019
    Assignee: OMRON Corporation
    Inventors: Misato Nabeto, Tatsuakira Masaki, Keiki Matsuura
  • Patent number: 10163575
    Abstract: The present disclosure provides a non-linear capacitor comprising a first electrode, a second electrode, and a dielectric layer disposed between said first and second electrodes. The dielectric layer comprises at least one organic compound selected from copolymer, homo-polymer, Sharp polymers, NLSD compounds and combination thereof which have at least one electro-polarizable aromatic polycyclic conjugated core. A relationship between a capacity C of the capacitor and a voltage V between the electrodes is characterized by the monotonously increasing polynomial dependence C0+?i=1m CiVi, when the voltage V satisfies by following inequality 0<V?Vmax, where the voltage Vmax is a maximum working voltage that does not exceed a breakdown voltage Vbd and which is selected out of safety reasons, where at least one coefficient Ci is not equal to 0 when the index i ranges from 2 to m, and m=2, 3, 4, 5, or 6.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: December 25, 2018
    Assignee: CAPACITOR SCIENCES INCORPORATED
    Inventor: Pavel Ivan Lazarev
  • Patent number: 10150293
    Abstract: An electromechanical transducer element includes a first electrode; an electromechanical transducer film stacked on one surface of the first electrode; a second electrode stacked on the electromechanical transducer film; and wiring formed on the second electrode. In an at least one cross section, each of a boundary, on a second electrode side, of the electromechanical transducer film and a boundary, on a side opposite to the electromechanical transducer film, of the second electrode is a curved shape protruding away from the first electrode. In the at least one cross section, each of a film thickness of the electromechanical transducer film and a film thickness of the second electrode becomes thinner toward end portions from a maximum height portion.
    Type: Grant
    Filed: January 13, 2017
    Date of Patent: December 11, 2018
    Assignee: Ricoh Company, Ltd.
    Inventors: Osamu Machida, Masahiro Ishimori, Atsushi Takeuchi, Shuya Abe
  • Patent number: 10138116
    Abstract: An integrated circuit (IC) with an integrated microelectromechanical systems (MEMS) structure is provided. In some embodiments, the IC comprises a semiconductor substrate, a back-end-of-line (BEOL) interconnect structure, the integrated MEMS structure, and a cavity. The BEOL interconnect structure is over the semiconductor substrate, and comprises wiring layers stacked in a dielectric region. Further, an upper surface of the BEOL interconnect structure is planar or substantially planar. The integrated MEMS structure overlies and directly contacts the upper surface of the BEOL interconnect structure, and comprises an electrode layer. The cavity is under the upper surface of the BEOL interconnect structure, between the MEMS structure and the BEOL interconnect structure.
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: November 27, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Chia-Hua Chu
  • Patent number: 10082144
    Abstract: The present invention describes methods to fabricate actuators that can be remotely controlled in an addressable manner, and methods to provide remote control such micro-actuators. The actuators are composites of two permanent magnet materials, one of which is has high coercivity, and the other of which switches magnetization direction by applied fields. By switching the second material's magnetization direction, the two magnets either work together or cancel each other, resulting in distinct “on” and “off” behavior of the devices. The device can be switched “on” or “off” remotely using a field pulse of short duration.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: September 25, 2018
    Assignee: Carnegie Mellon University
    Inventors: Metin Sitti, Eric Diller, Shuhei Miyashita
  • Patent number: 10014570
    Abstract: A wireless powering and communication system is provided that includes a base unit, and an external unit that is separate from the base unit, where the base unit includes a single transducer circuit configured for uplink data communication to the external unit, where the transducer circuit is configured for power recovery from the external unit, a multiplexer circuit, a power recovery and conditioning circuit, a controller circuit, and a communication circuit, where the multiplexer circuit is configured to decouple power and data paths to enable operation with the single transducer circuit, the power recovery and conditioning circuit is configured to recover and optionally store power from power received by the single transducer circuit, the power recovery and conditioning circuit is configured to power the controller circuit and the communication circuit, the controller circuit is configured to control the multiplexer circuit, the communication circuit is configured to provide data to the multiplexer circuit
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: July 3, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Mohammad Amin Arbabian, Marcus J. Weber, Jayant Charthad
  • Patent number: 9989844
    Abstract: A pellicle that includes graphene is constructed and arranged for an EUV reticle. A multilayer mirror includes graphene as an outermost layer.
    Type: Grant
    Filed: September 29, 2016
    Date of Patent: June 5, 2018
    Assignee: ASML NETHERLANDS B.V.
    Inventors: Andrei Mikhailovich Yakunin, Vadim Yevgenyevich Banine, Erik Roelof Loopstra, Harmen Klaas Van Der Schoot, Lucas Henricus Johannes Stevens, Maarten Van Kampen
  • Patent number: 9975756
    Abstract: A micro-electro-mechanical pressure sensor device, formed by a cap region and by a sensor region of semiconductor material. An air gap extends between the sensor region and the cap region; a buried cavity extends underneath the air gap, in the sensor region, and delimits a membrane at the bottom. A through trench extends within the sensor region and laterally delimits a sensitive portion housing the membrane, a supporting portion, and a spring portion, the spring portion connecting the sensitive portion to the supporting portion. A channel extends within the spring portion and connects the buried cavity to a face of the second region. The first air gap is fluidically connected to the outside of the device, and the buried cavity is isolated from the outside via a sealing region arranged between the sensor region and the cap region.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: May 22, 2018
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Enri Duqi, Sebastiano Conti, Lorenzo Baldo, Flavio Francesco Villa
  • Patent number: 9969606
    Abstract: A MEMS structure that provides an improved way to selectively control electromechanical properties of a MEMS device with an applied voltage. The MEMS structure includes a capacitor element that comprises at least one stator element, and at least one rotor element suspended for motion parallel to a first direction in relation to the stator element. The stator element and the rotor element form at least one capacitor element, the capacitance of which varies according to displacement of the rotor element from an initial position. The stator element and the rotor element are mutually oriented such that in at least one range of displacements of the rotor element from an initial position, the second derivative of the capacitance with respect to the displacement has negative values.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: May 15, 2018
    Assignee: MURATA MANUFACTURING CO., LTD.
    Inventors: Matti Liukku, Jaakko Ruohio, Hannu Vesterinen
  • Patent number: 9951671
    Abstract: A heat transfer device that includes a thermionic power generator, a wiring, a load circuit, and a switch circuit. The thermionic power generator includes an emitter electrode and a collector electrode facing each other with an inter-electrode gap distance, and converts heat energy into electric energy by capturing, with the collector electrode, a thermoelectron that is emitted from the emitter electrode. The wiring electrically connects the emitter electrode and the collector electrode. The load circuit is connected to an electric current path of by wiring between the emitter electrode and the collector electrode. The switch circuit switches between an ON state and an OFF state.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: April 24, 2018
    Assignee: DENSO CORPORATION
    Inventors: Yuji Kimura, Mitsuhiro Kataoka, Susumu Sobue
  • Patent number: 9952615
    Abstract: A charge pump includes a capacitor, a first transistor that is electrically connected between a first terminal of the first capacitor and ground, and a second transistor that is electrically connected between a second terminal of the first capacitor and an output node. During a first operation mode of the charge pump, a voltage that is boosted using the capacitor is output through the output node, and during a second operation mode of the charge pump, the first transistor and the second transistor are maintained in an ON state.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: April 24, 2018
    Assignee: Toshiba Memory Corporation
    Inventors: Mizuho Yoshida, Junji Musha