Discharge Devices Having A Multipointed Or Serrated Edge Electrode Patents (Class 313/309)
  • Patent number: 9159463
    Abstract: According to one embodiment, a conductive material includes a carbon substance and a metallic substance mixed with and/or laminated to the carbon substance. The carbon substance has at least one dimension of 200 nm or less. The carbon substance includes a graphene selected from single-layered graphene and multi-layered graphene, a part of carbon atoms constituting the graphene is substituted with a nitrogen atom. The metallic substance includes at least one of a metallic particle and a metallic wire.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: October 13, 2015
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Katsuyuki Naito, Norihiro Yoshinaga, Yoshihiko Nakano, Yoshihiro Akasaka, Shigeru Matake
  • Patent number: 9108849
    Abstract: A method and device for producing an aligned carbon nanotube array. The arrays of aligned carbon nanotubes (CNTs) may be formed by drying liquid dispersions of CNTs on a nanoporous substrate under an applied electrostatic field. The array may be used in a number of applications including electronics, optics, and filtration, including desalination.
    Type: Grant
    Filed: July 2, 2013
    Date of Patent: August 18, 2015
    Assignee: Teledyne Scientific and Imaging, LLC
    Inventors: Dennis Strauss, Vivek Mehrotra
  • Patent number: 9111711
    Abstract: One or more embodiments of the invention concern a device comprising: a cathode that lies on a cathode plane and includes, in an active region, one or more cathode straight-finger-shaped terminals with a main extension direction parallel to a first reference direction; for each cathode terminal, one or more electron emitters formed on, and in ohmic contact with, said cathode terminal; and a gate electrode that lies on a gate plane parallel to, and spaced apart from, said cathode plane, does not overlap the cathode and includes, in the active region, two or more gate straight-finger-shaped terminals with a main extension direction parallel to the first reference direction; wherein the gate terminals are interlaced with said cathode terminal(s).
    Type: Grant
    Filed: November 26, 2012
    Date of Patent: August 18, 2015
    Assignee: SELEX ES S.P.A.
    Inventors: Giacomo Ulisse, Francesca Brunetti, Aldo di Carlo, Ferdinando Ricci, Filippo Gemma, Anna Maria Fiorello, Massimiliano Dispenza, Roberta Buttiglione
  • Patent number: 9089039
    Abstract: For high-voltage devices such as particle accelerators, novel geometries for a triple-junction at which an insulator, an anode and a vacuum meet are disclosed. A singularity in the electric field at the triple-junction is eliminated, reducing dielectric flashover and allowing the devices to operate at higher voltages without breakdown. In one aspect, such a device includes a cathode, an anode having an anode surface exposed to a vacuum, and a dielectric body disposed between the cathode and anode, the dielectric body having a dielectric surface that is exposed to the vacuum, wherein the dielectric surface and the anode surface approach each other such that an angle measured across the vacuum between the dielectric surface and the anode surface decreases with decreasing distance between the dielectric surface and the anode surface until the dielectric surface and the anode surface meet and are parallel.
    Type: Grant
    Filed: March 5, 2014
    Date of Patent: July 21, 2015
    Inventors: Eugene J. Lauer, Mark A. Lauer
  • Patent number: 9082578
    Abstract: An electron emission device and a method of manufacturing the same are provided. The electron emission device includes: i) a substrate including a metal tip; ii) carbon nano tubes that are positioned on the metal tip; and iii) a lithium layer that is positioned on the carbon nano tubes.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: July 14, 2015
    Assignee: INTELLECTUAL DISCOVERY CO., LTD.
    Inventors: Jin Seok Park, Bu Jong Kim, Won Kim, Sang Hyuk Lee
  • Patent number: 9068923
    Abstract: A method of fabricating a carbon nanotube array sensor includes the following steps. A carbon nanotube array, a first electrode and a second electrode are provided, the carbon nanotube array includes a plurality of carbon nanotubes. Each of the carbon nanotubes includes a first end and a second end opposite to the first end. A first metallophilic layer is formed on the first end of each of the carbon nanotubes. At least one first conductive metal layer is arranged between the first metallophilic layer and the first electrode to electrically connect each of the carbon nanotubes with the first electrode. A second metallophilic layer is formed on the second end of each of the carbon nanotubes. At least one second conductive metal layer is arranged between the second metallophilic layer and the second electrode to electrically connect each of the carbon nanotubes with the second electrode.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: June 30, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Yuan Yao
  • Patent number: 9048006
    Abstract: A carbon nanotube film includes a plurality of carbon nanotubes. The plurality of carbon nanotubes is arranged approximately along a same first direction. The plurality of carbon nanotubes are joined end to end by van der Waals attractive force therebetween. The carbon nanotube film has a uniform width. The carbon nanotube film has substantially the same density of the carbon nanotubes along a second direction perpendicular to the first direction. The change in density across the width is within 10 percent. The present application also relates to a carbon nanotube film precursor and a method for making the carbon nanotube film.
    Type: Grant
    Filed: December 30, 2009
    Date of Patent: June 2, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Chen Feng, Kai-Li Jiang, Zhuo Chen, Yong-Chao Zhai, Shou-Shan Fan
  • Patent number: 9041276
    Abstract: The present invention relates to a field emission lighting arrangement, comprising a first field emission cathode, an anode structure comprising a phosphor layer, and an evacuated envelope inside of which the anode structure and the first field emission cathode are arranged, wherein the anode structure is configured to receive electrons emitted by the first field emission cathode when a voltage is applied between the anode structure and the first field emission cathode and to reflect light generated by the phosphor layer out from the evacuated chamber. Advantages of the invention include lower power consumption as well as an increase in light output of the field emission lighting arrangement.
    Type: Grant
    Filed: November 29, 2010
    Date of Patent: May 26, 2015
    Assignee: LIGHTLAB SWEDEN AB
    Inventor: Qiu-Hong Hu
  • Patent number: 9034212
    Abstract: An electron emission source includes nano-sized acicular materials and a cracked portion formed in at least one portion of the electron emission source. The acicular materials are exposed between inner walls of the cracked portion. A method for preparing the electron emission source, a field emission device including the electron emission source, and a composition for forming the electron emission source are also provided in the present invention.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 19, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-chul Kim, In-taek Han, Ho-suk Kang
  • Patent number: 9006964
    Abstract: The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: April 14, 2015
    Assignee: Lightlab Sweden AB
    Inventor: Qiu-Hong Hu
  • Patent number: 8957573
    Abstract: Wire-suspended thermionic cathodes provide lower power, further reduction in size, better stability and accuracy, and higher loading then conventional art. The cathodes are too small for use with conventional heaters and so are heated from behind by an electron beam or an intense light beam, such as laser light transmitted via optical fiber to the back of the cathode. The cathodes are electrically isolated from the focus electrode, thus allowing beam cutoff and modulation.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: February 17, 2015
    Inventor: Bernard K Vancil
  • Patent number: 8933864
    Abstract: A flat panel display including a plurality of electrically addressable pixels; using a passive matrix on a first substrate, a passivating layer on at least partially around the pixels; a conductive frame on the passivating layer, and a plurality of cold cathode emitters on select portions of the conductive frame within the display, wherein exciting the conductive frame and addressing one of the pixels using the associated passive matrix causes electrons to strike at least one of the pixels and result in the emission of light from those pixels. Using a metal layer (ML) on a second substrate the extent of electrons emitted is enhanced through the incorporation of a noble gas or mixture thereof, causing a multiplication of the electrons emitted by the cold cathode when the gas is ionized.
    Type: Grant
    Filed: October 20, 2008
    Date of Patent: January 13, 2015
    Assignee: CopyTele, Inc.
    Inventors: Frank J. DiSanto, Denis Krusos
  • Patent number: 8928215
    Abstract: An electron emission device and a method of manufacturing the same are provided. The electron emission device includes i) a hydrophilic resin substrate and ii) carbon nano tubes that are positioned on the resin substrate. Surface roughness Ra of the resin substrate is 7.3 ?m to 9.75 ?m.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: January 6, 2015
    Assignee: Intellectual Discovery Co., Ltd.
    Inventors: Jin Seok Park, Bu Jong Kim, Won Kim, Sang Hyuk Lee
  • Patent number: 8912526
    Abstract: An electron multiplier for a system for detecting electromagnetic radiation or an ion flow is disclosed. The multiplier includes at least one active structure intended to receive a flow of incident electrons, and to emit in response a flow of electrons called secondary electrons. The active structure includes a substrate on which is positioned a thin nanodiamond layer formed from diamond particles the average size of which is less than or equal to about 100 nm.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: December 16, 2014
    Assignee: Photonis France
    Inventors: Gert Nutzel, Pascal Lavoute, Richard B. Jackman
  • Patent number: 8900029
    Abstract: The present application relates to a method for making a carbon nanotube field emitter. A carbon nanotube film is drawn from the carbon nanotube array by a drawing tool. The carbon nanotube film includes a triangle region. A portion of the carbon nanotube film closed to the drawing tool is treated into a carbon nanotube wire including a vertex of the triangle region. The triangle region is cut from the carbon nanotube film by a laser beam along a cutting line. A distance between the vertex of the triangle region and the cutting line can be in a range from about 10 microns to about 5 millimeters.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8896196
    Abstract: A field emission flat light source and a manufacturing method thereof are provided. The field emission flat light source includes an anode (110), a cathode (120), a light guide plate (130) and a separation body (140). The anode (110) and the light guide plate (130) are separated by the separation body (140). The cathode (120) is provided in the contained space (150) formed by the anode (110), the light guide plate (130) and the separation body (140). The anode (110) includes an anode substrate (112), a metal reflective layer (114) provided on the anode substrate (112) and a light emitting layer (116) provided on the metal reflective layer (114). The cathode (120) includes a cathode substrate (122) and an electron emitter (124) provided on the surface of the cathode substrate (122). The thermal conductivity of the field emission flat light source is improved. The field emission flat light source is applied to the field of the liquid crystal display or the illumination light.
    Type: Grant
    Filed: August 17, 2010
    Date of Patent: November 25, 2014
    Assignee: Ocean's King Lighting Science & Technology Co., Ltd.
    Inventors: Mingjie Zhou, Wenbo Ma, Pengrui Shao
  • Patent number: 8872418
    Abstract: A field emission display is also provided. The field emission display includes a plurality of pixel units. Each of the plurality of pixel units includes a first electrode located on the insulating substrate; a plurality of first electron emitters located on and electrically connected to the first electrode; a first phosphor layer located on the first electrode; a second electrode located on the insulating substrate and spaced from the first electrode, wherein the second electrode extends at least partly around the first electrode; a plurality of second electron emitters located on and electrically connected to the second electrode; and a second phosphor layer located on the second electrode.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: October 28, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Publication number: 20140292180
    Abstract: An electron emission device and a method of manufacturing the same are provided. The electron emission device includes: i) a substrate including a metal tip; ii) carbon nano tubes that are positioned on the metal tip; and iii) a lithium layer that is positioned on the carbon nano tubes.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 2, 2014
    Applicant: Intellectual Discovery Co., Ltd.
    Inventor: Intellectual Discovery Co., Ltd.
  • Publication number: 20140292181
    Abstract: An electron emission device and a method of manufacturing the same are provided. The electron emission device includes i) a hydrophilic resin substrate and ii) carbon nano tubes that are positioned on the resin substrate. Surface roughness Ra of the resin substrate is 7.3 ?m to 9.75 ?m.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 2, 2014
    Applicant: Intellectual Discovery Co., Ltd.
    Inventor: Intellectual Discovery Co., Ltd.
  • Patent number: 8847476
    Abstract: Embodiments of the invention include methods and devices for producing light by injecting electrons from field emission cathode across a gap into nanostructured semiconductor materials, electrons issue from a separate field emitter cathode and are accelerated by a voltage across a gap towards the surface of the nanostructured material that forms part of the anode. At the nanostructure material, the electrons undergo electron-hole (e-h) recombination resulting in electroluminescent (EL) emission. In a preferred embodiment lighting device, a vacuum enclosure houses a field emitter cathode. The vacuum enclosure also houses an anode that is separated by a gap from said cathode and disposed to receive electrons emitted from the cathode. The anode includes semiconductor light emitting nano structures that accept injection of electrons from the cathode and generate photons in response to the injection of electrons.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: September 30, 2014
    Assignee: The Regents of the University of California
    Inventor: Deli Wang
  • Patent number: 8841830
    Abstract: A field emission cathode device includes a substrate and a carbon nanotube structure. The substrate includes a first surface. The carbon nanotube structure defines a contact body and an emission body. The contact body is contacted to the first surface of substrate. The emission body is curved away from the first surface. The carbon nanotube structure includes a number of carbon nanotubes joined end to end from the contact body to the emission body to form a continuous structure.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 23, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8835884
    Abstract: A charged particle beam apparatus including a charged particle emission gun with which cleaning of a tip is possible without stopping the operation of the charged particle emission gun for a long time and without heating the tip. The charged particle emission gun includes a cleaning photo-irradiation apparatus that generates ultraviolet light or infrared light to irradiate a tip, and an optical fiber for guiding the ultraviolet light or the infrared light toward the tip. The cleaning photo-irradiation apparatus generates ultraviolet light or an infrared light with a predetermined wavelength and intensity to desorb a molecule adsorbed on the tip through photon stimulated desorption, or to desorb a molecule adsorbed on the tip through photon stimulated desorption and ionize the desorbed molecule.
    Type: Grant
    Filed: December 8, 2011
    Date of Patent: September 16, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Noriaki Arai
  • Patent number: 8808049
    Abstract: The present disclosure relates to a method for making the sheet-shaped heat and light source. An array of carbon nanotubes on a substrate is provided. A carbon nanotube film is formed by pressing the array of carbon nanotubes. A first electrode and a second electrode are electrically connected with the carbon nanotube film. Furthermore, a method for heating an object is related.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: August 19, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 8801487
    Abstract: A method for making an emitter is disclosed. A number of carbon nanotubes in parallel with each other are provided. The carbon nanotubes have a number of first ends and a number of second ends opposite to the number of first ends. The first ends are attached on a first electrode and the second ends are attached on a second electrode. The first electrode and the second electrode are spaced from each other. A voltage is supplied between the first electrode and the second electrode to break the carbon nanotubes.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 12, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Peng Liu, Liang Liu, Shou-Shan Fan
  • Patent number: 8716926
    Abstract: A backlight unit includes a first substrate including an anode electrode; and a second substrate including a cathode electrode and an electron emission element, wherein the cathode electrode includes a terminal portion and at least one electrode strip extending from the terminal portion, and the electrode strip includes an electron emission portion on which the electron emission element is mounted and a junction portion which is disposed between the terminal portion and the electron emission portion, and wherein the closer the junction portion is to the terminal portion the greater the width of the junction portion is.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yu-jeong Cho, Hun-su Kim, Bok-chun Yun
  • Patent number: 8669696
    Abstract: A field emission electron source array includes a number of field emission electron sources aligned side by side. Each field emission electron source includes a linear carbon nanotube structure, an insulating layer and a conductive ring. The linear carbon nanotube structure has a first end and a second end. The insulating layer is coated on an outer surface of the linear carbon nanotube structure. The first conductive ring includes a first ring face and a second ring face, and the first ring face is coplanar with an end surface of the first end of the linear carbon nanotube structure.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: March 11, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Cai-Lin Guo, Jie Tang, Peng Liu, Shou-Shan Fan
  • Patent number: 8648525
    Abstract: Disclosed are a transparent electrode with excellent optical transmittance and conductivity, a purifying method of conductive fibers employed in the transparent electrode and an organic electroluminescence element with reduced luminance unevenness and long product lifetime employing the transparent electrode. The transparent electrode of the invention comprises a transparent substrate and provided thereon, a transparent conductive layer containing conductive fibers and a transparent conductive material, featured in that the content rate of conductive fibers with an aspect ratio of not less than 100 contained in the transparent conductive layer is 99.00% or more.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: February 11, 2014
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Takato Chiba, Shinichi Kurakata
  • Patent number: 8648604
    Abstract: An ionization gauge to measure pressure and to reduce sputtering yields includes at least one electron source that generates electrons. The ionization gauge also includes a collector electrode that collects ions formed by the collisions between the electrons and gas molecules. The ionization gauge also includes an anode. An anode bias voltage relative to a bias voltage of a collector electrode is configured to switch at a predetermined pressure to decrease a yield of sputtering collisions.
    Type: Grant
    Filed: August 20, 2010
    Date of Patent: February 11, 2014
    Assignee: Brooks Automation, Inc.
    Inventor: Gerardo A. Brucker
  • Patent number: 8624477
    Abstract: The present application relates to a carbon nanotube field emitter. The carbon nanotube field emitter includes a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes joined end-to-end by van der waals attractive force. The carbon nanotube structure has two joined portions, one portion is a triangle shaped carbon nanotube film, which is an electron emitting portion, the other portion is a carbon nanotube wire, which is a support portion.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: January 7, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8614581
    Abstract: A vacuum ionization gauge includes a cold cathode, a shield electrode, an anode ring, and a collector. The shield electrode includes a receiving space. The anode ring is located in the receiving space of the shield electrode. The cold cathode includes a field emission unit and a grid electrode corresponding to the field emission unit. The field emission unit includes at least one emitter. Each of the at least one emitter includes a carbon nanotube pipe. The carbon nanotube pipe has a first end, a second end, and a main body connecting to the first end and the second end. The second end has a plurality of carbon nanotube peaks.
    Type: Grant
    Filed: April 21, 2011
    Date of Patent: December 24, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8598774
    Abstract: A field emission device includes an insulating substrate, a number of first electrode down-leads, a number of second electrode down-leads, and a number of electron emission units. The first electrode down-leads are set an angle relative to the second electrode down-leads to define a number of cells. Each electron emission unit is located in each cell and includes a first electrode, a second electrode, and a plurality of electron emitters. The second electrode extends surrounding the first electrode. The plurality of electron emitters located on and electrically connected to at least one of the first electrode and the second electrode. A field emission display is also provided.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: December 3, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Patent number: 8593047
    Abstract: A pixel tube for field emission display includes a sealed container, an anode, a phosphor, and a cathode. The sealed container has a light permeable portion. The anode is located in the sealed container and spaced from the light permeable portion. The phosphor layer is located on the anode. The cathode is spaced from the anode and includes a cathode emitter. The cathode emitter includes a carbon nanotube pipe. One end of the carbon nanotube pipe has a plurality of carbon nanotube peaks.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: November 26, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Shou-Shan Fan
  • Patent number: 8593052
    Abstract: The present invention discloses a method for modifying a carbon nanotube electrode interface, which modifies carbon nanotubes used as a neuron-electrode interface by performing three stages of modifications and comprises the steps of: carboxylating carbon nanotubes to provide carboxyl functional groups and improve the hydrophilicity of the carbon nanotubes; acyl-chlorinating the carboxylated carbon nanotubes to replace the hydroxyl functional groups of the carboxyl functional groups with chlorine atoms; and aminating the acyl-chlorinated carbon nanotubes to replace the chlorine atoms with a derivative having amine functional groups at the terminal thereof. The modified carbon nanotubes used as the neuron-electrode interface has lower impedance and higher adherence to nerve cells. Thus is improved the quality of neural signal measurement.
    Type: Grant
    Filed: December 15, 2009
    Date of Patent: November 26, 2013
    Assignee: National Tsing Hua University
    Inventors: Shiang-Jie Yen, Huan-Chieh Su, Tri-Rung Yew, Yen-Chung Chang, Wei-Lun Hsu, Shih-Rung Yeh
  • Patent number: 8593048
    Abstract: Provided are an electron source which allows a high-angle current density operation even at a low extraction voltage, and reduces excess current that causes vacuum deterioration; and an electronic device using the electron source. The electron source has a cathode composed of single-crystal tungsten, and a diffusion source provided in the intermediate portion of the cathode. In the cathode, the angle between the axial direction of the cathode and <100> orientation of the cathode is adjusted so that electrons to be emitted from the vicinity of the boundary between surface and surface formed on the tip of the cathode, are emitted substantially parallel to the axis of the cathode. The electronic device is provided with the electron source.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 26, 2013
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Ryozo Nonogaki, Toshiyuki Morishita
  • Patent number: 8581480
    Abstract: A method and system for treating emissions includes charging particles in an exhaust stream, producing one or more radicals, and oxidizing at least a portion of the charged particles with at least a portion of the produced radicals. At least a portion of the charged particles in the exhaust stream are then attracted on at least one attraction surface which is one of oppositely charged from the charged particles and grounded. The attracted particles are oxidized with another portion of the one or more produced radicals to self regenerate the at least one attraction surface. Downstream from where the attracted particles are oxidized, at least a portion of one or more first compounds in the exhaust stream are converted to one or more second compounds downstream from the attracting. Additionally, at least a portion of any remaining charged particles are oxidized into one or more gases.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: November 12, 2013
    Assignee: Rochester Institute of Technology
    Inventors: Ali Ogut, Cheng Chen
  • Patent number: 8575867
    Abstract: A charged particle accelerator having a curvilinear beam trajectory maintained solely by a laterally directed, constant electric field; requiring no magnetic field. A method for controlling the trajectory of a charged particle in an accelerator by applying only a constant electric field for beam trajectory control. Curvilinear steering electrodes held at a constant potential create the beam path. A method for making a chip-scale charged particle accelerator involves integrated circuit-based processes and materials. A particle accelerator that can generate 110 KeV may a footprint less than about 1 cm2.
    Type: Grant
    Filed: December 3, 2009
    Date of Patent: November 5, 2013
    Assignee: Cornell University
    Inventors: Amit Lal, Shi Yue
  • Patent number: 8575832
    Abstract: The present invention relates to a field emission display, which includes: a base substrate; a plurality of cathode strips, disposed over the base substrate; an insulating layer, disposed over the cathode strips and having a plurality of openings, therewith the openings corresponding to the cathode strips; a plurality of anode strips, disposed over the insulating layer, where the cathode strips and the anode strips are arranged into a matrix and the anode strips individually have at least one impacted surface; and a plurality of subpixel units, individually including: an emissive region having a phosphor layer disposed over the impacted surface; and at least one emissive protrusion, corresponding to the emissive region and disposed in the openings to electrically connect to the cathode strips and protrude out of the openings. Accordingly, the present invention can enhance light utilization efficiency of a field emission display.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 5, 2013
    Assignee: Tatung Company
    Inventors: Tzung-Han Yang, Chi-Tsung Lo
  • Patent number: 8569941
    Abstract: Provided are electron emitters based upon diamondoid monolayers, preferably self-assembled higher diamondoid monolayers. High intensity electron emission has been demonstrated employing such diamondoid monolayers, particularly when the monolayers are comprised of higher diamondoids. The application of such diamondoid monolayers can alter the band structure of substrates, as well as emit monochromatic electrons, and the high intensity electron emissions can also greatly improve the efficiency of field-effect electron emitters as applied to industrial and commercial applications.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: October 29, 2013
    Assignees: The Board of Trustees of the Leland Stanford Junior University, The Regents of the University of California
    Inventors: Wanli Yang, Jason D. Fabbri, Nicholas A. Melosh, Zahid Hussain, Zhi-Xun Shen
  • Patent number: 8552381
    Abstract: An infrared (IR) scene projector device includes a light emitter and a thermal emitter. The light emitter is configured to selectably provide visible light. The thermal emitter includes a vertically aligned carbon nanotube (VACN) array. The VACN array includes a plurality of carbon nanotubes disposed proximate to a thermally conductive substrate, such that a longitudinal axis of the carbon nanotubes extends substantially perpendicular to a surface of the substrate. The thermal emitter absorbs the visible light from the light emitter and converts the visible light from the light emitter into IR radiation.
    Type: Grant
    Filed: July 5, 2012
    Date of Patent: October 8, 2013
    Assignee: The Johns Hopkins University
    Inventors: Raul Fainchtein, David M. Brown, Christopher C. Davis
  • Publication number: 20130257262
    Abstract: The present application relates to a carbon nanotube field emitter. The carbon nanotube field emitter includes a carbon nanotube structure. The carbon nanotube structure includes a plurality of carbon nanotubes joined end-to-end by van der waals attractive force. The carbon nanotube structure has two joined portions, one portion is a triangle shaped carbon nanotube film, which is an electron emitting portion, the other portion is a carbon nanotube wire, which is a support portion.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 3, 2013
    Inventors: PENG LIU, SHOU-SHAN FAN
  • Patent number: 8536775
    Abstract: A field emission lamp, capable of increasing the number of electron emitting points thereof, and of increasing the uniformity and the intensity of the light output therefrom by installing a mesh cathode is disclosed. The field emission lamp comprises: an outer shell having an inner surface, a mesh cathode unit surrounded by the outer shell, an anode unit formed on a portion of the inner surface of the outer shell, and a phosphor layer formed on a portion of the anode unit. Wherein, the light generated by the phosphor layer, due to the bombardment of the electrons, can output from the field emission lamp of the present invention, through the outer shell where none of the anode unit is formed thereon.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: September 17, 2013
    Assignee: Tatung Company
    Inventor: Tzung-Han Yang
  • Patent number: 8536546
    Abstract: An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: September 17, 2013
    Assignee: Eloret Corporation
    Inventors: Cattien V. Nguyen, Bryan P. Ribaya
  • Patent number: 8531097
    Abstract: Disclosed is a field emitter, including: a cathode electrode in a shape of a tip; an emitter having a diameter smaller than a diameter of the cathode electrode and formed on the cathode electrode; and a gate electrode having a single hole and located above the emitter while maintaining a predetermined distance from the emitter.
    Type: Grant
    Filed: May 25, 2012
    Date of Patent: September 10, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jin Woo Jeong, Jun Tae Kang, Yoon Ho Song, Jae Woo Kim
  • Patent number: 8531096
    Abstract: A field emission device includes; a substrate including at least one groove, at least one metal electrode disposed respectively in the at least one groove, and carbon nanotube (“CNT”) emitters disposed respectively on the at least one metal electrode, wherein each of the CNT emitters includes a composite of Sn and CNTs.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: September 10, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Yoon-chul Son, Yong-chul Kim, In-taek Han, Ho-suk Kang
  • Patent number: 8512090
    Abstract: A method for making a field emission cathode device is provided. A filler, a substrate, and a metal plate are provided. The metal plate has a first surface and a second surface opposite to the first surface, and defines at least one through hole extending through from the first surface to the second surface. At least one electron emitter is inserted into the at least one through hole. The first surface of the metal plate is attached to the substrate. At least a part of the at least one electron emitter is located between the first surface and the substrate. The at least one through hole is filled with the filler to firmly fix the at least one electron emitter.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: August 20, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Hai-Yan Hao, Shou-Shan Fan
  • Publication number: 20130200776
    Abstract: The present invention relates to afield emission cathode, comprising an at least partly electrically conductive base structure, and a plurality of electrically conductive micrometer sized sections spatially distributed at the base structure, wherein at least a portion of the plurality of micrometer sized sections each are provided with a plurality of electrically conductive nanostructures. Advantages of the invention include lower power consumption as well as an increase in light output of e.g. a field emission lighting arrangement comprising the field emission cathode.
    Type: Application
    Filed: April 4, 2011
    Publication date: August 8, 2013
    Applicant: LIGHTLAB SWEDEN AB
    Inventor: Qiu-Hong Hu
  • Patent number: 8492966
    Abstract: Field emission devices utilizing capacitive ballasting are described with possible uses in industry. The preferred device utilizes opposing electrodes, each with a dielectric layer and a plurality of conductive islands which serve to exchange electrons, generating an oscillatory current. Ideally these islands are dome-shaped and made of a refractory metal such as tungsten of molybdenum. Through proper use and selection of materials, electrical fields with densities of 1014 A/m2 are capable of being generated.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: July 23, 2013
    Inventor: Mark J. Hagmann
  • Patent number: 8476819
    Abstract: The present invention relates to a triode field emission display with anode and gate on the same substrate, comprising anode-gate substrate and cathode substrate, parallel and adapted in the size; a number of strip-like cathode conducting layers arranged alternating on the cathode substrate; resistor layer for current limiting and dielectric layer for cathode protection are arranged alternately on the cathode conducting layer in the longitudinal direction; the electron emission materials are arranged on the resistor layer for current limiting; wherein the strip-like anode conducting layer and strip-like gate conducting layer on the anode-gate substrate are perpendicular to the strip-like cathode conducting layer on the cathode substrate, dielectric layer for isolation is arranged between the anode-gate and the cathode substrates, one end of the dielectric layer for isolation is connected to the dielectric layer for gate protection, the other end is connected to the dielectric layer for cathode protection.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: July 2, 2013
    Inventors: Tailiang Guo, Yongai Zhang, Zhixian Lin, Liqin Hu, Yun Ye, Yuxiang You
  • Patent number: 8456073
    Abstract: The present invention provides devices comprising an assembly of carbon nanotubes, and related methods. In some cases, the carbon nanotubes may have enhanced alignment. Devices of the invention may comprise features and/or components which may enhance the emission of electrons and may lower the operating voltage of the devices. Using methods described herein, carbon nanotube assemblies may be manufactured rapidly, at low cost, and over a large surface area. Such devices may be useful in display applications such as field emission devices, or other applications requiring high image quality, low power consumption, and stability over a wide temperature range.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 4, 2013
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy M. Swager, Hongwei Gu
  • Patent number: 8456074
    Abstract: A flexible electronic device is made up of nanostructures. Specifically, the device includes a flexible substrate, a film of nanostructures in contact with the flexible substrate, a first conducting element in contact with the film of nanostructures, and a second conducting element in contact with the film of nanostructures. The nanostructures may comprise nanotubes, such as carbon nanotubes disposed along the flexible substrate, such as an organic or polymer substrate. The first and second conductive elements may serve as electrical terminals, or as a source and drain. In addition, the electronic device may include a gate electrode that is in proximity to the nanotubes and not in electrical contact with the nanotubes. In this configuration, the device can operate as a transistor or a FET. The device may also be operated in a resistive mode as a chemical sensor (e.g., for sensing NH3).
    Type: Grant
    Filed: April 28, 2011
    Date of Patent: June 4, 2013
    Assignees: Nanomix, Inc., The Regents of the University of California
    Inventors: N. Peter Armitage, Keith Bradley, Jean-Christophe P. Gabriel, George Gruner