Box Or Linear Type Patents (Class 313/536)
-
Patent number: 11961725Abstract: A photoelectric tube includes a housing including a light transmitting portion, an electron emitting portion including a photoelectric surface disposed inside the housing, an electron capturing portion disposed between the light transmitting portion and the photoelectric surface inside the housing, and a conductive layer disposed on a light transmitting portion side of at least a part of the electron capturing portion to face the photoelectric surface inside the housing and configured to allow light to pass therethrough.Type: GrantFiled: September 3, 2021Date of Patent: April 16, 2024Assignee: HAMAMATSU PHOTONICS K.K.Inventors: Tsuyoshi Kodama, Masaki Yamada
-
Patent number: 11894223Abstract: A photoelectric tube includes a housing including a light transmitting portion, an electron emitting portion held by a recess provided in the housing, the electron emitting portion including a concave photoelectric surface facing a light transmitting portion side inside the housing, and an electron capturing portion disposed between the light transmitting portion and the photoelectric surface inside the housing. At least a part of the electron capturing portion is located inside a region on an inside of the photoelectric surface.Type: GrantFiled: September 3, 2021Date of Patent: February 6, 2024Assignee: HAMAMATSU PHOTONICS K.K.Inventors: Tsuyoshi Kodama, Masaki Yamada, Shinichi Hara, Naoki Umebayashi
-
Patent number: 8643258Abstract: The present invention relates to a photomultiplier having a structure for making it possible to easily realize high detection accuracy and fine processing, and a method of manufacturing the same. The photomultiplier comprises an enclosure having an inside kept in a vacuum state, whereas a photocathode emitting electrons in response to incident light, an electron multiplier section multiplying in a cascading manner the electron emitted from the photocathode, and an anode for taking out a secondary electron generated in the electron multiplier section are arranged in the enclosure. A part of the enclosure is constructed by a glass substrate having a flat part, whereas each of the electron multiplier section and anode is two-dimensionally arranged on the flat part in the glass substrate.Type: GrantFiled: July 13, 2012Date of Patent: February 4, 2014Assignee: Hamamatsu Photonics K.K.Inventors: Hiroyuki Kyushima, Hideki Shimoi, Akihiro Kageyama, Keisuke Inoue, Masuo Ito
-
Patent number: 8242694Abstract: The present invention relates to a photomultiplier having a structure for making it possible to easily realize high detection accuracy and fine processing, and a method of manufacturing the same. The photomultiplier comprises an enclosure having an inside kept in a vacuum state, whereas a photocathode emitting electrons in response to incident light, an electron multiplier section multiplying in a cascading manner the electron emitted from the photocathode, and an anode for taking out a secondary electron generated in the electron multiplier section are arranged in the enclosure. A part of the enclosure is constructed by a glass substrate having a flat part, whereas each of the electron multiplier section and anode is two-dimensionally arranged on the flat part in the glass substrate.Type: GrantFiled: May 23, 2011Date of Patent: August 14, 2012Assignee: Hamamatsu Photonics K.K.Inventors: Hiroyuki Kyushima, Hideki Shimoi, Akihiro Kageyama, Keisuke Inoue, Masuo Ito
-
Patent number: 7990064Abstract: The present invention relates to a photomultiplier that realizes significant improvement of response time properties with a structure enabling mass production. In the sealed container, a photocathode, a dynode unit including at least one dynode set, and preferably dynode sets of two series, a focusing electrode unit arranged between the photocathode and the dynode unit are housed. The focusing electrode unit is set to the same potential as the second dynode arranged at a position where secondary electrons from said first dynode, which emits secondary electrons in response to incidence of photoelectrons, arrive, and is provided with partitioning plates partitioning the second dynode into two in a longitudinal direction of the second dynode.Type: GrantFiled: November 8, 2006Date of Patent: August 2, 2011Assignee: Hamamatsu Photonics K.K.Inventors: Takayuki Ohmura, Teruhiko Yamaguchi
-
Patent number: 7977878Abstract: The present invention relates to a photomultiplier having a structure for making it possible to easily realize high detection accuracy and fine processing, and a method of manufacturing the same. The photomultiplier comprises an enclosure having an inside kept in a vacuum state, whereas a photocathode emitting electrons in response to incident light, an electron multiplier section multiplying in a cascading manner the electron emitted from the photocathode, and an anode for taking out a secondary electron generated in the electron multiplier section are arranged in the enclosure. A part of the enclosure is constructed by a glass substrate having a flat part, whereas each of the electron multiplier section and anode is two-dimensionally arranged on the flat part in the glass substrate.Type: GrantFiled: February 16, 2005Date of Patent: July 12, 2011Assignee: Hamamatsu Photonics K.K.Inventors: Hiroyuki Kyushima, Hideki Shimoi, Akihiro Kageyama, Keisuke Inoue, Masuo Ito
-
Patent number: 7880385Abstract: The present invention relates to a photomultiplier having a fine structure capable of realizing high detection accuracy by effectively suppressing cross talk among electron-multiplier channels. The photomultiplier comprises a housing whose inside is maintained vacuum, and, in the housing, a photocathode, an electron-multiplier section, and anodes are disposed. The electron-multiplier section has groove portions for cascade-multiplying photoelectrons as electron-multiplier channels, and the anodes are constituted by channel electrodes corresponding to the groove portions respectively defined by wall parts. In particular, at least parts of the respective channel electrodes are located in spaces sandwiched between pairs of wall parts defining the corresponding groove portions.Type: GrantFiled: June 1, 2006Date of Patent: February 1, 2011Assignee: Hamamatsu Photonics K.K.Inventors: Hiroyuki Kyushima, Hideki Shimoi, Hiroyuki Sugiyama, Hitoshi Kishita, Suenori Kimura, Yuji Masuda, Takayuki Ohmura
-
Patent number: 7659666Abstract: The present invention relates to a photomultiplier that realizes significant improvement of response time properties with a structure enabling mass production. The photomultiplier comprises a sealed container, and, in the sealed container, a photocathode, at least one dynode set, a dynode unit including a part of insulating supporting members holding the one dynode unit, and a gain control unit are housed. The gain control unit has an insulating base plate, and the insulating base plate is integrally fixed with a control dynode and a final stage dynode that belong to each dynode set together with an anode. By the insulating base plate thus being clamped by the pair of insulating supporting members, the anode, the control dynode, and the final stage dynode constitute a part of an electron multiplier section.Type: GrantFiled: November 8, 2006Date of Patent: February 9, 2010Assignee: Hamamatsu Photonics K.K.Inventors: Takayuki Ohmura, Teruhiko Yamaguchi
-
Patent number: 7449834Abstract: The present invention relates to a photomultiplier that realizes significant improvement of response time properties with a structure enabling mass production. The photomultiplier comprises an electron multiplier section for cascade-multiplying photoelectrons emitted from said photocathode. The electron multiplier has a structure holding at least two dynode sets while sandwiching the tube axis of a sealed container in this the electron multiplier is housed. In particular, the first dynodes respectively belonging to the two dynode sets are arranged such that their back surfaces opposing respective secondary electron emitting surfaces face each other while sandwiching the tube axis. In this arrangement, because each first dynode itself is positioned near the tube axis, the efficiency of collection of photoelectrons arriving at the periphery of the first dynode is improved significantly.Type: GrantFiled: November 8, 2006Date of Patent: November 11, 2008Assignee: Hamamatsu Photonics K.K.Inventors: Takayuki Ohmura, Suenori Kimura
-
Publication number: 20080088234Abstract: The present invention relates to a photomultiplier that realizes significant improvement of response time properties with a structure enabling mass production. The photomultiplier comprises a sealed container, and, in the sealed container, a photocathode, at least one dynode set, a dynode unit including a part of insulating supporting members holding the one dynode unit, and a gain control unit are housed. The gain control unit has an insulating base plate, and the insulating base plate is integrally fixed with a control dynode and a final stage dynode that belong to each dynode set together with an anode. By the insulating base plate thus being clamped by the pair of insulating supporting members, the anode, the control dynode, and the final stage dynode constitute a part of an electron multiplier section.Type: ApplicationFiled: November 8, 2006Publication date: April 17, 2008Inventors: Takayuki Ohmura, Teruhiko Yamaguchi
-
Patent number: 7317283Abstract: The present invention relates to a photomultiplier having a structure for performing a high gain and achieving a higher productivity in a state keeping or improving an excellent high-speed response. In the photomultiplier, an electron-multiplying unit accommodated in a sealed container has a structure that enables an integrated assembly of a focusing electrode, an accelerating electrode, a dynode unit, and an anode. Specifically, the focusing electrode has one or more notched portions to be grasped by a part of each of the insulating support members for grasping directly the dynode unit and so on when the focusing electrode itself is rotated around the tube axis of the sealed container. With this construction, the focusing electrode is fixed to the pair of insulating support members in a state that the focusing electrode is aligned with high accuracy by using the pair of insulating support member as a reference member.Type: GrantFiled: December 6, 2005Date of Patent: January 8, 2008Assignee: Hamamatsu Photonics K.K.Inventor: Toshikazu Fujita
-
Publication number: 20040245925Abstract: An electron tube 10 is provided with: an MCP (electron multiplier) 14 which includes a multiplying portion 16 having a large number of microscopic holes for electron passage that can emit secondary electrons and a peripheral portion 18 that surrounds multiplying portion 16; and with a vacuum closed container 12 enclosing at least multiplying portion 16 of MCP 14. Thus, peripheral portion 18 of MCP 14 forms at least a portion of sidewalls 22 of vacuum closed container 12. Multiplying portion 16 is increased in size in this configuration in comparison with configurations having the same outer dimensions that accommodate the entirety of an MCP inside of vacuum closed container 12.Type: ApplicationFiled: July 26, 2004Publication date: December 9, 2004Inventors: Kuniyoshi Yamauchi, Hiroshi Kondoh
-
Patent number: 6674063Abstract: A hybrid photon detector with a photocathode in reflective mode where the same vacuum tube components acts both as a perfect incoming light concentrator and as a perfect focusing electron lens and the photoelectrons are electrostatically focused by the same CPC-shape in the opposite direction (i.e., from the small light collection surface towards a point-like region in the middle of the large-area entrance aperture). The CPC is electrically conductive and split into two electrodes by a narrow nonconductive interval positioned in a particular place along the CPC. The photocathode covers the light collection area of the CPC, and the photocathode is operated in the reflective mode such that photoelectrons emerge from the same surface through which the photons enter. Photoelectrons emerging from the entire photocathode are accelerated and focused onto a small electronic sensor placed in the middle of the entrance aperture of the CPC.Type: GrantFiled: June 26, 2001Date of Patent: January 6, 2004Assignee: The Regents of the University of CaliforniaInventor: Daniel Ferenc
-
Patent number: 6650049Abstract: To reduce the size of a photomultiplier tube (1), a side tube (2) is fixedly secured by welding to a stem plate (4) while an inner surface (2c) of the lower portion (2a) of the side tube (2) is maintained to be in contact with an outer edge (4b) of the stem plate (4). As a result, there is no projection like a flange at the lower portion of the photomultiplier tube (1). Therefore, though it is difficult to perform resistance welding, the outside dimensions of the photomultiplier tube (1) can be decreased, and the side tubes (9) can densely abut to one another even if the photomultiplier tubes (2) are arranged when applied. Hence, high-density arrangement of photomultiplier tubes (1) are realized by assembling metallic stem plate (4) and the side tube (2) by, for example, laser welding.Type: GrantFiled: November 28, 2000Date of Patent: November 18, 2003Assignee: Hamamatsu Photonics K.K.Inventors: Hiroyuki Kyushima, Akira Atsumi, Hideki Shimoi, Tomoyuki Okada, Masuo Ito
-
Patent number: 6239549Abstract: An electron multiplier with a source for spontaneously generating electrons is used as an electron source for an ionization source in a mass spectrometer or the like. The electron multiplier can be a microchannel plate, in which case it produces a wide electron beam. The microchannel plate can be acid-leached to provide a surface for spontaneous generation of electrons, or the first strike surface can be coated with an alkali-containing material. The electron source can be tuned by providing an electrode for rejecting electrons having too high an energy and a grid for rejecting electrons having too low an energy.Type: GrantFiled: January 9, 1998Date of Patent: May 29, 2001Assignee: Burle Technologies, Inc.Inventor: Bruce Laprade
-
Patent number: 5914561Abstract: A photomultiplier tube is disclosed having a first dynode array and a second dynode array oriented substantially orthogonal to the first dynode to provide a shortened profile. The first dynode array is preferably a box-and-grid dynode array and the second dynode array is preferably an in-line dynode array. A focusing electrode is positioned between the last dynode of the first dynode array and the first dynode of the second dynode array. The focusing electrode is constructed and arranged to facilitate the transfer of electrons emitted from the first dynode array to the second dynode array without generating secondary electrons.Type: GrantFiled: August 21, 1997Date of Patent: June 22, 1999Assignee: Burle Technologies, Inc.Inventors: Anita S. Venkatarao, Charles M. Tomasetti
-
Patent number: 5578891Abstract: An electron multiplier according to this invention comprises dynodes DY1 .about.DY16 arranged in multi-stages along a direction of incidence of an energy beam for, upon incidence of the energy beam, gradually multiplying secondary electrons to emit the same, a collection electrode A for receiving electrons emitted from that of the dynodes on a last stage, and resistors R1 .about.R16 inserted between the respective dynodes and their adjacent ones, the dynodes, the collecting electrode, and the resistors being mounted between two support plates 10a, 10b disposed in parallel with each other, the resistors being arranged in two rows which sandwich the dynodes.Type: GrantFiled: June 1, 1995Date of Patent: November 26, 1996Assignee: Hamamatsu Photonics K.K.Inventors: Shiro Sakai, Takehisa Okamoto, Makoto Nakamura
-
Patent number: 5481158Abstract: The present invention relates to a linear multi-anode photomultiplier or electron multiplier on which a plurality of light beams to be measured or energy beams of electrons, ions and so forth are incident one-dimensionally. The object of the present invention is to prevent crosstalk between dynode arrays caused by leaking electrons. A transmission type photomultiplier is characterized in that the direction of secondary electron emission of the first-stage dynode of each dynode array is set in the opposite direction at 180.degree. from that of an adjacent dynode array. Then, adjacent dynode arrays will not oppose each other but are shifted from each other at a predetermined distance in the lateral direction. Accordingly, even if electrons leak from a gap between dynodes of a certain dynode array, the leaking electrons will not enter the adjacent dynode array, thereby preventing crosstalk.Type: GrantFiled: November 8, 1993Date of Patent: January 2, 1996Assignee: Hamamatsu Photonics K.K.Inventors: Hisaki Kato, Suenori Kimura, Kiyoshi Nakatsugawa, Tsuguo Uchino, Itsuo Ozawa, Hiroyuki Onda
-
Patent number: 5416382Abstract: A photomultiplier tube in which a photoelectron beam (42) is divided in N independent paths by means of an electron-optical device. The optical device includes a first cup-shaped focusing electrode (25) having a flat bottom portion of polygonal or circular shape, in which N apertures (30a), (30b) are formed, and having raised side faces (28a), (28b) which extend towards the photocathode (12), viewed in the radial directions corresponding to the elementary photomultipliers, and side faces having V-shaped recesses between these directions. The optical device is completed by a deflection electrode (35) which is brought to approximately the same potential as the photocathode and which is centrally arranged close to the bottom portion of the focusing electrode (25). The assembly is followed by a multiplier (16) of the perforated sheet-type whose focusing electrode (161) has projecting portions (41a), (41b), the multiplier being followed by N anode plates (20a), (20b).Type: GrantFiled: July 1, 1993Date of Patent: May 16, 1995Assignee: U.S. Philips CorporationInventor: Pierre L'Hermite
-
Patent number: 5371435Abstract: There is disclosed a process for forming a photocathode having high quantum yield which comprises the first step of making a number of fine concavities and convexities in a surface of a substrate finished substantially in a mirror; the second step of blunting the fine concavities and convexities; and the third step of coating a photoelectron emissive material on the surface of the substrate.Type: GrantFiled: November 30, 1992Date of Patent: December 6, 1994Assignee: Hamamatsu Photonics K.K.Inventors: Keiichi Ohishi, Hideaki Suzuki, Hiroyuki Watanabe, Junichi Takeuchi
-
Patent number: 5254906Abstract: An electron multiplier tube including a grid type of plural dynode arrays arranged in a first direction with a multistage structure for successively multiplying electrons incident thereto and an anode provided below the multistage structure of dynode arrays for collecting the multiplied electrons to output an amplified electrical signal, each of the dynode arrays including plural rod-shaped dynode elements arranged in a second direction and a mesh electrode provided over each of the dynode arrays for providing an equipotential, wherein the multistage structure of dynode arrays includes at least one group of neighboring dynode arrays whose dynode elements are arranged so as to be aligned with one another in the first direction without displacement. Each of the dynode elements has a substantially isosceles trapezoid section, both side legs of the trapezoid being slightly inwardly curved to effectively receive the incident electrons which have been emitted from a dynode array at an upper stage.Type: GrantFiled: August 14, 1991Date of Patent: October 19, 1993Assignee: Hamamatsu Photonics K.K.Inventor: Suenori Kimura
-
Patent number: 5196690Abstract: An optically powered photomultiplier tube is provided, comprising a vacuum chamber having a window for incident optical radiation which is to be detected; a photocathode to receive the optical radiation; an electron multiplier system within the chamber to amplify the electron current from the photocathode; an anode to receive the amplified electron current; a high voltage photocell array positioned within the chamber for generating high voltage electrical power that is provided to the electron multiplier system; a system for delivering optical power to the photocell array; a first electrical contact penetrating the container in a vacuum tight manner and operably coupled to the anode; and a second electrical contact penetrating the container in a vacuum tight manner and operably coupled to the photocell array.Type: GrantFiled: June 18, 1991Date of Patent: March 23, 1993Assignee: The United States of America as represented by the Secretary of the NavyInventors: Larry D. Flesner, Stephen A. Miller, Wadad B. Dubbelday
-
Patent number: 5061875Abstract: A focus electrode for an elongated hexagonal faceplate photomultiplier tube. The elongated hexagonal face plate and an off-center cage assembly are made to function properly in a photomultiplier tube by the use of a uniquely shaped asymmetric focus electrode. The focus electrode has a base which is a partial circle with two parallel chords and is constructed with a side wall around the perimeter of the base. The side wall has different heights above the two parallel chords of the base and slopes down to minimum but equal heights at points on the curved perimeter which are approximately at the center plane of the tube.Type: GrantFiled: June 20, 1990Date of Patent: October 29, 1991Assignee: Burle Technologies, Inc.Inventors: Charles M. Tomasetti, Benjamin W. Narehood, Donald B. Kaiser
-
Patent number: 5043628Abstract: A photomultiplier tube comprising a photocathode (10), focusing electrodes (12, 12') and a fast multiplier structure (20) having a large input surface relative to the photocathode and comprising at least one input dynode (21). According to the invention, said photomultiplier tube comprises, between the photocathode (10) and said focusing multiplier structure (20), a first multiplier stage (30) comprising, in succession and viewed from the assembly consisting of the photocathode (10) and the focusing electrodes (12, 12'), a grid (31), a first multiplier dynode (32) of the apertured-plate type, and an extracting grid (33) having the same pattern as said first multiplier dynode (32), the output of the extracting grid (33) being coupled to said input dynode (21) of the multiplier pattern by means of a focusing electrode (40).Type: GrantFiled: March 22, 1990Date of Patent: August 27, 1991Assignee: U.S. Philips Corp.Inventors: Jean-Pierre Boutot, Pierre L'Hermite
-
Patent number: 4999540Abstract: A photomultiplier tube (10) for the use in high collecting power is described having a photocathode (20), a first dynode (30) and a stackable-dynode multiplier device (40). According to the invention, the first dynode (30) is constituted by a sheet which extends parallel to the photocathode (20) and is provided with a feedthrough aperture (31), an extracting grid (32) being arranged between the photocathode (20) and the sheet, and the stackable-dynode multiplier device (40) is positioned opposite the aperture (30) in such a manner as to collect the secondary electrons (50) emitted by the first dynode (30) and passing through the feedthrough aperture (31).Type: GrantFiled: December 26, 1989Date of Patent: March 12, 1991Assignee: U.S. Philips Corp.Inventor: Pierre L'hermite
-
Patent number: 4980604Abstract: An electron mulitplexer dynode (D) comprising two parallel disposed half-dynodes (d, d') to which an equal potential (V) is applied, and which are in the form of metal sheets (10, 20) in which apertures (11, 21) are formed. According to the invention, the second half-dynode (d'), called emitting half-dynode, has an electron surface (23), and the said emitting half-dynode (d') and the first half-dynode (d), called extracting half-dynode, are arranged so as to be staggered relative to each other.Type: GrantFiled: June 22, 1989Date of Patent: December 25, 1990Assignee: U.S. Philips Corp.Inventor: Pierre L'Hermite
-
Patent number: 4956576Abstract: Photomultiplier tube (10) comprising a photocathode (20), a first cylindrical dynode (30), an electron multiplier device (40) of the "leaf" type, and a device (50) for coupling the first dynode (30) to the multiplier device (40). According to the invention, the said coupling device (50) consists, on the one hand, of a first electrode (51) composed of a cylindrical lateral plate (52) of axis parallel to that of the multiplier device and of an upper plate (53) pierced by an opening (54) for passage of the photoelectrons (21) towards the first dynode (30), and, on the other hand, of a second plane electrode (55) situated between the exit (32) of the first dynode (30) and the entrance (42) of the multiplier device (40).Type: GrantFiled: June 5, 1989Date of Patent: September 11, 1990Assignee: U.S. Philips Corp.Inventor: Pierre L'Hermite
-
Patent number: 4777403Abstract: The first of a plurality of dynodes in a photomultiplier tube is made of a weldable nickel-beryllium alloy having a beryllium oxide layer thereon, formed into a desired shape from spot-welded segments. The dynode itself is then spot-welded to a support element. In one aspect of the invention, this first dynode has a scoop form. It is followed by a second dynode of spherical shape, made of a copper-beryllium alloy. A flap made of nickel-beryllium is juxtaposed to intercept photoelectrons that otherwise may escape photomultiplication in either the first or second dynodes. Additional venetian-blind type dynodes are employed to obtain the required photomultiplication.Type: GrantFiled: May 28, 1987Date of Patent: October 11, 1988Inventor: K. E. Stephenson
-
Patent number: 4593229Abstract: A photomultiplier tube comprises an evacuated envelope having a photoemissive cathode, a shield cup spaced from the cathode and an electron multiplier cage assembly abutting the shield cup. The cage assembly includes a pair of transversely spaced insulating support plates having oppositely disposed surfaces. A plurality of dynodes and an anode are disposed between the support plates. A plurality of oppositely disposed locating slots are formed in the shield cup. At least one tab slot is formed through the oppositely disposed surfaces of each of the support plates. A plurality of connecting tab members are provided for connecting the cage assembly to the shield cup. Each tab member includes a slot engaging portion, a locking portion, a locating portion and an attachment portion. The slot engaging portion is disposed within the tab slot of the support plate. The locking portion extends from one end of the slot engaging portion for securely engaging one surface of the plate.Type: GrantFiled: May 18, 1984Date of Patent: June 3, 1986Assignee: RCA CorporationInventors: Arthur F. McDonie, Donald B. Kaiser
-
Patent number: 4588922Abstract: An improved electron discharge device comprises an evacuated envelope having therein a photoemissive cathode for providing photoelectrons in response to radiation incident thereon, an electron multiplier, including a primary dynode spaced from the cathode, and a focusing assembly disposed between the cathode and the multiplier. A thermionic electron control plate is disposed between the focusing assembly and the multiplier to prevent thermionic electrons from the focusing assembly from impinging on the primary dynode, while permitting the passage of photoelectrons to the primary dynode. The control plate overlies the primary dynode and is contiguous therewith.Type: GrantFiled: March 19, 1984Date of Patent: May 13, 1986Assignee: RCA CorporationInventor: Richard D. Faulkner
-
Patent number: 4577137Abstract: A photomultiplier tube comprises an evacuated envelope having a photoemissive cathode, a shield cup spaced from the cathode and an electron multiplier cage assembly abutting the shield cup. The cage assembly includes a pair of transversely spaced support plates having a plurality of support slots formed therethrough. The support plates are attached to the shield cup. A plurality of electrodes are disposed between the support plates. At least one of the electrodes has reference apertures therein and a mesh member attached thereto which has locating slots aligned with the reference apertures. The electrodes have an active portion and attachment tabs which are disposed within the support slots in the support plates to support the electrodes therebetween. The electrodes also have support shoulders formed in opposite sides thereof between the active portion and the attachment tabs.Type: GrantFiled: May 18, 1984Date of Patent: March 18, 1986Assignee: RCA CorporationInventor: Donald B. Kaiser
-
Patent number: 4575657Abstract: A photomultiplier tube comprises an evacuated envelope including a faceplate and a sidewall. A conductive coating is disposed annularly around an interior portion of the sidewall adjacent to the faceplate and on a longitudinally extending portion of the sidewall as a strip. A photoemissive cathode is disposed on an interior surface of the faceplate and on the conductive coating adjacent thereto. A shield cup is spaced from the cathode and centered within the envelope by a plurality of bulb spacers. An electron multiplier cage assembly abuts the shield cup and is attached thereto. A cathode contact assembly is in contact with the strip on the sidewall. A plurality of locating slots are formed in the base of the shield cup to orient the bulb spacers in contact with the sidewall of the envelope and spaced from the longitudinally extending strip portion of the conductive coating thereon. The bulb spacers include stop shoulders which retain the bulb spacers within the locating slots.Type: GrantFiled: May 18, 1984Date of Patent: March 11, 1986Assignee: RCA CorporationInventor: Donald B. Kaiser
-
Patent number: 4570102Abstract: A photomultiplier tube comprises an evacuated envelope having a photoemissive cathode, a shield cup spaced from the cathode and an electron multiplier cage assembly abutting the shield cup. The cage assembly includes a pair of transversely spaced support plates having a plurality of support slots formed therethrough. Each of the support plates has a distal end and a proximal end, with the proximal ends being attached to the shield cup. A light shield is disposed between the distal end of the support plates. An anode and a plurality of dynodes, at least one of which has a field mesh attached thereto, are disposed between the support plates and attached thereto by end tabs. The end tabs extend from the side of the anode and the dynodes. The aforementioned shield cup includes flaps which establish a minimum transverse spacing between the proximal ends of the support plates.Type: GrantFiled: May 18, 1984Date of Patent: February 11, 1986Assignee: RCA CorporationInventors: Arthur F. McDonie, Donald B. Kaiser