Photocathode Patents (Class 313/542)
  • Patent number: 6586877
    Abstract: In an electron tube 1, a space S between a periphery part 15b of a semiconductor device 15 and a stem 11 is filled with an insulating resin 20. The insulating resin 20 functions as a reinforcing member while the electron tube 1 is assembled under high-temperature condition, thereby preventing a bump 16 from coming off a bump connection portion 19. Since the space S is only partly closed by the resin 20, the space between the semiconductor device 15 and the stem 11 is ensured a ventilability. That is, no air reservoir is formed between an electron incidence part 15a at the center of the semiconductor device 15 and the surface C of the stem 11, whereby air expanding at high temperature does not damage the electron incidence part 15a of the back-illuminated semiconductor device 15.
    Type: Grant
    Filed: July 19, 2001
    Date of Patent: July 1, 2003
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Motohiro Suyama, Akihiro Kageyama, Masaharu Muramatsu
  • Patent number: 6583558
    Abstract: An electron tube 10 mainly includes a sleeve 12, an input plate 14 having a photocathode surface 18, a stem 16 and a CCD 20. A vacuum is provided in an interior of the electron tube 10. The CCD 20 is fixed onto the stem such that a rear surface B faces the photocathode surface 18. In the CCD 20, on a single conductive type semiconductor substrate 64, a buried layer 66, a barrier region 68, a SiO2 layer 70, a storage electrode layer 72, a transmission electrode layer 74, and a barrier electrode layer 76 are formed at their predetermined positions. A PSG film 78 is formed at an entire front surface A over these layers to flatten the surface of the CCD 20. Further, SiN film 106 mainly composed of SiN is formed above the PSG film over the entire front surface A.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: June 24, 2003
    Assignee: Hamamatsu Photonics K. K.
    Inventors: Motohiro Suyama, Akihiro Kageyama, Masaharu Muramatsu
  • Patent number: 6580215
    Abstract: A photocathode having a UV glass substrate and a laminate composed of a SiO2 layer, a GaAlN layer, a Group III-V nitride semiconductor layer and an AlN buffer layer provided on the UV glass substrate in succession. The UV glass substrate, which absorbs infrared rays, can be heat treated at a high speed by photoheating. Further, the UV glass substrate, which is transparent to ultraviolet rays, permits ultraviolet rays to be introduced into the Group III-V nitride semiconductor layer where photoelectric conversion occurs.
    Type: Grant
    Filed: December 22, 2000
    Date of Patent: June 17, 2003
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Tokuaki Nihashi
  • Patent number: 6573640
    Abstract: A photodetecting device is characterized by comprising a photodetecting section having a photoelectric surface for emitting photoelectrons upon incidence of light, a semiconductor detection element having an electron incident surface on which the photoelectrons can be incident, and a vacuum vessel in which the photoelectric surface is arranged on one inner surface, and the semiconductor detection element is arranged on the other inner surface opposing the one surface, and cooling means for cooling a structure on the semiconductor detection element side of the vacuum vessel.
    Type: Grant
    Filed: May 19, 2000
    Date of Patent: June 3, 2003
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Naotaka Hakamata, Tadashi Maruno, Motohiro Suyama
  • Patent number: 6563264
    Abstract: This photocathode comprises: InP substrate 1; InAsx2P1−x2(0<x2<1) buffer layer 2; Inx1Ga1−x1As (1>x1>0.53) light-absorbing layer 3; InAsx3P1−x3 (0<x3<1) electron-emitting layer 4; InAsx3P1−x3 contact layer 5 formed on the electron-emitting layer 4; active layer 8 of an alkali metal or its oxide or fluoride formed on the exposed surface of electron-emitting layer 4; and electrodes 6 and 7.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: May 13, 2003
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Minoru Niigaki, Toru Hirohata, Tomoko Mochizuki, Hirofumi Kan
  • Patent number: 6545425
    Abstract: A communications system that includes one or more free space electron switches. The free space electron switch employs an array of electron emitters, where each emitter is responsive to an RF or optical input signal on an input channel. Each emitter includes a cathode that emits electrons in response to the input signal. Each emitter further includes a focussing/accelerating electrode for collecting and accelerating the emitted electrons into an electron beam. Each emitter further includes an aiming anode that directs the beam of electrons to a desired detector within an array of detectors that converts the beam of electrons to a representative RF or optical signal on an output channel. Each emitter may include a modulating electrode that generates an electric field to modulate data onto the beam of electrons. The communications systems employing the switch can be an ISDN, DSLAM networks, packet routing systems, ADSL networks, PBX systems, local exchange systems, etc.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: April 8, 2003
    Assignee: Exaconnect Corp.
    Inventor: Michel N. Victor
  • Publication number: 20030048075
    Abstract: A photocathode structure having a photoelectric face plate protective layer, in order to prevent a photoelectric effect from being deteriorated sharply due to a high reaction of oxygen with respect to most of existing photoelectric face plate materials when the photoelectric face plate used for generating photoelectrons by a photoelectric effect i s exposed to the atmosphere, is provided. For example, a diamond-like carbon thin layer is used as a photocathode protective layer, to thereby perform a function of protection of the photoelectric face plate through isolation of the photoelectric face plate from the atmosphere and enable electrons generated from the photoelectric face plate to pass through a diamond-like carbon thin layer, which is deposited thinly, by the tunneling effect so that the performance of the photocathode is not affected.
    Type: Application
    Filed: April 1, 2002
    Publication date: March 13, 2003
    Applicant: Korea Advanced Institute of Science and Technology
    Inventors: Keong-Su Lim, Duk-Young Jeon, Chang-Hyun Lee, Sang-Su Kim
  • Patent number: 6531816
    Abstract: This invention discloses a thin-film-coated photocathode, including a photocathode formed of first material consisting of potassium cesiuin antimonide and a thin-film coating of a second material consisting of cesium bromide (CsBr).
    Type: Grant
    Filed: November 4, 1999
    Date of Patent: March 11, 2003
    Assignee: Yeda Research & Development Co. Ltd.
    Inventors: Amos Breskin, Rachel Chechik, Alexei Buzulutskov
  • Patent number: 6509701
    Abstract: The present invention may be used in the field of microelectronics, in medicine as well as in the production of lighting appliances. The method and the device of the present invention are used for increasing the brightness of optical radiation sources powered by low-voltage power supplies. The optical radiation is generated by emitting electrons and by exciting the radiation. The electrons are generated by emitting the same from the surface of a cathode, while the excitation of the radiation involves accelerating the electrons in the gaseous interval up to an energy exceeding the excitation energy of the radiating levels of the gas. To this end, a voltage is applied between the cathode and the anode, wherein said voltage does not exceed the ignition voltage of a self-maintained discharge. The device of the present invention comprises a chamber as well as electrodes having surfaces which are transparent to the radiation.
    Type: Grant
    Filed: February 5, 2001
    Date of Patent: January 21, 2003
    Inventors: Alexandr Tursunovich Rakhimov, Jury Alexandrovich Mankelevich, Vladimir Vitalievich Ivanov, Tatiyana Viktorovna Rakhimova, Nikolai Vladislavovich Suetin
  • Patent number: 6507147
    Abstract: A housing for microelectronic devices requiring an internal vacuum for operation, e.g., an image detector, is formed by tape casting and incorporates leads between interior and exterior of said housing where said leads are disposed on a facing surface of green tape layers. Adjacent green tape layers having corresponding apertures therein are stacked on a first closure member to form a resulting cavity and increased electrical isolation or channel sub-structures are achievable by forming adjacent layers with aperture dimension which vary non-monotonically. After assembly of the device within the cavity, a second closure member is sealed against an open face of the package in a vacuum environment to produce a vacuum sealed device.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: January 14, 2003
    Assignee: Intevac, Inc.
    Inventor: Kenneth A. Costello
  • Publication number: 20030001497
    Abstract: A cathode (5) for emitting photoelectrons or secondary electrons comprises a nickel electrode substrate (5c) with an aluminum layer (5b) deposited on it; an intermediate layer (5a) consisting of carbon nanotubes formed on the aluminum layer; and an alkaline metal layer (5d) formed on the intermediate layer (5a) and composed, for example, of particles of an alkali antimony compound that either emits photoelectrons in response to incident light or emits secondary electrons in response to incident electrons. The decrease in defect density of the particles reduces the probability of recombination of electron and hole remarkably, thus increasing quantum efficiency.
    Type: Application
    Filed: July 17, 2002
    Publication date: January 2, 2003
    Inventors: Masao Kinoshita, Hiroyuki Watanabe, Rie Nishiura
  • Publication number: 20030001498
    Abstract: In the polycrystal diamond thin film in accordance with the present invention, the average particle size is at least 1.5 &mgr;m and, in a Raman spectrum obtained by Raman spectroscopy, a peak intensity near a wave number of 1580 cm−1 has a ratio of 0.2 or less with respect to a peak intensity near a wave number of 1335 cm−1. The photocathode and electron tube in accordance with the present invention comprise the polycrystal diamond thin film as a light-absorbing layer.
    Type: Application
    Filed: August 20, 2002
    Publication date: January 2, 2003
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Minoru Niigaki, Shoichi Uchiyama, Hirofumi Kan
  • Publication number: 20020190642
    Abstract: A device for monitoring radiation flux from a surface. The flux monitor is based on the photoelectric effect that occurs inherently when a reflective metal optic is exposed to a beam of energetic radiation. The incoming beam of energetic radiation is not totally reflected by the optic surface. That portion of the radiation absorbed by the optic generates photoelectrons producing a signal proportional to the incident radiation flux. By measuring this signal, an accurate determination of the radiation reflected by the optic surface can be made.
    Type: Application
    Filed: June 19, 2001
    Publication date: December 19, 2002
    Inventors: Kurt W. Berger, Avijit K. Ray-Chaudhuri
  • Patent number: 6483231
    Abstract: A image intensifier tube (14) includes a housing (18) carrying a photocathode (22) and a microchannel plate (24). The housing also receives axially extending fine-dimension spacing structure (22a) interposed around an active area 22b of the photocathode and the microchannel plate to establish and maintain a selected fine-dimension, precise PC-to-MCP spacing between these structures. The housing includes yieldable deformable electrical contact structure (56′) for establishing and maintaining contact with the microchannel plate, and yieldable deformable sealing structure (58) allowing axial movement of the photocathode relative to the housing structure as the tube is assembled and the axial spacing structure controls PC-to-MCP spacing. The result is that the PC-to-MCP spacing dimension of the tube is largely isolated from dimensional variabilities of the housing and is established and maintained precisely during manufacturing of the tube despite stack up of tolerances for the housing and its components.
    Type: Grant
    Filed: May 7, 1999
    Date of Patent: November 19, 2002
    Assignee: Litton Systems, Inc.
    Inventor: Michael Jude Iosue
  • Patent number: 6465938
    Abstract: An image intensifier tube includes a photocathode (20) with an active layer (52) providing an electrical spectral response to photons of light. The photocathode (20) also includes integral spacer structure (42) which extends toward and physically touches a microchannel plate (22) of the image intensifier tube in order to establish and maintain a desirably precise and fine-dimension spacing distance “G” between the photocathode and the microchannel plate. A method of making the photocathode and a method of making the image intensifier tube are described also.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: October 15, 2002
    Assignee: Litton Systems, Inc.
    Inventor: Michael Jude Iosue
  • Publication number: 20020113551
    Abstract: The present invention relates to an apparatus (11) for conversion of visible light to UV light, and includes an entrance window (17) transparent to visible light; a photocathode (23) adapted to release photoelectrons in dependence on being irradiated by visible light; an electrode arrangement (27, 29) connectable to a voltage supply; a scintillator (21, 35) adapted to emit UV light in dependence on being struck by electrons; and an exit window (19) transparent to UV light. Visible light is, during conversion, entered through the entrance window and irradiates the photocathode. Photoelectrons released from the photocathode is, by means of an electrical field created by the electrode arrangement, drifted towards the scintillator, where they are converted into scintillating light, which is output through the exit window. The converter is advantageously arranged in front of a gaseous based two-dimensional UV light detector for detection of visible light.
    Type: Application
    Filed: March 26, 2001
    Publication date: August 22, 2002
    Inventors: Tom Francke, Vladimir Peskov, Igor Rodionov, Tatiana Sokolova
  • Publication number: 20020075999
    Abstract: A vacuum casing for a vacuum tube has an X-ray window which is formed of vitreous carbon and is joined to the vacuum enclosure by an active brazing alloy.
    Type: Application
    Filed: September 28, 2001
    Publication date: June 20, 2002
    Inventor: Peter Rother
  • Patent number: 6407516
    Abstract: A free space electron switch is disclosed. The switch, which is useful in high speed telecommunications traffic, has an array of cathodes for emitting free space electrons. A grid of aiming anodes and, a focusing grid for forming electrons from the cathode into an electron beam are provided. A plurality of output ports for receiving the electron beam from each cathode is provided, the output ports having a phosphor coating facing the side of the channel remote from the cathode.
    Type: Grant
    Filed: December 6, 2000
    Date of Patent: June 18, 2002
    Assignee: Exaconnect Inc.
    Inventor: Michel Victor
  • Patent number: 6376985
    Abstract: A photocathode having a gate electrode so that modulation of the resulting electron beam is accomplished independently of the laser beam. The photocathode includes a transparent substrate, a photoemitter, and an electrically separate gate electrode surrounding an emission region of the photoemitter. The electron beam emission from the emission region is modulated by voltages supplied to the gate electrode. In addition, the gate electrode may have multiple segments that are capable of shaping the electron beam in response to voltages supplied individually to each of the multiple segments.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: April 23, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Kim Y. Lee, Tai-Hon Philip Chang, Marian Mankos, C. Neil Berglund
  • Patent number: 6366018
    Abstract: An apparatus, comprises an active region, a phosphor layer and a reflective layer. The active region is configured to emit light having a first band of wavelengths from a first group of wavelengths. The phosphor layer is disposed between and in contact with the active region and an exterior medium. The phosphor layer is configured to convert the first band of wavelengths of light emitted from the active region to a second band of wavelengths. A center wavelength of the second band of wavelengths is greater than a center wavelength of the first band of wavelengths. The reflective layer is optically coupled to the active region. The active region is disposed between the reflective layer and the phosphor layer. The reflective layer is configured to reflect at least the first band of wavelengths and the second band of wavelengths.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: April 2, 2002
    Assignees: Sarnoff Corporation, Emcore Corporation
    Inventors: Dmitri Zalmanovich Garbuzov, John Charles Connolly, Robert Frank Karlicek, Jr., Ian Thomas Ferguson
  • Publication number: 20020017843
    Abstract: An image intensifier tube includes a photocathode (20) with an active layer (52) providing an electrical spectral response to photons of light. The photocathode (20) also includes integral spacer structure (42) which extends toward and physically touches a microchannel plate (22) of the image intensifier tube in order to establish and maintain a desirably precise and fine-dimension spacing distance “G” between the photocathode and the microchannel plate. A method of making the photocathode and a method of making the image intensifier tube are described also.
    Type: Application
    Filed: September 25, 2001
    Publication date: February 14, 2002
    Inventor: Michael J. Iosue
  • Patent number: 6337537
    Abstract: A vacuum diode with a high saturation current density and a rapid response time for the detection of electromagnetic radiation. This diode comprises a grid (6) in the shape of a cylinder and a photo-cathode (4) which extends along the axis (X) of the cylinder. The photo-cathode includes a part of the internal conductor of a coaxial cable (8), the external conductor and the electrically insulating material of the coaxial cable being removed opposite this part, and the grid is electrically connected to the external conductor of this coaxial cable, the internal and external conductors being coaxial. Application to the detection of visible, infra-red, ultra-violet and X radiation.
    Type: Grant
    Filed: October 19, 1999
    Date of Patent: January 8, 2002
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Luc Bourgade, Dominique Gontier
  • Patent number: 6331753
    Abstract: An image intensifier tube includes a photocathode (20) with an active layer (52) providing an electrical spectral response to photons of light. The photocathode (20) also includes integral spacer structure (42) which extends toward and physically touches a microchannel plate (22) of the image intensifier tube in order to establish and maintain a desirably precise and fine-dimension spacing distance “G” between the photocathode and the microchannel plate. A method of making the photocathode and a method of making the image intensifier tube are described also.
    Type: Grant
    Filed: March 18, 1999
    Date of Patent: December 18, 2001
    Assignee: Litton Systems, Inc.
    Inventor: Michael Jude Iosue
  • Publication number: 20010038263
    Abstract: A photocathode having a gate electrode so that modulation of the resulting electron beam is accomplished independently of the laser beam. The photocathode includes a transparent substrate, a photoemitter, and an electrically separate gate electrode surrounding an emission region of the photoemitter. The electron beam emission from the emission region is modulated by voltages supplied to the gate electrode. In addition, the gate electrode may have multiple segments that are capable of shaping the electron beam in response to voltages supplied individually to each of the multiple segments.
    Type: Application
    Filed: March 31, 1998
    Publication date: November 8, 2001
    Inventors: KIM Y. LEE, TAI-HON PHILIP CHANG, MARIAN MANKOS, C. NEIL BERGLUND
  • Publication number: 20010001226
    Abstract: A photocathode having a UV glass substrate and a laminate composed of a SiO2 layer, a GaAlN layer, a Group III-V nitride semiconductor layer and an AlN buffer layer provided on the UV glass substrate in succession. The UV glass substrate, which absorbs infrared rays, can be heat treated at a high speed by photoheating. Further, the UV glass substrate, which is transparent to ultraviolet rays, permits ultraviolet rays to be introduced into the Group III-V nitride semiconductor layer where photoelectric conversion occurs.
    Type: Application
    Filed: December 22, 2000
    Publication date: May 17, 2001
    Applicant: Hamamatsu Photonics K.K.
    Inventor: Tokuaki Nihashi
  • Patent number: 6198221
    Abstract: The present invention relates to an electron tube comprising, at least, a cathode electrode, a face plate having a photocathode, and an electron entrance surface provided at a position where the electron emitted from the photocathode reaches. The object of the present invention is to provide an electron tube which can reduce its size and has a structure for improving the workability in its assembling process. In particular, the electron tube according to the present invention has a bonding ring, provided between the face plate and the cathode electrode, for bonding the face plate and the cathode electrode together. The bonding ring is made of a metal material selected from the group consisting of In, Au, Pb, alloys containing In, and alloys containing Pb.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: March 6, 2001
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Motohiro Suyama, Suenori Kimura, Norio Asakura, Ken Hirano, Yoshihiko Kawai, Yutaka Hasegawa, Tetsuya Morita
  • Patent number: 6181307
    Abstract: A photo-cathode electron source suitable for use in flat panel displays has an extractor grid means (104) maintained, in use, at a positive potential with respect to the photo-cathode surface. The extractor grid may be used as a carrier for unfired photoemissive material which forms the emission surface of the photo-cathode. The material is deposited on the surface (103) of the photo-cathode means (102) by means of evaporation from the extractor grid (104).
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: January 30, 2001
    Assignee: International Business Machines Corporation
    Inventors: John Stuart Beeteson, Andrew Ramsay Knox, Anthony Cyril Lowe
  • Patent number: 6121621
    Abstract: An ultraviolet detector comprises a metal tubular member which hermetically encloses an anode and a cathode therein and is filled with a discharged gas introduced therein from a metal exhaust tube. After the anode and the cathode are enclosed within the tubular member, the ultraviolet detector can be made without being subjected to any glass fusing process. Accordingly, the inside of the sealed vessel V1 can be prevented from being contaminated with fluorine, whereby the ultraviolet detector with stable characteristics can be provided.
    Type: Grant
    Filed: September 25, 1997
    Date of Patent: September 19, 2000
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Hidenaga Warashina, Yuji Shimazu
  • Patent number: 6121612
    Abstract: A night vision device includes an image intensifier tube having a photocathode responsive to light in the wavelength range extending from about 1 .mu.m to about 2 .mu.m. The photocathode releases photoelectrons in response to photons of light in this wavelength range. A photomultiplier tube includes such a photocathode to provide an image in response to light of such a wavelength. A method of making such a photocathode is set out.
    Type: Grant
    Filed: October 22, 1997
    Date of Patent: September 19, 2000
    Assignee: Litton Systems, Inc.
    Inventors: Timothy W. Sinor, Joseph P. Estrera, David G. Couch
  • Patent number: 6086944
    Abstract: The present invention involves a method for simultaneously applying an activation layer on the photoemissive layers of a plurality of photocathodes such as those used in image intensifier devices. The method includes the steps of diffusing a flux of activating chemicals over the plurality of photocathodes, wherein the flux is substantially spatially uniform with respect to the plurality of photocathodes; monitoring the sum photoresponse of the plurality of photocathodes; and terminating the flux of activating chemicals when a desired sum photoresponse is attained.
    Type: Grant
    Filed: February 18, 1997
    Date of Patent: July 11, 2000
    Assignee: ITT Manufacturing Enterprises, Inc.
    Inventors: Robert Peckman, Donald H. Stanley, Roger M. Voss, Joseph Herman Reich, Jr.
  • Patent number: 6069445
    Abstract: A photocathode device for use in an image intensifier of a night vision device, the device having a faceplate fabricated from an optically transparent material and a photoemissive semiconductor wafer bonded to the faceplate. The photoemissive wafer includes a first contact disposed on a peripheral surface thereof for electrically contacting the wafer and an annular-shaped second contact disposed on the emission surface of the wafer for enabing a potential difference to be applied across the wafer to facilitate the emission of photogenerated carriers from the emission surface.
    Type: Grant
    Filed: January 30, 1997
    Date of Patent: May 30, 2000
    Assignee: ITT Industries, Inc.
    Inventor: Arlynn W. Smith
  • Patent number: 6049168
    Abstract: The present invention discloses a method for manufacturing a photon detector and image generator. First, a screen operable to display a visual image based on a received signal is provided. The screen is then scrubbed. Next, an unfilmed microchannel plate having an input face and an output face is provided. The microchannel plate is baked in a vacuum chamber and a tube assembly is formed by attaching the microchannel plate to the screen. The tube assembly is scrubbed using an electron gun. Next, a photocathode, having an input side and an output side, is attached to the assembly such that the output side of the photocathode faces the input face of the microchannel plate in order to form a final tube, wherein the tube has a lifetime greater than 7,500 hours.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: April 11, 2000
    Assignee: Litton Systems, Inc.
    Inventors: Michael J. Iosue, Robert H. Smithson
  • Patent number: 6005257
    Abstract: An improved photocathode and image intensifier tube are disclosed along with a method for making both the tube and photocathode. The disclosed photocathode and image intensifier tube have an active layer comprising two or more sublayers. The first sublayer has a first concentration of a group III-V semiconductor compound while the second sublayer has a second concentration of the group III-V semiconductor compound. The multilayer active layer is coupled to a window layer.
    Type: Grant
    Filed: September 13, 1995
    Date of Patent: December 21, 1999
    Assignee: Litton Systems, Inc.
    Inventors: Joseph P. Estrera, Keith T. Passmore, Timothy W. Sinor
  • Patent number: 6002207
    Abstract: An electron source includes a photocathode (20) for emitting electrons on excitation by incident light radiation. A permanent magnet (60) is perforated by a plurality of channels extending between opposite poles of the magnet (60). The magnet (60) generates, in each channel, a magnetic field which forms electrons received from the photocathode (20) into an electron beam for guidance towards a target (90). A shutter device (22) is provided having an array of addressable shutter elements, each selectively actuable to alternately admit and block passage of light radiation onto the photocathode (20) in response to an address signal.
    Type: Grant
    Filed: July 3, 1996
    Date of Patent: December 14, 1999
    Assignee: International Business Machines Corporation
    Inventors: John Beeteson, Andrew Knox
  • Patent number: 5982094
    Abstract: A photocathode includes a first layer of polycrystalline diamond or a material mainly composed of polycrystalline diamond. The first layer of polycrystalline diamond may be terminated with hydrogen, or oxygen, and a second layer of an alkali metal or compound of an alkali metal, may be provided on the first layer of polycrystalline diamond whose surface is terminated with hydrogen or oxygen. The photocathode can be use for both reflection and transmission electron tubes and can yield a quantum efficiency higher than that in a monocrystal diamond thin film.
    Type: Grant
    Filed: September 17, 1997
    Date of Patent: November 9, 1999
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Minoru Niigaki, Toru Hirohata, Hirofumi Kan, Masami Yamada
  • Patent number: 5982093
    Abstract: The present invention relates to a photocathode having a structure for improving the quantum efficiency and sharpening the absorption edge characteristic on the long wavelength side within the wavelength range of incident light to improve the photosensitivity, and an electron tube having the same. The photocathode according to the present invention comprises at least a p-type GaAlN layer for absorbing incident light to excite photoelectrons, a p-type GaN layer which covers the second major surface of the p-type GaAlN layer, the second major surface opposing a first major surface that faces a substrate, and a surface layer provided to sandwich the p-type GaN layer with the p-type GaAlN layer and mainly containing an alkali metal or an alkali metal oxide.
    Type: Grant
    Filed: April 10, 1997
    Date of Patent: November 9, 1999
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tokuaki Nihashi, Toru Hirohata, Hideki Suzuki, Tuneo Ihara
  • Patent number: 5977705
    Abstract: A novel photocathode and image intensifier tube include an active layer comprised substantially of amorphic diamond-like carbon, diamond, or a combination of both. The photocathode has a face plate coupled to an active layer. The active layer is operable to emit electrons in response to photons striking the face plate.
    Type: Grant
    Filed: April 29, 1996
    Date of Patent: November 2, 1999
    Assignee: Litton Systems, Inc.
    Inventors: Timothy W. Sinor, Joseph P. Estrera, Keith T. Passmore
  • Patent number: 5959301
    Abstract: The ultraviolet detector in accordance with the present invention comprises a sealed vessel enclosing a discharged gas therein, and a metal anode and a metal cathode which are disposed close to each other within the sealed vessel so as to generate therebetween discharge in response to ultraviolet radiation entering the sealed vessel. The anode and cathode are independently secured to the sealed vessel with a plurality (at least three pieces each) of anode pins and cathode pins, respectively. An electrically-insulating spacer is disposed between the anode and cathode so as to fix their relative positions with respect to each other, thereby defining a discharging gap, by which discharge is stably generated between these electrodes. The current resulting from the discharge is observed so as to detect the incidence of ultraviolet radiation.
    Type: Grant
    Filed: September 26, 1997
    Date of Patent: September 28, 1999
    Assignee: Hamamatsu Photonics K.K.
    Inventor: Hidenaga Warashina
  • Patent number: 5932966
    Abstract: An electron source includes a negative electron affinity photocathode on a light-transmissive substrate and a light beam generator for directing a light beam through the substrate at the photocathode for exciting electrons into the conduction band. The photocathode has at least one active area for emission of electrons with dimensions of less than about two micrometers. The electron source further includes electron optics for forming the electrons into an electron beam and a vacuum enclosure for maintaining the photocathode at high vacuum. The photocathode is patterned to define emission areas. A patterned mask may be located on the emission surface of the active layer, may be buried within the active layer or may be located between the active layer and the substrate.
    Type: Grant
    Filed: December 9, 1997
    Date of Patent: August 3, 1999
    Assignees: Intevac, Inc., Board of Trustees of the Leland Stanford Jr. University
    Inventors: James E. Schneider, Kenneth A. Costello, Mark A. McCord, R. Fabian Pease, Aaron W. Baum
  • Patent number: 5923045
    Abstract: Formed on a semiconductor substrate (10) is a first semiconductor layer (20; light absorbing layer) of p-type which has a first dopant concentration and generates an electron in response to light incident. Formed on the first semiconductor layer (20) is a second semiconductor layer (30; electron transfer layer) of p-type having a second dopant concentration lower than the first dopant concentration. A contact layer (50) forms a pn junction with the p-type second semiconductor layer (30). A surface electrode (80) is formed on and in ohmic contact with the contact layer (50). A third semiconductor layer (40; activation layer) is formed within an opening of the contact layer (50) on the surface of the second semiconductor layer (30). Embedded in the second semiconductor layer (30) is a semiconductor section (60; channel grid) having a third dopant concentration.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: July 13, 1999
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Tokuaki Nihashi, Minoru Niigaki
  • Patent number: 5898269
    Abstract: An electron beam source includes a cathode having an electron emission surface including an active area for emission of electrons and a cathode shield assembly including a conductive shield disposed in proximity to the electron emission surface of the cathode. The shield has an opening aligned with the active area. The electron beam source further includes a device for stimulating emission of electrons from the active area of the cathode, electron optics for forming the electrons into an electron beam and a vacuum enclosure for maintaining the cathode at high vacuum. The cathode may be a negative electron affinity photocathode formed on a light-transmissive substrate. The shield protects non-emitting areas of the emission surface from contamination and inhibits cathode materials from contaminating components of the electron beam source. The cathode may be moved relative to the opening in the shield so as to align an new active area with the opening.
    Type: Grant
    Filed: May 27, 1997
    Date of Patent: April 27, 1999
    Assignee: The Board of Trustees of the Leland Stanford Jr. University
    Inventors: Aaron W. Baum, James Edward Schneider, Jr.
  • Patent number: 5898268
    Abstract: Apparatus (10, 30, 60) and a method for generating low energy electrons (26, 46) for neutralizing charges (16, 36, 66) accumulated on a wafer (14, 34, 64) is provided. The apparatus includes a photocathode (24, 44, 67) located within a predetermined distance from the wafer (14, 34, 64), and a light source (20, 40, 70, 76, 86) operable to emit a light (22, 42, 72, 78, 88) striking the photocathode (24, 44, 67), the photocathode (24, 44, 67) generating a cloud of low energy electrons (26, 46) with a narrow energy distribution near the wafer (14, 34, 64).
    Type: Grant
    Filed: March 7, 1997
    Date of Patent: April 27, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Wylie K. Moreshead, Billy B. Hutcheson
  • Patent number: 5883466
    Abstract: The present invention relates to an electron tube includes, at least, a cathode electrode and a face plate having a photocathode which are arranged at one end of a body, and a stem arranged at the other end of the body for defining the position of an electron entrance surface where the electron emitted from the photocathode reaches. The object of the present invention is to provide an electron tube which can reduce its size and has a structure for improving the workability in its assembling process. In particular, the electron tube in accordance with the present invention comprises a bonding ring, provided between the face plate and the cathode electrode, for bonding the face plate and the cathode electrode together. The bonding ring is made of a metal material selected from the group consisting of In, Au, Pb, alloys containing In, and alloys containing Pb.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: March 16, 1999
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Motohiro Suyama, Suenori Kimura, Norio Asakura, Ken Hirano, Yoshihiko Kawai, Yutaka Hasegawa, Tetsuya Morita
  • Patent number: 5834791
    Abstract: A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy.
    Type: Grant
    Filed: October 30, 1997
    Date of Patent: November 10, 1998
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Tsutomu Nakanishi, Hiromichi Horinaka, Takashi Saka, Toshihiro Kato
  • Patent number: 5811932
    Abstract: An X-ray image intensifier tube (1) includes an entrance section (2) for converting high-energy X-rays of from 100 keV to 120 keV into an electron beam (10). The entrance section (2) had a conversion layer (3) with a filter layer (5) for absorbing a part of comparatively low energy (from 60 keV to 80 keV) of the X-rays and a conversion layer for converting the high-energy X-rays of approximately from 100 keV to 120 keV into radiation whereto the photocathode is sensitive.
    Type: Grant
    Filed: June 27, 1996
    Date of Patent: September 22, 1998
    Assignee: U.S. Philips Corporation
    Inventors: Johannes K. E. Colditz, Pieter J. t Hoen
  • Patent number: 5751109
    Abstract: The present invention is a video display device that utilizes the novel concept of generating an electronically controlled pattern of electron emission at the output of a segmented photocathode. This pattern of electron emission is amplified via a channel plate. The result is that an intense electronic image can be accelerated toward a phosphor thus creating a bright video image. This novel arrangement allows for one to provide a full color flat video display capable of implementation in large formats. In an alternate arrangement, the present invention is provided without the channel plate and a porous conducting surface is provided instead. In this alternate arrangement, the brightness of the image is reduced but the cost of the overall device is significantly lowered because fabrication complexity is significantly decreased.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: May 12, 1998
    Assignee: United States of America as represented by the Administrator, National Aeronautics and Space Administration
    Inventor: Leslie Payne
  • Patent number: 5723871
    Abstract: A process of producing a highly spin-polarized electron beam, including the steps of applying a light energy to a semiconductor device comprising a first compound semiconductor layer having a first lattice constant and a second compound semiconductor layer having a second lattice constant different from the first lattice constant, the second semiconductor layer being in junction contact with the first semiconductor layer to provide a strained semiconductor heterostructure, a magnitude of mismatch between the first and second lattice constants defining an energy splitting between a heavy hole band and a light hole band in the second semiconductor layer, such that the energy splitting is greater than a thermal noise energy in the second semiconductor layer in use; and extracting the highly spin-polarized electron beam from the second semiconductor layer upon receiving the light energy.
    Type: Grant
    Filed: March 17, 1994
    Date of Patent: March 3, 1998
    Assignee: Daido Tokushuko Kabushiki Kaisha
    Inventors: Tsutomu Nakanishi, Hiromichi Horinaka, Takashi Saka, Toshihiro Kato
  • Patent number: 5712490
    Abstract: A photocathode device is disclosed including an active layer, a composition ramp layer and an emission layer including an emission surface. The active layer, ramp layer and emission layer each have both a predetermined material composition and a predetermined doping level for maintaining the conduction band of the device flat until the emission surface which functions to increase the photoresponse of the device.
    Type: Grant
    Filed: November 21, 1996
    Date of Patent: January 27, 1998
    Assignee: ITT Industries, Inc.
    Inventor: Arlynn W. Smith
  • Patent number: 5710435
    Abstract: A photoelectric emission surface which is excellent in stability and reproducibility of photoelectric conversion characteristics and has a structure capable of obtaining a high photosensitivity is provided. A predetermined voltage is applied between an upper surface electrode and a lower surface electrode by a battery. Upon application of this voltage, a p-n junction formed between a contact layer and an electron emission layer is reversely biased. A depletion layer extends from the p-n junction into the photoelectric emission surface, and an electric field is formed in the electron emission layer and a light absorbing layer in a direction for accelerating photoelectrons. When incident light is absorbed in the light absorbing layer to excite photoelectrons, the photoelectrons are accelerated by the electric field toward the emission surface.
    Type: Grant
    Filed: December 20, 1995
    Date of Patent: January 20, 1998
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Minoru Niigaki, Toru Hirohata, Tomoko Suzuki, Masami Yamada
  • Patent number: 5684360
    Abstract: An electron source includes a negative electron affinity photocathode on a light-transmissive substrate and a light beam generator for directing a light beam through the substrate at the photocathode for exciting electrons into the conduction band. The photocathode has at least one active area for emission of electrons with dimensions of less than about two micrometers. The electron source further includes electron optics for forming the electrons into an electron beam and a vacuum enclosure for maintaining the photocathode at high vacuum. In one embodiment, the active emission area of the photocathode is defined by the light beam that is incident on the photocathode. In another embodiment, the active emission area of the photocathode is predefined by surface modification of the photocathode. The source provides very high brightness from an ultra-small active emission area of the photocathode.
    Type: Grant
    Filed: July 10, 1995
    Date of Patent: November 4, 1997
    Assignees: Intevac, Inc., Board of Trustees of the Leland Stanford Jr. University
    Inventors: Aaron Wolf Baum, Kenneth A. Costello