Multifunction Manipulator (i.e., Robot) Patents (Class 318/568.11)
  • Patent number: 6822412
    Abstract: A method for programming of a robot application comprising an industrial robot having a robot coordinate system, a tool having a tool coordinate system and a work object (3) to be processed by the tool. The application is programmed by means of a position-measuring unit (15) adapted for measuring positions relative a measuring coordinate system (db). The programming method comprises: selecting an object reference structure (25) on the object, defining a mathematical model for the object reference structure, defining an object coordinate system (o2), providing measurements by the position-measuring unit on the surface of the object reference structure, determining the object coordinate system in relation to the measuring coordinate system (db) by best fit between said measurements and said mathematical model of the object reference structure.
    Type: Grant
    Filed: June 11, 2003
    Date of Patent: November 23, 2004
    Inventors: Zhongxue Gan, Gregory Rossano, Xiongzi Li, Yunquan Sun, Quing Tang, Torgny Brogårdh, Häkan Brantmark
  • Patent number: 6819978
    Abstract: A robot is provided, wherein it is possible to reduce incorrect identification in the case of executing face identification in a place where lighting variations are large such as in a house and in a place where there exists a lighting environment that is bad for identification. A face area of a person is detected from an image picked up at an imaging means and stored, and a face detecting and identifying means identifies a person using face image information stored before then. An identification result reliability calculating means calculates, using information from the imaging means, whether or not a present lighting state is suitable for face identification. When the result of calculation indicates that the lighting state is not suitable for face identification, the robot is moved by a moving means. Thereby, incorrect identification can be reduced.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: November 16, 2004
    Assignee: NEC Corporation
    Inventor: Junichi Funada
  • Patent number: 6816755
    Abstract: A method of three-dimensional handling of an object by a robot uses a tool and one camera mounted on the robot and at least six target features which are normal features of the object are selected on the object. The features are used to train the robot in the frame of reference of the object so that when the same object is subsequently located, the robot's path of operation can be quickly transformed into the frame of reference of the object.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: November 9, 2004
    Assignee: Braintech Canada, Inc.
    Inventors: Babak Habibi, Simona Pescaru
  • Patent number: 6812665
    Abstract: A relative calibration system and method for robot workcell calibration is capable of correcting errors between the robot tool center point (TCP) and the work-object frame according to a relative reference, in that a precision path will be created based on this calibrated workcell.
    Type: Grant
    Filed: April 19, 2002
    Date of Patent: November 2, 2004
    Assignee: ABB AB
    Inventors: Zhongxue Gan, Yunquan Sun, Qing Tang
  • Publication number: 20040207354
    Abstract: An apparatus optimizes arm velocity when the arm is carrying a given payload. More specifically, the apparatus controls the performance of a motor so that the motor can move the arm at an arm maximum velocity when the arm is carrying the given payload. To that end, the apparatus includes an information input to receive motor performance information, and a controller operatively coupled with the information input. The controller is capable of determining the arm maximum velocity from the motor performance information. The controller also is capable of causing the motor to move the arm at the arm maximum velocity.
    Type: Application
    Filed: April 17, 2003
    Publication date: October 21, 2004
    Inventors: Norton Kaplan, David Lee
  • Patent number: 6804579
    Abstract: The present invention pertains to a robotic wash cell including a six-axis robotic arm and end effector equipped with nozzles that spray unheated, solvent free, pure water at high-pressure to clean or debur objects by maintaining the nozzles in close proximity and substantially normal to each surface being cleaned or edge being deburred. The robotic cell wash is particularly useful for cleaning contaminants such as oil and grease from items having more complex shapes. The six-axis robotic arm positions the nozzles and their sprays substantially normal to each surface being cleaned or deburred. The nozzles produce a multi-zone spray pattern with a continuous effective cleaning zone. A water recycling and pressurizing system collects the used water, separates out the oil and grease contaminants to a level of about 5 ppm, and pressurizes the pure water to about 3,000 psi for washing operations or about 6,000 psi for deburring operations.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: October 12, 2004
    Assignee: ABB, Inc.
    Inventor: Stephen J. Laski
  • Patent number: 6804580
    Abstract: A system for controlling a plurality of robots and a method for controlling said system. Said system comprises a plurality of controllers, each having an associated motion system adapted to control attached robots, with each motion controller being able to receive motion instructions from at least one motion instruction source and at least one of said motion instruction sources being a control program, as well as a computer network over which said controllers communicate. In this way, the invention can be applied to solve problems which are commonly encountered in coordination activities such as load sharing, mating of parts while processing, fixtureless transfer, teaching, manual motion of coordinated operations, and time coordinated motion.
    Type: Grant
    Filed: April 3, 2003
    Date of Patent: October 12, 2004
    Assignee: Kuka Roboter GmbH
    Inventors: Kenneth A. Stoddard, R. William Kneifel, II, David M. Martin, Khalid Mirza, Michael C. Chaffee, Andreas Hagenauer, Stefan Graf
  • Patent number: 6801008
    Abstract: A system and method for providing a tactile virtual reality to a user is present. The position and orientation of the user is utilized to generate a virtual reality force field. Forces are in turn generated on the user as a function of this force field. A six-axis manipulator is presented for providing a user interface to such a system. This manipulator provides a unique kinematic structure with two constant force springs which provide gravity compensation so that the manipulator effectively floats.
    Type: Grant
    Filed: August 14, 2000
    Date of Patent: October 5, 2004
    Assignee: Immersion Corporation
    Inventors: Charles J. Jacobus, Alan J. Riggs, Mark J Taylor
  • Patent number: 6795739
    Abstract: A method for organizing the execution of electronically controlled switching processes, in which sequential and/or parallel steps (S1 to S9) are activated by preset transition conditions (T1 to T9) and are deactivated by the advancement of the execution. During the activation of a step (S1 to S9), respectively inadmissible parallel steps are deactivated, each of the respectively inadmissible steps previously having been documented in a stored matrix.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: September 21, 2004
    Assignee: Siemens Aktiengesellschaft
    Inventors: Ruediger Graf, Georg Rupprecht
  • Patent number: 6791292
    Abstract: Accompanied by the optimization of the possibilities of use of a robot, particularly with regards to low cycle times and high loads, damage to the robot through exceeding the energy absorbable by the structure is still prevented when robot parts strike against the mechanical structure as a result of faults or errors, according to the invention in a method for controlling the movement of a robot, the kinetic energy of moving robot members (Gi gi+1, . . . , gn) about an axis (Ai) is limited to the energy absorbable in damage-free manner by a mechanical buffer associated with the corresponding axis (Ai).
    Type: Grant
    Filed: May 23, 2002
    Date of Patent: September 14, 2004
    Assignee: Kuka Roboter GmbH
    Inventors: Martin Weiss, Thomas Finsterwalder, Günther Merk
  • Patent number: 6789338
    Abstract: A remote controller for a biped robot is of a simple arrangement capable of remotely controlling movement of the biped robot while taking into account the stability of the attitude of the robot. A manipulation unit 23 outputs, to a robot A, signals representative of manipulated positions of manipulator levers 26, 26 which correspond respectively to both legs 2, 2 of the robot A. A control unit 19 mounted in the robot A generates a motion command (desired gait) for determining motions of the legs for at least two steps of a walking action of the robot A depending on the manipulated positions of manipulator levers 26, 26 which are represented by output signal data from the manipulation unit 23, and controls motions of the legs 2, 2 based on the motion command.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: September 14, 2004
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Shigeo Sano, Toru Takenaka, Takayuki Kawai, Yuichi Yoshida
  • Patent number: 6791291
    Abstract: In an industrial robot having a plurality of arms, each arm is coupled with other elements such as a mounting base, another arm, a robotic hand, and revolved by a motion of a revolving joint. A motor for moving the revolving joint, an encoder for sensing a rotation angle of a drive shaft of the motor, and a control circuit for controlling the driving of the motor are provided on the same arm. A signal cable for transmitting a sensing signal of the encoder to the control circuit is terminated at the control circuit on the same arm. There is no need to align the signal cable from the encoder to a main control circuit provided in the mounting base.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: September 14, 2004
    Assignees: Japan Servo Co., Ltd., Tazmo Co., Ltd.
    Inventors: Shinji Shimizu, Noriyoshi Kikuchi, Katsuhiro Yamazoe, Takahiro Kobiki
  • Patent number: 6788018
    Abstract: The present invention generally relates to surgical devices, systems, and methods, especially for minimally invasive surgery, and more particularly provides structures and techniques for aligning a robotic surgery system with a desired surgical site. The present invention describes techniques for mounting, configuring and arranging set-up arms for the surgical manipulators and endoscope drive mechanisms of a telesurgical system within an operating theater. The various aspects of the invention improve and optimize space utilization in the conduct of a surgical procedure, especially in the telesurgical systems which provide for concurrent operation by two surgeons using multiple robotic arm assemblies. In one aspect, the invention includes a method and apparatus for ceiling-height mounting of surgical set-up arms, and in another aspect, the invention includes a method and apparatus for the mounting of surgical setup arms to the table pedestal or floor below an operating table.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: September 7, 2004
    Assignee: Intuitive Surgical, Inc.
    Inventor: Stephen J. Blumenkranz
  • Patent number: 6786896
    Abstract: A robotic apparatus has eight actuators (M0-M7) and a linkage (LINK 0-LINK 5) that actuates an end effector. Three serial macro freedoms have large ranges of motion and inertias. Four serial micro freedoms have small ranges of motion and inertias. Translation of the end effector in any direction is actuated by at least one micro joint. The apparatus can be part of a master and slave combination, providing force feedback without any explicit force sensors. The slave is controlled with an Inverse Jacobian controller, and the master with a Jacobian Transpose controller. A slave having more degrees-of-freedom (DOFs) than the master can be controlled. A removable effector unit actuates its DOFs with cables. Beating heart surgery can be accomplished by commanding the slave to move with a beating heart, and cancelling out any such motion in the motions perceived by the master.
    Type: Grant
    Filed: July 17, 2000
    Date of Patent: September 7, 2004
    Assignee: Massachusetts Institute of Technology
    Inventors: Akhil Jiten Madhani, J. Kenneth Salisbury, Gunter D. Niemeyer
  • Publication number: 20040169484
    Abstract: To appropriately detect overload which may break a motor or deform a body and reduce the overload in the motor. The DC component of a load torque is derived from the sum of absolute values of a torque applied to a link connected to the output shaft of a motor and the generated torque of the motor, and it is determined that overload has been applied when the DC component exceeds a first threshold value for a prescribed period of time or longer. In addition, considering such a characteristic that the variation of energy applied to the output shaft of a motor is in proportion to a product of the torque and the angular velocity of the motor, the AC component of the load torque is detected based on the variation of energy, and it is predicted that overload will be applied when the AC component exceeds a second threshold value.
    Type: Application
    Filed: December 10, 2003
    Publication date: September 2, 2004
    Applicant: Sony Corporation
    Inventors: Masatsugu Iribe, Hajime Yamanaka
  • Publication number: 20040164696
    Abstract: A robot adapted to operate in association with an interface surface having disposed therein or thereon coded data indicative of a plurality of reference points of the interface surface, the robot comprising:
    Type: Application
    Filed: February 23, 2004
    Publication date: August 26, 2004
    Inventors: Zhenya Alexander Yourlo, Paul Lapstun, Kia Silverbrook
  • Publication number: 20040162636
    Abstract: A legged mobile robot possesses degrees of freedom which are provided at roll, pitch, and yaw axes at a trunk. By using these degrees of freedom which are provided at the trunk, the robot can smoothly get up from any fallen-down posture. In addition, by reducing the required torque and load on movable portions other than the trunk, and by spreading/averaging out the load between each of the movable portions, concentration of a load on a particular member is prevented from occurring. As a result, the robot is operated more reliably, and energy is used with greater efficiency during a getting-up operation. The invention makes it possible for the robot to independently, reliably, and smoothly get up from various fallen-down postures such as a lying-on-the-face posture, a lying-on-the-back posture, and a lying sideways posture.
    Type: Application
    Filed: February 10, 2004
    Publication date: August 19, 2004
    Applicant: SONY CORPORATION
    Inventors: Yuichi Hattori, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 6778867
    Abstract: The present invention relates to a monitoring and control device for monitoring a technical system having at least one portable and/or mobile and/or immobile device, and more specifically, a handling device that is a arranged in a protective device, and further including at least one preferably central or decentralized control unit and actuators connected thereto to carry out dangerous actions.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: August 17, 2004
    Assignees: Elan Schaltelemente GmbH & Co. KG, Reis GmbH & Co. Maschinenfabrik
    Inventors: Olaf Ziegler, Georg Berberich, Franz Som
  • Patent number: 6774596
    Abstract: A robotic machine such as a robotic vacuum cleaner is controlled to carry out a task of cleaning a room. The machine has a plurality of sensors including infrared sensors, ultrasonic sensors and light sensors through which the machine can navigate its way around a room without hitting objects or walls in its path. The machine has an indicator light which changes color depending upon the state of interaction of the various sensors with the environment, indicating the ‘mood’ of the cleaner. The indicator may include three primary color light sources which are combined within a reflective frusto-conical chamber and a translucent lens dome in order to combine the primary colors into a single colored light as viewed by a user. This makes the machine more user-friendly.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: August 10, 2004
    Assignee: Dyson Limited
    Inventor: David Lindsey Bisset
  • Patent number: 6762745
    Abstract: Methods and apparatus for controlling an actuator to provide linear and continuous force output to a user of a force feedback device. To provide continuous and smooth force output in a zero crossover region of operation, two drive signals are used, each causing current to flow in a different direction in the actuator. When a desired output force is in the crossover region, the two drive signals are alternated to cause the output force to quickly switch directions. When the desired force is outside the crossover region, only one drive signal is used to cause output force in one direction. To compensate for a nonlinear output of the actuator, a desired command current is correlated with an approximated point of a characterization curve of the actuator, where the curve includes points determined in a previously performed actuator characterization.
    Type: Grant
    Filed: May 5, 2000
    Date of Patent: July 13, 2004
    Assignee: Immersion Corporation
    Inventors: Adam C. Braun, Kollin M. Tierling, Bruce M. Schena
  • Patent number: 6760647
    Abstract: A robot that is capable of substantially autonomous movement includes a processing device, a memory, and a mobility structure controlled by the processing device. The processor directs the robot to move with any predetermined safe area having a boundary and a reference point. Optionally, the robot also exhibits features of social interactivity by accepting an input from a human, selecting dynamic content from a data base wherein the dynamic content is responsive to the input, and presenting the human with a response corresponding to the dynamic content selection.
    Type: Grant
    Filed: January 21, 2003
    Date of Patent: July 6, 2004
    Assignee: Axxon Robotics, LLC
    Inventors: Illah Nourbakhsh, Clay Kunz, Carolyn O'Brien, Thomas Willeke, Vinton Coffman, III
  • Patent number: 6760645
    Abstract: A clicker-training technique developed for animal training is adapted for training robots, notably autonomous animal-like robots. In this robot-training method, a behaviour (for example, (DIG)) is broken down into smaller achievable responses ((SIT)-(HELLO)-(DIG)) that will eventually lead to the desired final behaviour. The robot is guided progressively to the correct behaviour through the use, normally the repeated use, of a secondary reinforcer. When the correct behaviour has been achieved, a primary reinforcer is applied so that the desired behaviour can be “captured”. This method can be used for training a robot to perform, on command, rare behaviours or a sequence of behaviours (typically actions). This method can also be used to ensure that a robot is focusing its attention upon a desired object.
    Type: Grant
    Filed: April 29, 2002
    Date of Patent: July 6, 2004
    Assignee: Sony France S.A.
    Inventors: Frédéric Kaplan, Pierre-Yves Oudeyer
  • Patent number: 6757581
    Abstract: The present invention relates to an offset apparatus for an NC machine tool, that can achieve high accuracy machining by offsetting the amount of operation of a motion mechanism in accordance with the analysis result of the behavior of the NC machine tool. The offset apparatus 1 comprises: a model analyzing data base 12 in which three dimensional model data of the motion mechanism 2 and condition data for performance analysis are stored; a model analyzing section 13 which analyzes the performance of the motion mechanism 2; a data accumulating section 14 which stores analyzed performance analysis data; an offset amount computing section 15 which computes an offset amount to be applied to a commanded operation amount on the basis of the performance analysis data; and an offset executing section 17 which offsets the amount of operation of the motion mechanism 2 on the basis of the offset amount.
    Type: Grant
    Filed: October 1, 2002
    Date of Patent: June 29, 2004
    Assignees: Mori Seiki Co., Ltd., Intelligent Manufacturing Systems International
    Inventors: Makoto Fujishima, Yoshiaki Akamatsu
  • Patent number: 6748298
    Abstract: In order to reduce the risk of damage on external objects, material articles or persons during the operation of a robot, particularly a miniature robot, the invention provides a method for limiting the force action of a robot part, such as a robot arm, on such an external object during a collision in such a way that as a result of a maximum permitted force, maximum force Fmax, acting on the object in the case of a collision, a corresponding, maximum permitted kinetic energy, maximum energy Ekin,max of the robot part is determined, continuously and at adequately short time intervals the actual kinetic energy, actual energy Ekin, of the robot part is determined and on exceeding the maximum permitted energy Ekin,max, the actual operating speed V of the robot is reduced.
    Type: Grant
    Filed: June 12, 2003
    Date of Patent: June 8, 2004
    Assignee: Kuka Roboter GmbH
    Inventor: Peter Heiligensetzer
  • Patent number: 6741911
    Abstract: An apparatus and process for controlling a remote robot responsive to the integrated sensory perceptions, natural body movements, inertia and gravitation of an operator/user who is himself responding to a three dimensional virtual world of visual and sensory conditions responsive to the environment at the remote site where the robot is operating. The user requires no training, special commands or devices to direct the robot because the user has the perception of actually being at the remote location, handling remote objects he sees and feels in his hands, walking, climbing, viewing and feeling the remote world.
    Type: Grant
    Filed: September 20, 2001
    Date of Patent: May 25, 2004
    Inventor: John Castle Simmons
  • Patent number: 6738691
    Abstract: A method and system for controlling an intelligent assist device, robot, or other powered system that is partially or fully directed by the intent of a human operator. The method and system includes measuring a force or motion imparted by the human operator to a control. The measurement is determined with respect to the motion of the machine at a point of the machine that allows the benefit of collocation of sensing and actuation, or of approximation of such collocation. The system includes a support attached to the machine at the beneficial point, and a plurality of sensors to measure the force, torque, or motion imparted by the human operator to the support with respect to the beneficial point. The method and system provide improved stability of control of the system, and improved responsiveness to the intent of the human operator.
    Type: Grant
    Filed: May 16, 2002
    Date of Patent: May 18, 2004
    Assignee: The Stanley Works
    Inventors: J. Edward Colgate, Michael A. Peshkin, Julio Santos-Munné, Alex Makhlin, Paul F. Decker, Stephen H. Klostermeyer
  • Publication number: 20040085038
    Abstract: Provided is a robot arm mechanism that conveys and supports a work, which requires neither a traveling axis that demand a high installation accuracy nor a jig for fixedly supporting a work. A robot 1 includes: a parallel link mechanism 6 having a lower link 2 and an upper link 3, in which the lower link 2 and the upper link 3 are coupled with an arm 4 and an auxiliary link 5; a driving portion for driving one joint 12 of the lower link 2 in the parallel link mechanism; a parallel link mechanism 11 having a lower link 7 and an upper link 8 fixed on the upper link 3 in the parallel link mechanism 6, in which the lower link 7 and the upper link 8 are coupled with an arm 9 and an auxiliary link 10; a driving portion for driving one joint 15 of the upper link 8 in the parallel link mechanism 11; and an arm 17 fixed on the lower link 7 in the parallel link mechanism 11 and holding up an object for support.
    Type: Application
    Filed: February 13, 2003
    Publication date: May 6, 2004
    Applicant: KAWASAKI JUKOGYO KABUSHIKI KAISHA
    Inventors: Yuji Maeguchi, Takahiro Inada
  • Publication number: 20040088081
    Abstract: A robot cleaner system capable of accurately docking with an external charging apparatus and a method for docking with an external charging apparatus comprising a power supply terminal connected to a supply of utility power, an external charging apparatus including a terminal stand for supporting the power supply terminal and fixing the external charging apparatus at a predetermined location, a driving unit for moving a cleaner body, an upper camera disposed on the cleaner body, for photographing a ceiling, a charging battery disposed in the cleaner body, for being charged by power supplied from the power supply terminal, a bumper disposed along an outer circumference of the cleaner body and outputting a collision signal when a collision with an obstacle is detected, and a robot cleaner disposed at the bumper to be connected with the power supply terminal and including a charging terminal connected to the charging battery, wherein, prior to starting on operation, the robot cleaner photographs an upward-lookin
    Type: Application
    Filed: April 3, 2003
    Publication date: May 6, 2004
    Inventors: Jeong-Gon Song, Sang-Yong Lee
  • Patent number: 6731090
    Abstract: A numerical value control system that controls a machine tool, by calculating a move command from a work program or a work data for a numerical value control unit, and directly inputting the move command to a servo control section (103) within the numerical value control unit (100) from the outside of the numerical value control unit (100). The numerical value control system comprises at the outside of the numerical value control unit: an analyzing unit (111) which analyzes a work program or a work data; and an interpolating unit (112) which carries out interpolation for each axis in a position control period of the servo control section based on output information from the analyzing unit (111) and cut conditions, where by the numerical value control system controls a machine tool by directly inputting a move command of a binary format prepared in advance by the interpolating unit (112), to the servo control section (103) within the numerical value control unit (100).
    Type: Grant
    Filed: March 12, 2002
    Date of Patent: May 4, 2004
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Takahisa Tanaka, Kazuo Mizutani
  • Patent number: 6732207
    Abstract: A fast serial interface including a three-wire network connection between a bus controller and one or more bus devices is disclosed. The bus controller processes and issues data packets across the three-wire network that include a command code, a bus device selection code, and a bus device register selection code. If the command code corresponds to write code, then the selected bus device stores the data contained within the packet in the selected register. If the command code corresponds to a read command, the selected bus device retrieves the data stored in the selected register, forms a read data packet and transfers the read data packet to the bus controller.
    Type: Grant
    Filed: July 31, 2001
    Date of Patent: May 4, 2004
    Assignee: PRI Automation, Inc.
    Inventors: Gary Watts, Goran Relic
  • Patent number: 6732016
    Abstract: An identification environment determining method includes converting a captured image into digital information, detecting a face area of a person from the digital image to store the face area, and identifying the person using a stored image and face image information that is referred for identification, informing a user about a result of identification acquired, inputting information obtained by having the user judge whether the result of identification is correct or incorrect, determining whether a present lighting environment is suitable for identification, controlling a robot, and moving the robot.
    Type: Grant
    Filed: December 3, 2002
    Date of Patent: May 4, 2004
    Assignee: NEC Corporation
    Inventor: Junichi Funada
  • Patent number: 6725128
    Abstract: Methods of operating a robot comprised of a plurality of modules during reconfiguration, rearrangement to provide a support structure and internal manipulation, each module made of a cubic shape with six faces, each face including an arm for expansion and contraction with another module.
    Type: Grant
    Filed: June 28, 2002
    Date of Patent: April 20, 2004
    Assignee: Xerox Corporation
    Inventors: Tad H. Hogg, Arancha Casal, Jeremy Kubica
  • Publication number: 20040073336
    Abstract: The integrity of control signals used to control a wafer handling robot is monitored by a monitor connected to various points of the robotic control system. The monitor includes a memory for storing data sets representing correct, reference characteristics of the control signals. The monitor samples control signals at various points in the control system and compares these sampled signals with the stored reference characteristics in order to determine whether a signal disparity exists. If a disparity exists, the monitor generates an error.
    Type: Application
    Filed: October 11, 2002
    Publication date: April 15, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Liang Huang, Enzo Kuo, Patrick Chen, Yuan-Chich Lin, Chih-Yi Lai, Chun-Hung Liu
  • Publication number: 20040068347
    Abstract: A system is provided for sensing, orienting, and transporting wafers in an automated wafer handling process that reduces the generation of particles and contamination so that the wafer yield is increased. The system includes a robotic arm for moving a wafer from one station to a destination station, and an end-effector connected to an end of the robotic arm for receiving the wafer. The end-effector includes a mechanism for gripping the wafer, a direct drive motor for rotating the wafer gripping mechanism, and at least one sensor for sensing the location and orientation of the wafer. A control processor is provided for calculating the location of the center and the notch of the wafer based on measurements by the sensor(s). Then, the control processor generates an alignment signal for rotating the wafer gripping mechanism so that the wafer is oriented at a predetermined position on the end-effector while the robotic arm is moving to another station.
    Type: Application
    Filed: October 8, 2002
    Publication date: April 8, 2004
    Inventors: Martin Aalund, Steve Remis, Alexandra Lita, Guokun Cui, Brian Loiler, Ray Rhodes
  • Patent number: 6718232
    Abstract: A robot apparatus causes the emotion in a feeling part (130) to be changed based on the information acquired by a perception part (120) to manifest the behavior of information acquisition as autonomous behavior. The robot apparatus includes a behavior control part for causing the robot apparatus to manifest a language acquisition behavior and a meaning acquisition part. The robot apparatus also includes a control part for performing the behavior control of pointing its object of learning. The robot apparatus causes changes in internal states, which are ascribable to the object, to be stored in a memory part in association with the object.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: April 6, 2004
    Assignee: Sony Corporation
    Inventors: Masahiro Fujita, Tsuyoshi Takagi, Rika Horinaka, Jun Yokono, Gabriel Costa, Hideki Shimomura, Katsuki Minamino
  • Patent number: 6717382
    Abstract: The invention relates to a method of connecting a mobile, electronic control and/or monitoring unit (9) to at least one machine or at least one machine component in a group or a plurality of machines (2) or machine components to be controlled and/or monitored. During a connection or log-on procedure between the control and/or monitoring unit (9) and a co-operating distant point on the respective machine (2), a clear link or log-on connection is set up either by means of interfaces (14, 15) to the selected, wireless direction-finder of the co-operating distant point or alternatively by means of transmitters and/or receivers (16, 17) tuned to a restricted, localized functional or operating range (21).
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: April 6, 2004
    Assignee: Keba AG
    Inventors: Dieter Graiger, Siegfried Richter
  • Patent number: 6714839
    Abstract: The invention provides an input device for robotic surgical techniques and other applications. The input device has a handle supported by a linkage having joints with a redundant degree of freedom, with the joints being movable with at least one more degree of freedom than the handle. At least one joint of the linkage is actively driven to prevent the linkage from approaching singularities of the joint system, motion limits of the joints, or the like, and also to drive the linkage toward a freely articulatable configuration. In one embodiment, a robotic master controller includes an arm assembly supporting a gimbal having such a redundant linkage, with the arm primarily positioning the gimbal in a three dimensional controller workspace and the gimbal coupling the arm to the handle with four rotational degrees of freedom. One or more additional degrees of freedom may also be provided for actuation of the handle.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: March 30, 2004
    Assignee: Intuitive Surgical, Inc.
    Inventors: J. Kenneth Salisbury, Jr., Akhil J. Madhani, Gary S. Guthart, Günter D. Niemeyer, Eugene F. Duval
  • Patent number: 6711468
    Abstract: A control system for robots comprising a control unit for generating and controlling the paths of a movement of the moving parts of the robot, a drive unit for generating the control signals for controlling the motors associated to the moving parts of the robot, and an Ethernet-type network for connection of the control unit and the drive unit. An interface module is also provided to connect the control unit to peripheral units and distributed input/output units. The drive unit comprises, in conjunction with a plurality of CPUs that close the control loops of the torques generated by the individual motors, a main CPU responsible for position control in the framework of the drive unit. The latter CPU thus retains knowledge of the overall status of the machine.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: March 23, 2004
    Assignee: Comau S.p.A.
    Inventors: Aldo Bottero, Luciano Cane, Giorgio Cantello, Guido Cargnino, Antonio Zaccagnini
  • Patent number: 6708068
    Abstract: A machine, functioning as a unit, is composed of a main module and at least one replacable module having an ID. The main module includes (i) an ID recognition unit programmed to receive ID information from each replacable module, and (ii) an action decision unit including a decision algorithm programmed to select an action based on preselected signals. The decision algorithm is adjusted based on the ID information. The at least one replacable module includes (iii) an ID information unit storing ID information identifying the at least one replaceable module, and (iv) an action actuation unit including an action algorithm programmed to actuate the at least one replaceable module based on signals from the action decision unit; wherein the main module and the at least one replaceable module are communicated via an interface. The decision algorithm provided in the main module is adjusted based on the ID information, so that proper control can always be accomplished adaptively to the used replacable module.
    Type: Grant
    Filed: July 28, 2000
    Date of Patent: March 16, 2004
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Masaya Sakaue
  • Patent number: 6708081
    Abstract: The invention is directed to electronic equipment, such as a pet robot, with an autonomous emotion-based function. The electronic equipment executes environment detection processing, emotion-production processing for producing an emotion, and movement determination processing for determining a movement based on the emotion. The movement determination processing is arranged such that actions representing the emotion by the movement of given parts of the pet robot are performed prior to main actions based on the emotion. Therefore, a user can understand the emotion of the pet robot by intuition and thereby predict the subsequent movement naturally and effectively, providing the user feeling that the movement of the pet robot is reasonable.
    Type: Grant
    Filed: July 27, 2001
    Date of Patent: March 16, 2004
    Assignee: Yamaha Hatsudoki Kabushiki Kaisha
    Inventor: Makoto Yoshida
  • Patent number: 6704619
    Abstract: A system for universal guidance and control of automated machines incorporates with an IMU (Initial Measuring Unit) installed at an end effector of a motion element of an automated machine, fast-response feedback control for both position and angle servo-loops (for the end effector) greatly decreases the operational time needed to complete a preplanned trajectory. In addition, the closed-control loop design provides stabilization and isolation of the end effector from external disturbances. This unique navigation solution is based upon the uses of a set of equations performing an open loop computation with the inertial data as its input. This formulation of equations requires a periodic update of the open loop solution in order to bind the growth of system errors. The source of this update is the automated machine position measurement derived from the mechanical sensors in the system.
    Type: Grant
    Filed: June 3, 2003
    Date of Patent: March 9, 2004
    Assignee: American GNC Corporation
    Inventors: Norm Coleman, Ching-Fang Lin
  • Patent number: 6697708
    Abstract: A robot apparatus includes a command controller (101) for outputting an output command associated with an input command, management units (102), (103) and (104) for outputting data associated with the commands output by the command controller (101), a command transmitter (105) for controlling the transmission of the data output by the management units (102), (103) and (104) and controllers (106), (107) and (108) for controlling action units (109), (110) and (111), such as a motor, based on data output by the command transmitter (105). The command transmitter (105) sends the action control data for synchronization, output by the management units (102), (103) and (104), in synchroneity to the action units (109), (110) and (111).
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: February 24, 2004
    Assignee: Sony Corporation
    Inventors: Tsuyoshi Takagi, Kohtaro Sabe, Takayuki Sakamoto, Kazufumi Oyama
  • Patent number: 6697709
    Abstract: The stability of attitude of a robot can be recovered by an ambulation control apparatus and an ambulation control method if it is lost in the course of a gesture for which the upper limbs take a major role. The apparatus and the method obtain the pattern of movement of the entire body for walking by deriving the pattern of movement of the loins from an arbitrarily selected pattern of movement of the feet, the trajectory of the ZMP, the pattern of movement of the trunk and that of the upper limbs. Therefore, a robot can determine the gait of the lower limbs so as to realize a stable walk regardless if the robot is standing upright or walking. Particularly, if the robot is made to gesture, using the upper body half including the upper limbs and the trunk while standing upright, it can determine the gait of the lower limbs so as to make a stable walk in response to such a gait of the upper body half.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: February 24, 2004
    Assignees: Sony Corporation
    Inventors: Yoshihiro Kuroki, Tatsuzo Ishida, Jinichi Yamaguchi
  • Patent number: 6696810
    Abstract: A member for piping and wiring to an end effector of a robot is discharged from a first wrist element into a void area in a position displaced from an axis c, being bent and loosened, and then guided to a hollow path. Any variance in a length of the piping/wiring member 30 due to rotations of second and third wrist elements is absorbed in this void area, so that twining round or scratching by a wrist can be prevented.
    Type: Grant
    Filed: March 21, 2002
    Date of Patent: February 24, 2004
    Assignee: Fanuc Ltd.
    Inventors: Masaaki Uematsu, Kuniyasu Matsumoto, Hiroshi Nakagawa
  • Patent number: 6691000
    Abstract: A robot-arm telemanipulating system that presents an operator auditory information converted from a part of information on operating status of the robot arm (hereinafter referred to as “telemetry data”) transmitted from a distant position from the operator, so that a burden imposed on the operator can be alleviated. The telemanipulating system includes a sound source for simulatively generating an operating sound of the robot arm under telemanipulation, capable of variably controlling at least one of key, volume and tone of the operating sound by sound source control data input from outside; a telemetry data analyzing unit for analyzing telemetry data transmitted from the robot arm, and controlling the sound source by generating sound source controlling data corresponding to a load amount applied to the robot arm; and an audio output unit for presenting the operator the operating sound generated by the sound source in a form of auditory information.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: February 10, 2004
    Assignee: Communications Research Laboratory, Independent Administrative Institution
    Inventors: Yasufumi Nagai, Shigeru Tsuchiya, Shinichi Kimura
  • Patent number: 6690999
    Abstract: A method for controlling a hyper-redundant manipulator including a plurality of links coupled by joints by determining the shape the manipulator takes when the end of the manipulator is moved to a target position, includes modeling each link as an elastic body having a natural length and a suitable modulus of elasticity that enables the elastic body to stretch and contract, simulating the overall shape of the manipulator when the end has been moved to the target position with the joints locked at a freezed angle and the joints are unlocked to return each link to its natural length, and moving the manipulator end to the target position by controlling each joint angle to match the simulation outcome.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: February 10, 2004
    Assignee: Communications Research Laboratory, Independent Administrative Institution
    Inventor: Shinichi Kimura
  • Patent number: 6686717
    Abstract: A modular articulated robot structure (FIG. 4) composed of a series of independent modules (10,100,300) releasably connected to each other to form various configurations. The modules (10,100,300) may be of the rotary (10), linear (100), or wheeled (300) type. The rotary modules (10) are generally formed of first and second substantially U-shaped structural members (12,14) pivotally attached to one another by means of a pair of axles or pivot pins (26) adapted to support a workload exerted on the module (10). An actuator (48) is mounted internally of the module (10) for pivoting the second structural member (14) relative to the first structural member (12). The actuator (48) is connected to the second structural member (14) in such a way that it is not submitted to outside loads exerted on the module (10).
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: February 3, 2004
    Inventor: Charles Khairallah
  • Patent number: 6678582
    Abstract: A method of avoiding collisions between a robot and at least one other object such as another robot is provided in which the user does not need to make any provisions in a robot program for avoiding collisions and defining common work-areas. Furthermore, the method allows for automatic configuration of the workcell from a collision avoidance standpoint. It determines automatically which components have potential collisions with which other components. Since the inventive method is based on predicting the configurations of the moving components over a period of time sufficient enough to allow the machines to stop safely and checks for interference, a priori knowledge of trajectories is not required. If a collision is predicted the machines are commanded to a stop on or off their paths. In this way the inventive collision avoidance method can also be used as a safeguard with other explicit methods.
    Type: Grant
    Filed: May 30, 2002
    Date of Patent: January 13, 2004
    Assignee: Kuka Roboter GmbH
    Inventor: El-Houssaine Waled
  • Patent number: 6674259
    Abstract: A system and method for operating robots in a robot competition. One embodiment of the system may include operator interfaces, where each operator interface is operable to control movement of a respective robot. A respective operator interface may be in communication with an associated operator radio, where each radio may have a low power RF output signal. A robot controller may be coupled to each robot in the robot competition. A robot radio may be coupled to a respective robot and in communication with a respective robot controller and operator radio. The robot radios may have a low power RF output signal while communicating with the respective operator radios. Alternatively, the radios may be short range radios, where a distance of communication may be a maximum of approximately 500 feet.
    Type: Grant
    Filed: October 5, 2001
    Date of Patent: January 6, 2004
    Assignee: Innovation First, Inc.
    Inventors: David A. Norman, Robert H. Mimlitch, III, Paul S. Adams
  • Patent number: 6675070
    Abstract: A automation equipment control system comprises a general purpose computer with a general purpose operating system in electronic communication with a real-time computer subsystem. The general purpose computer includes a program execution module to selectively start and stop processing of a program of equipment instructions and to generate a plurality of move commands. The real-time computer subsystem includes a move command data buffer for storing the plurality of move commands, a move module linked to the data buffer for sequentially processing the moves and calculating a required position for a mechanical joint. The real-time computer subsystem also includes a dynamic control algorithm in software communication with the move module to repeatedly calculate a required actuator activation signal from a joint position feedback signal.
    Type: Grant
    Filed: August 26, 2002
    Date of Patent: January 6, 2004
    Assignee: Robotic Workspace Technologies, Inc.
    Inventor: John R. Lapham