Multifunction Manipulator (i.e., Robot) Patents (Class 318/568.11)
  • Patent number: 7313464
    Abstract: A method for picking up objects randomly arranged in a bin using a robot having a gripper for grasping the objects using prehension feature(s) on the object. The method includes a shaking scheme for rearranging the objects in the bin when no objects are recognized, when no objects are prehensible by the gripper or when the object to be picked up is not reachable by the gripper because, for example, its prehension feature is substantially facing a wall of the bin. The method also includes a criterion for determining that a bin is free of objects to be picked up and a criterion for selecting the object to be picked up first in the bin. The method also provides for a protection mechanism against damage of the objects and the robot when a recognition technique has failed in properly recognizing the object or the prehension feature on the object.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: December 25, 2007
    Assignee: Adept Technology Inc.
    Inventors: Louis Perreault, Pierre Olivier
  • Patent number: 7304581
    Abstract: A mobile information apparatus has a communication unit configured to collect usage states of a plurality of devices on a network, an estimation unit configured to estimate a position of a user on the basis of the usage states of the plurality of devices collected by the communication unit, and a moving unit configured to move a housing of the mobile information apparatus in accordance with the position of the user estimated by the estimation unit.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: December 4, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tomotaka Miyazaki, Masafumi Tamura, Shunichi Kawabata
  • Patent number: 7302312
    Abstract: Methods and apparatus that provide a hardware abstraction layer (HAL) for a robot are disclosed. A HAL can reside as a software layer or as a firmware layer residing between robot control software and underlying robot hardware and/or an operating system for the hardware. The HAL provides a relatively uniform abstract for aggregates of underlying hardware such that the underlying robotic hardware is transparent to perception and control software, i.e., robot control software. This advantageously permits robot control software to be written in a robot-independent manner. Developers of robot control software are then freed from tedious lower level tasks. Portability is another advantage. For example, the HAL efficiently permits robot control software developed for one robot to be ported to another. In one example, the HAL permits the same navigation algorithm to be ported from a wheeled robot and used on a humanoid legged robot.
    Type: Grant
    Filed: July 11, 2006
    Date of Patent: November 27, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: Thomas J. Murray, IV, Baoquoc N. Pham, Paolo Pirjanian
  • Patent number: 7295891
    Abstract: In a method for controlling the movement of a manipulator associated with an interpretation of a given point sequence of poses (positions and orientations) by splines, the motion components are separately parameterized. Thus, marked, subsequent changes to the orientation of robot axes have no undesired effects on the Cartesian movement path of the robot. Suitable algorithms are provided for orientation control by using quaternions or Euler angles.
    Type: Grant
    Filed: November 5, 2003
    Date of Patent: November 13, 2007
    Assignee: KUKA Roboter GmbH
    Inventors: Manfred Hüttenhofer, Günther Wiedemann, Stefan Burkhart
  • Patent number: 7292913
    Abstract: In the articulated robot, types of teaching a moving track of the robot can be optionally selected. The articulated robot comprises: a switch for manually selecting a moving axis to move an arm section along the selected axis; a manual pulse generator generating pulses; first controller for controlling motors to linearly move a front end of the arm section a prescribed distance, which corresponds to number of pulses; an operating board including a selecting switch, which is used to move the arm section along the selected axis; second controller for automatically controlling the motors so as to move the arm section while the selecting switch is turned on; third controller for stopping the motors to freely move the arm section while the arm section is manually moved; and a switch for selecting a type of teaching action.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: November 6, 2007
    Assignee: Kabushiki Kaisha Koyama
    Inventors: Hideo Tokutake, Tatsuo Niimura
  • Patent number: 7289885
    Abstract: A dual purpose media drive exchanges data with removable media items. The drive includes at least one port to receive various control signals, including (1) data exchange commands directing the drive to read and/or write data to a media item mounted by the drive, and (2) robotic device management commands. The drive includes a processor that responds to incoming data exchange commands by reading and/or writing to the loaded media item. The processor responds to at least some robotic device management signals by forwarding them to a robotic media transport device. The processor withholds the data exchange commands from the robotic device, since they are only pertinent to operations of the drive itself. The robotic device may be configured to restrict host access to library components according to predefined logical partitions.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: October 30, 2007
    Assignee: International Business Machines Corporation
    Inventors: Robert B. Basham, Brian G. Goodman, Leonard G. Jesionowski
  • Patent number: 7289882
    Abstract: A robot is provided which is adapted to operate in association with an interface surface, which has disposed therein or thereon coded data indicative of an identity of the interface surface and of a plurality of reference points of the interface surface. The robot has movement means to allow the robot to move over the interface surface, a sensing device which senses at least some of the coded data and generates indicating data indicative of the identity of the interface surface and of a position of the robot on the interface surface, and communication means to transmit the indicating data to a computer system, which is programmed to select and execute a computer application based on at least the identity of the interface surface, and to receive movement instructions from the selected computer application. The behaviour of the robot is at least in part controlled by the selected computer application.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: October 30, 2007
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Paul Lapstun, Zhenya Alexander Yourlo, Kia Silverbrook
  • Patent number: 7282882
    Abstract: A robot control system for simultaneously controlling multi-axial robots each of which has actuators, a standard movement part being set in each of the robots, includes: a single main controller for calculating respective movement positions of the standard moving part on a movement route along which the standard moving part is to be moved; and sub-controllers installed for each of the robots, each of the sub-controllers calculating an operation amount of each of the actuators so that the standard moving part of a corresponding robot is to be moved along the movement route, based on the movement positions of the standard moving part of the corresponding robot on the movement route, and controlling each of the actuators of the robots in accordance with the operation amount.
    Type: Grant
    Filed: December 30, 2005
    Date of Patent: October 16, 2007
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Hiroaki Kitatsuji, Naoyuki Matsumoto, Yoshinori Kegasa
  • Patent number: 7281446
    Abstract: A machine tool (1) for machining by chip removal, in which a machining head (2) operates while being positioned in a horizontal plane and is mounted on a vertical bed (3) to which it discharges the forces (F) by which it is axially stressed, this vertical bed (3) being connected to a supporting structure (4). The vertical bed (3) is pivoted on the supporting structure (4) and there are interposed between the vertical bed and the supporting structure one or more bars (5) whose axial length (L) can be varied by magnetostriction produced by electric currents whose characteristics are determined continuously by a control device (6) in such a way as to counteract the horizontal movements of the vertical bed (3), thus keeping the machining head (2) fixed with respect to the workpiece (7) which it is machining.
    Type: Grant
    Filed: December 10, 2001
    Date of Patent: October 16, 2007
    Inventor: Sascha Mantovani
  • Patent number: 7272467
    Abstract: Apparatus and methods that use a visual sensor and dead reckoning sensors to process Simultaneous Localization and Mapping (SLAM). These techniques can be used in robot navigation. Advantageously, such visual techniques can be used to autonomously generate and update a map. Unlike with laser rangefinders, the visual techniques are economically practical in a wide range of applications and can be used in relatively dynamic environments, such as environments in which people move. One embodiment further advantageously uses multiple particles to maintain multiple hypotheses with respect to localization and mapping. Further advantageously, one embodiment maintains the particles in a relatively computationally-efficient manner, thereby permitting the SLAM processes to be performed in software using relatively inexpensive microprocessor-based computer systems.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: September 18, 2007
    Assignee: Evolution Robotics, Inc.
    Inventors: Luis Filipe Domingues Goncalves, L. Niklas Karlsson, Paolo Pirjanian, Enrico Di Bernardo
  • Patent number: 7269480
    Abstract: A mobile robot which has a communication with a detection target by a motion of the mobile robot or by an utterance from the mobile robot, the mobile robot includes: a personal identification unit detecting an existence of the tag based on a signal transferred from the tag and obtaining the identification information stored on the tag; a position information acquisition unit obtaining distance information indicating a distance from the mobile robot to the detection target; a locomotion speed detection unit detecting a locomotion speed of the mobile robot; a personal information acquisition unit acquiring personal information based on the identification information; a communication motion determination unit determining contents of a communication motion based on the personal information; and an operation determination unit adjusting a start timing of each content of the communication motion based on distance information and on the locomotion speed of the mobile robot.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: September 11, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Sachie Hashimoto, Satoki Matsumoto
  • Patent number: 7254464
    Abstract: Methods for operating robotic devices (i.e., “robots”) that employ adaptive behavior relative to neighboring robots and external (e.g., environmental) conditions. Each robot is capable of receiving, processing, and acting on one or more multi-device primitive commands that describe a task the robot will perform in response to other robots and the external conditions. The commands facilitate a distributed command and control structure, relieving a central apparatus or operator from the need to monitor the progress of each robot. This virtually eliminates the corresponding constraint on the maximum number of robots that can be deployed to perform a task (e.g., data collection, mapping, searching). By increasing the number of robots, the efficiency in completing the task is also increased.
    Type: Grant
    Filed: November 23, 2005
    Date of Patent: August 7, 2007
    Assignee: iRobot Corporation
    Inventors: James McLurkin, Jennifer Smith
  • Patent number: 7253578
    Abstract: There is provided a pivoting apparatus of an industrial robot including: a brake 40 that is fixed to a motor shaft 30s of a motor 30 to halt the motor 30; an encoder 50 that is fixed to the motor shaft 30s to detect the pivoting angle of the motor 30; a speed reducer 60 that is coupled with the motor shaft 30s to form a communicating hollow portion, that is fixed to and coupled with a pivoting-side arm 20, and that reduces the rotation speed of the motor 30; a pipe-supporting bearing 72 that is provided in a fixed-side arm 10 and that is communicated with the communicating hollow portion; and a low-speed pivoting pipe 70 whose one end is fixed to and coupled with the pivoting-side arm 20 and the other end of which is fixed to the pipe-supporting bearing 72, and through which a cable 80 is wired.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: August 7, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshitaka Kumagai, Tomoyuki Kobayashi
  • Patent number: 7245990
    Abstract: A robot control unit for controlling a robot mechanism unit constantly detects the status of a robot and stores it as robot status data. An operation command input by voice from a head set is converted into character data by a voice/character data conversion device, and input to a control device. The control device searches a command corresponding to an operation command input in operation commands stored in management data. An executing program group is specified for link and storage with the corresponding operation command.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: July 17, 2007
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Hiroji Nishi
  • Patent number: 7245760
    Abstract: A robot for marking an interface surface is provided. The interface surface has coded data identifying a plurality of locations on the interface surface printed thereon. The robot comprises: an image sensor for sensing at least some of the coded data; a processor for generating indicating data using the sensed coded data, the indicating data comprising data regarding a position of the robot on the interface surface; communication means for transmitting the indicating data to a computer system and receiving instructions from the computer system; a steerable drive system for moving the robot over the interface surface in response to movement instructions received from the computer system; and a marking device for selectively marking the interface surface in response to marking instructions received from the computer system.
    Type: Grant
    Filed: June 26, 2006
    Date of Patent: July 17, 2007
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Zhenya Alexander Yourlo, Paul Lapstun, Kia Silverbrook
  • Patent number: 7245989
    Abstract: A robot arm includes a drive assembly and an articulated arm assembly pivotally connected to the drive assembly. The articulated arm includes a pivoting base link system, a wrist link system, and a first elbow link system rotatably connected to the base link system by a pair of upper arms and connected to the wrist link system by a pair of forearms, a second elbow link system rotatably connected to the base link system by another at least one upper arm and connected to the wrist link system by another at least one forearm, wherein the drive assembly is connected to at least one of the upper arms and the base link system to provide three degrees of freedom by driving the at least one of the upper arms and pivoting the pivoting base link system to position the wrist link system at a given location with a predetermined skew relative to an axis of translation.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: July 17, 2007
    Assignee: Brooks Automation, Inc.
    Inventors: Martin Hosek, Michael Valasek
  • Patent number: 7239940
    Abstract: A medical system that allows a medical device to be controlled by one of two input devices. The input devices may be consoles that contain handles and a screen. The medical devices may include robotic arms and instruments used to perform a medical procedure. The system may include an arbitrator that determines which console has priority to control one or more of the robotic arms/instruments.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: July 3, 2007
    Assignee: Intuitive Surgical, Inc
    Inventors: Yulun Wang, Modjtaba Ghodoussi, Darrin Uecker, James Wright, Amante Mangaser
  • Patent number: 7239105
    Abstract: A method of compensating a gyro sensor of a robot cleaner is provided. The method includes changing to a compensation mode if a robot cleaner travels greater than a compensation reference, and compensating an output value of the gyro sensor by use of an upper camera.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: July 3, 2007
    Assignee: Samsung Gwangju Electronics Co., Ltd.
    Inventors: Kwang-Soo Lim, Sam-Jong Jeung, Jeong-Gon Song, Ki-Man Kim, Ju-Sang Lee, Jang-Youn Ko
  • Patent number: 7236853
    Abstract: A method and system can align a robot arm with a payload station. A probe and a contact detector may be positioned on the robot arm and three pins may be placed on the payload station. A controller may move the robot arm in a pattern over the payload station until contact may be made between the probe and one of the pins. A search about the contact location may be performed to obtain additional contacts. The search may be interrupted when contact is made between the probe and one of the pins. The position of the pin may be calculated from three such contacts on the spherical portion of the pin. The location of the probe at the time of contact may be stored and a localized search about the pin location may be performed. If the position of the pin cannot be resolved from three contacts, additional contacts may be made until a combination of three contacts does provide a solution.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: June 26, 2007
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Stanley W. Stone, Kevin M. Daniels
  • Patent number: 7230402
    Abstract: There is provided a pivoting apparatus of an industrial robot including: a brake 40 that is fixed to a motor shaft 30s of a motor 30 to halt the motor 30; an encoder 50 that is fixed to the motor shaft 30s to detect the pivoting angle of the motor 30; a speed reducer 60 that is coupled with the motor shaft 30s to form a communicating hollow portion, that is fixed to and coupled with a pivoting-side arm 20, and that reduces the rotation speed of the motor 30; a pipe-supporting bearing 72 that is provided in a fixed-side arm 10 and that is communicated with the communicating hollow portion; and a low-speed pivoting pipe 70 whose one end is fixed to and coupled with the pivoting-side arm 20 and the other end of which is fixed to the pipe-supporting bearing 72, and through which a cable 80 is wired.
    Type: Grant
    Filed: March 5, 2003
    Date of Patent: June 12, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Yoshitaka Kumagai, Tomoyuki Kobayashi
  • Patent number: 7228201
    Abstract: A robot device (1) has a central processing process (CPU) having a plurality of objects and adapted for carrying out control processing on the basis inter-object communication carried out between the objects, the central processing process controlling accesses by the plurality of objects to a shared memory shared by the plurality of objects and thus carrying out inter-object communication. Specifically, the central processing process generates pointers P11, P12, P13, P21, P22 in accordance with accesses by the objects to predetermined areas M1, M2 on a shared memory M, then measures the pointers by the corresponding number-of-reference measuring objects RO1, RO2, and controls the accesses in accordance with the number of pointers measured, thereby carrying out inter-object communication. This enables easy realization of smooth inter-process communication.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: June 5, 2007
    Assignee: Sony Corporation
    Inventors: Kohtaro Sabe, Kenta Kawamoto
  • Patent number: 7228202
    Abstract: A communication system for safe wireless control of an maneuverable object. A control unit includes an operator for operating the object and a receiver for receiving wireless information. A portable operating unit has a transmitter for transmitting wireless information. The information is divided in time slots, each including a data package. The receiver includes a detector for detecting in a time part of a time slot the presence of the data package and a calculator for calculating upon a reception failure the number of time parts having no presence of the data package following a time slot with presence of the data package. The control unit exercises a control command when a data package with a correct information has been received within a number of time parts just exceeding a full time slot.
    Type: Grant
    Filed: April 2, 2002
    Date of Patent: June 5, 2007
    Assignee: ABB AB
    Inventors: Erik Carlson, Svein Johannesson, Jan Endresen, Ralph Sjöberg
  • Patent number: 7222000
    Abstract: A remote controlled robot system that includes a robot and a remote control station. A user can control movement of the robot from the remote control station. The remote control station may generate robot control commands that are transmitted through a broadband network. The robot has a camera that generates video images that are transmitted to the remote control station through the network. The user can control movement of the robot while viewing the video images provided by the robot camera. The robot can automatically stop movement if it does not receive a robot control command within a time interval. The remote control station may transmit a stop command to the robot if the station does not receive an updated video image within a time interval.
    Type: Grant
    Filed: January 18, 2005
    Date of Patent: May 22, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Patent number: 7219064
    Abstract: To provide a robot which autonomously forms and performs an action plan in response to external factors without direct command input from an operator. When reading a story printed in a book or other print media or recorded in recording media or when reading a story downloaded through a network, the robot does not simply read every single word as it is written. Instead, the robot uses external factors, such as a change of time, a change of season, or a change in a user's mood, and dynamically alters the story as long as the changed contents are substantially the same as the original contents. As a result, the robot can read aloud the story whose contents would differ every time the story is read.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: May 15, 2007
    Assignee: Sony Corporation
    Inventors: Hideki Nakakita, Tomoaki Kasuga
  • Patent number: 7211979
    Abstract: Torque control capability is provided to a position controlled robot by calculating joint position inputs from transformation of the desired joint torques. This is based on calculating the transfer function 1/E(s), which relates the desired joint torque to joint position. Here E(s) is a servo transfer function D(s) or an effective servo transfer function D*(s). The use of an effective servo transfer function D*s) is helpful in cases where joint nonlinearities are significant. The effective servo transfer function D*(s) is defined with respect to an ideal joint transfer function G*(s)=1/(Ieffs2+beffs), where Ieff is an effective moment of inertia and beff is an effective damping coefficient.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: May 1, 2007
    Assignee: The Broad of Trustees of the Leland Stanford Junior University
    Inventors: Oussama Khatib, Peter Thaulad, Jaehoung Park
  • Patent number: 7211980
    Abstract: Robot platforms, methods, and computer media are disclosed. The robot platform includes perceptors, locomotors, and a system controller, which executes instructions for a robot to follow a target in its environment. The method includes receiving a target bearing and sensing whether the robot is blocked front. If the robot is blocked in front, then the robot's motion is adjusted to avoid the nearest obstacle in front. If the robot is not blocked in front, then the method senses whether the robot is blocked toward the target bearing and if so, sets the rotational direction opposite from the target bearing, and adjusts the rotational velocity and translational velocity. If the robot is not blocked toward the target bearing, then the rotational velocity is adjusted proportional to an angle of the target bearing and the translational velocity is adjusted proportional to a distance to the nearest obstacle in front.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: May 1, 2007
    Assignee: Battelle Energy Alliance, LLC
    Inventors: David J. Bruemmer, Matthew O. Anderson
  • Patent number: 7211978
    Abstract: A system for performing the method of this invention includes a leader having a robot arm able to articulate about first axes and supporting an end effector. A follower includes a robot arm able to articulate about respective second axes. Servo motors articulate the leader arm about the first axes and the follower arm about the second axes. A user interface allows a user to jog the arm of the leader and to program movement of the arms for automatic execution such that the end effector reaches predetermined positions. A controller, operatively connected to the servo motors and the user interface, controls operation of the servo motors, moves the arm of the leader in accordance with the programmed movement, and moves the arm of the follower such that it tracks or mirrors movement of the leader.
    Type: Grant
    Filed: June 18, 2004
    Date of Patent: May 1, 2007
    Assignee: Fanuc Robotics America, Inc.
    Inventors: Tien L. Chang, H. Dean McGee, Eric Wong, Sai-Kai Cheng, Jason Tsai
  • Patent number: 7208900
    Abstract: An industrial robot including a manipulator, a control unit for controlling the manipulator, and a portable operating unit for teaching and manually operating the robot. The portable operating unit is adapted for wireless communication with the control unit and includes an operator control. The invention increases the safety by ensuring that the operator is within the specified operating area.
    Type: Grant
    Filed: October 17, 2002
    Date of Patent: April 24, 2007
    Assignee: ABB AB
    Inventors: Erik Carlson, Jan Endresen, Snorre Kjesbu
  • Patent number: 7205742
    Abstract: In some preferred embodiments of the present invention, a method of performing calibration of an optical axis of a sensor installed on a hand of an arm of a robot by obtaining misalignment of the optical axis of the sensor relative to the hand or by obtaining misalignment of the hand relative to the arm is provided. A method of performing calibration by detecting a teaching tool 11 disposed at a semiconductor wafer placing position of a storage container or a carrying device by a sensor 6 installed on a hand 5 of a robot 1 to teach the position of the semiconductor wafer to the robot 1 includes a step of placing the teaching tool 11 at specified position with the robot 1, a step of predicting the position of the teaching tool 11 detecting the teaching tool 11 with the sensor 6, and a step of obtaining a difference between the position of the teaching tool 11 and the predicted value.
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: April 17, 2007
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Masaru Adachi, Mitsunori Kawabe
  • Patent number: 7199545
    Abstract: The present invention provides a robot for use inside an open abdominal cavity during minimally-invasive surgery. The robot may include various sensors, imaging devices or manipulators.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: April 3, 2007
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Dmitry Oleynikov, Shane Farritor, Adnan Hadzialic, Stephen R. Platt
  • Patent number: 7194334
    Abstract: A robotic wash cell including a six-axis robotic arm and end effector equipped with nozzles that spray unheated, solvent free, pure water at high-pressure to clean or debur objects by maintaining the nozzles in close proximity and substantially normal to each surface being cleaned or edge being deburred. The robotic cell wash is particularly useful for cleaning contaminants such as oil and grease from items having more complex shapes. The six-axis robotic arm positions the nozzles and their sprays substantially normal to each surface being cleaned or deburred. The nozzles produce a multi-zone spray pattern with a continuous effective cleaning zone. A water recycling and pressurizing system collects the used water, separates out the oil and grease contaminants to a level of about 5 ppm, and pressurizes the pure water to about 3,000 psi for washing operations or about 6,000 psi for deburring operations.
    Type: Grant
    Filed: April 17, 2006
    Date of Patent: March 20, 2007
    Assignee: ABB, Inc.
    Inventor: Stephen J. Laski
  • Patent number: 7191036
    Abstract: A model's ZMP (full-model's ZMP) is calculated using a dynamic model (inverse full-model) 100c2 that expresses a relationship between a robot movement and floor reaction, a ZMP-converted value of full model's corrected moment about a desired ZMP is calculated or determined based on a difference (full-model ZMP's error) between the calculated model's ZMP and the desired ZMP, whilst a corrected desired body position is calculated or determined. Since the robot posture is corrected by the calculated ZMP-converted value and the corrected desired body position, the corrected gait can satisfy the dynamic equilibrium condition accurately.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: March 13, 2007
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto, Tadaaki Hasegawa
  • Patent number: 7181315
    Abstract: A manual-mode operating system for a robot provided with an end-effector.
    Type: Grant
    Filed: October 7, 2004
    Date of Patent: February 20, 2007
    Assignee: Fanuc Ltd
    Inventors: Atsushi Watanabe, Tatsuya Oumi
  • Patent number: 7177722
    Abstract: An assembling method and an apparatus for carrying out the method capable of efficiently, reliably and easily detecting an insertion and fitting position, for easy automatic assembly. In case a rod-like workpiece is inserted into a hole in an object, an insertable range is determined based an amount of clearance between the workpiece and the hole, an amount of chamfering of the hole, etc. The insertable range is defined as within a range centered at a hole center position 3cp and having a radium of r. A workpiece center position is indicated by 1cp. While the workpiece is moved once throughout a search range (XL-XU) in the X-axis direction, it is moved in the Y-axis direction by an amount equal to or less than an insertable range amount 2r. As shown by a dotted line, the workpiece center 1cp passes without fail through the insertable range during the motion throughout the search range (XL-XU, YL-YU).
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: February 13, 2007
    Assignee: Fanuc Ltd
    Inventors: Tetsuaki Kato, Takashi Sato
  • Patent number: 7177723
    Abstract: A robotic storage library is provided for reducing the transition time to reach an operational state following a transition from a power-off to a power-on state. The robotic storage library can generally include a transport unit for moving data cartridges, or other storage elements, between a location in a shelf system and a drive, or data transfer interface, to complete storage operations for a host computer. The library can further include a controller for causing an audit to be performed to create an inventory of the locations. The audit can be stored in nonvolatile memory prior to the power transition. The inventory information can be transmitted to a host computer after the power transition.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: February 13, 2007
    Assignee: Spectra Logic Corporation
    Inventors: Matthew T. Starr, Joshua D. Carter, Nathan C. Thompson
  • Patent number: 7173391
    Abstract: A control system for a mobile robot (10) is provided to effectively cover a given area by operating in a plurality of modes, including an obstacle following mode (51) and a random bounce mode (49). In other embodiments, spot coverage, such as spiraling (45), or other modes are also used to increase effectiveness. In addition, a behavior based architecture is used to implement the control system, and various escape behaviors are used to ensure full coverage.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: February 6, 2007
    Assignee: iRobot Corporation
    Inventors: Joseph L. Jones, Philip R. Mass
  • Patent number: 7171286
    Abstract: A robotic system that includes a plurality of robots that are linked to a plurality of remote stations. The robots have an input device and software that allows control of another robot. This allows an operator in close physical proximity to a robot to operate another robot. Each robot can be either a master or slave device.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 30, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Keith Phillip Laby, Jonathan Southard, Marco Pinter
  • Patent number: 7170250
    Abstract: In a holding arrangement (101) for a medical-optical instrument (103), an electric motor is provided in a rotational joint (111, 119) to compensate a load torque occurring in this rotational joint. This electric motor is supplied with current in correspondence to a detected position of the rotational joint (111, 119). A current control curve required for this purpose is stored in a memory. This current control curve can be determined in that the rotational joints are deflected with the electric motor into predetermined positions and the current demand needed therefor is detected. The holding arrangement (101) has a unit for actively damping vibration including a vibration damping control loop. This vibration damping control loop outputs a superposition motor current to the electric motor as an actuating quantity in order to move the rotational joint (111, 119) with the electric motor so that a detected vibration of the holding arrangement (101) is countered.
    Type: Grant
    Filed: December 27, 2005
    Date of Patent: January 30, 2007
    Assignee: Carl Zeiss Surgical GmbH
    Inventor: Roland Brenner
  • Patent number: 7166977
    Abstract: Since a release voltage to a brake is applied by a plurality of series-connected contacts and at least one contact is a normally open contact of a relay for controlling a driving power supply of a motor, a control apparatus having a high safety characteristic for an industrial-purpose robot is provided, while even when fusion of a contact happens to occur, the control apparatus can firmly interrupt the application of the release voltage to the brake. Also, the control apparatus for the industrial-purpose robot is provided which need not be equipped with a power supply for releasing the brake by an operator in a manual manner.
    Type: Grant
    Filed: March 18, 2004
    Date of Patent: January 23, 2007
    Assignee: Kabushiki Kaisha Yaskawa Denki
    Inventors: Shigenori Takayama, Michiharu Tanaka
  • Patent number: 7166980
    Abstract: Techniques sense a back-emf voltage from a brushed permanent magnet motor. Such techniques can be used for a variety of purposes, such as to estimate the current that is being applied to the motor, to estimate the motor's velocity, position, torque, and the like. One aspect of the invention includes the deactivation of power applied to the motor, and the monitoring of the back-emf of the voltage while power is not applied.
    Type: Grant
    Filed: February 17, 2006
    Date of Patent: January 23, 2007
    Inventor: Richard Mark LeGrand
  • Patent number: 7164968
    Abstract: A robotic system, and corresponding method, performs the function of a human scrub technician in an operating room. A device, and associated method for using the device, performs one, or more, of the following functions: instrument identification, instrument localization, instrument handling, interaction with a human, and integration of functions through a cognitive system. A method for movement of the device comprises the steps of modeling the arm of the robot to create a model comprising elements of finite mass joined by junctions, using an algorithm to calculate results of the effect of applying force to the elements of the model, using attractive, replusive and postural forces in the algorithm, and using the results of the model to direct motion of the device.
    Type: Grant
    Filed: April 7, 2003
    Date of Patent: January 16, 2007
    Assignee: The Trustees of Columbia University in the City of New York
    Inventors: Michael R. Treat, Martin T. Lichtman, David M. Brady
  • Patent number: 7164970
    Abstract: A robotic system that includes a remote controlled robot. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform allows the robot to move about a home or facility to locate and/or follow a patient.
    Type: Grant
    Filed: August 6, 2004
    Date of Patent: January 16, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Keith Phillip Laby, Charles S. Jordan, Steven Edward Butner, Jonathan Southard
  • Patent number: 7162331
    Abstract: A charging/discharging circuit electrically controls the charge of a battery using supplied current and discharge of it. A micro-controller drives a robot according to instructions from a personal computer, controls the charging/discharging circuit while monitoring the battery state, and during the charge, prohibits the operation of a travel mechanism.
    Type: Grant
    Filed: July 23, 2003
    Date of Patent: January 9, 2007
    Assignee: Fujitsu Limited
    Inventor: Katsushi Sakai
  • Patent number: 7161321
    Abstract: The image of a tool center point (31) caught by a camera (light-receiving device) 4 from two initial positions is moved to a predetermined point, by a predetermined point moving process, at the center of a light-receiving surface thereby to acquire robot positions (Qf1, Qf2), based on which the direction of the view line (40) is determined. Next, the robot is moved to the position where the position (Qf1) is rotated by 180 degrees around the Z axis of a coordinate system (?v1) thereby to execute the predetermined point moving process. After rotational movement, a robot position (Qf3) is acquired. The midpoint between the position (Qf1) and the position (Qf3) is determined as the origin of a coordinate system (?v2). Using the position and the posture of the view line (40), the position of the tool center point (31) is determined. Thus, the position of the tool center point with respect to the tool mounting surface can be determined using a fixed light-receiving device.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: January 9, 2007
    Assignee: Fanuc Ltd
    Inventors: Kazunori Ban, Makoto Yamada
  • Patent number: 7158860
    Abstract: A robotic system that includes a mobile robot linked to a plurality of remote stations. The robot provides both audio and visual information to the stations. One of the remote stations, a primary station, may control the robot while receiving and providing audio and visual information with the remote controlled robot. The other stations, the secondary stations, may also receive the audio and visual information transmitted between the robot and the primary station. This allows operators of the secondary stations to observe, communicate and be trained through the robot and primary station. Such an approach may reduce the amount of travel required to train personnel.
    Type: Grant
    Filed: September 12, 2003
    Date of Patent: January 2, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Patent number: 7158859
    Abstract: A robotic system that includes a remote controlled robot with at least five degrees of freedom and a teleconferencing function. The robot may include a camera, a monitor and a holonomic platform all attached to a robot housing. The robot may be controlled by a remote control station that also has a camera and a monitor. The remote control station may be linked to a base station that is wirelessly coupled to the robot. The cameras and monitors allow a care giver at the remote location to monitor and care for a patient through the robot. The holonomic platform provides three degrees of freedom to allow the robot to move about a home or facility to locate and/or follow a patient. The robot also has mechanisms to provide at least two degrees of freedom for the camera.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: January 2, 2007
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Keith Phillip Laby, Charles S. Jordan, Steven Edward Butner, James Cuevas, Jonathan Southard, Mike Medus
  • Patent number: 7155316
    Abstract: A robot system for use in surgical procedures has two movable arms each carried on a wheeled base with each arm having a six of degrees of freedom of movement and an end effector which can be rolled about its axis and an actuator which can slide along the axis for operating different tools adapted to be supported by the effector. Each end effector including optical force sensors for detecting forces applied to the tool by engagement with the part of the patient. A microscope is located at a position for viewing the part of the patient. The position of the tool tip can be digitized relative to fiducial markers visible in an MRI experiment. The workstation and control system has a pair of hand-controllers simultaneously manipulated by an operator to control movement of a respective one or both of the arms. The image from the microscope is displayed on a monitor in 2D and stereoscopically on a microscope viewer. A second MRI display shows an image of the part of the patient the real-time location of the tool.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: December 26, 2006
    Assignee: Microbotics Corporation
    Inventors: Garnette Roy Sutherland, Deon Francois Louw, Paul Bradley McBeth, Tim Fielding, Dennis John Gregoris
  • Patent number: 7148644
    Abstract: A robot adapted to operate in association with an interface surface having disposed therein or thereon coded data indicative of a plurality of reference points of the interface surface, the robot comprising: movement means to allow the robot to move over the interface surface; a sensing device which senses at least some of the coded data and generates indicating data indicative of a position of the robot on the interface surface; communication means to transmit the indicating data to a computer system running a computer application, and to receive movement instructions from the computer application; and, a marking device adapted to selectively mark the interface surface in response to marking instructions received from the computer application.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: December 12, 2006
    Assignee: Silverbrook Research Pty Ltd
    Inventors: Zhenya Alexander Yourlo, Paul Lapstun, Kia Silverbrook
  • Patent number: 7145305
    Abstract: A system for estimating an acceleration of a motion of an accelerometer itself that is generated by a motion of a robot 1, using amounts of motional states of the robot, including a desired motion of a desired gait, a detected value of a displacement of a joint, and a desired value of the displacement of the joint of the robot 1 having a gyro sensor (angular velocity sensor) and an accelerometer installed on a body 3 or the like thereof, and for estimating an actual posture of a predetermined part, such as the body 3, on the basis of the acceleration of the motion, the detected acceleration value of the accelerometer, and the angular velocity detected value of the angular velocity sensor.
    Type: Grant
    Filed: April 28, 2003
    Date of Patent: December 5, 2006
    Assignee: Honda Giken Kogyo Kabushiki Kaisha
    Inventors: Toru Takenaka, Takashi Matsumoto
  • Patent number: RE39906
    Abstract: Force feedback in large, immersive environments is provided by device which a gyro- stabilization to generate a fixed point of leverage for the requisite forces and/or torques. In one embodiment, one or more orthogonally oriented rotating gyroscopes are used to provide a stable platform to which a force-reflecting device can be mounted, thereby coupling reaction forces to a user without the need for connection to a fixed frame. In one physical realization, a rigid handle or joystick is directly connected to the three-axis stabilized platform and using an inventive control scheme to modulate motor torques so that only the desired forces are felt. In an alternative embodiment, a reaction sphere is used to produce the requisite inertial stabilization. Since the sphere is capable of providing controlled torques about three arbitrary, linearly independent axes, it can be used in place of three reaction wheels to provide three-axis stabilization for a variety of space-based and terrestrial applications.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: November 6, 2007
    Assignee: Immersion Corporation
    Inventors: Gerald P. Roston, Charles J. Jacobus