Multifunction Manipulator (i.e., Robot) Patents (Class 318/568.11)
  • Patent number: 7996110
    Abstract: The present invention was developed by a neurosurgeon and seeks to mimic the results of primate neurological research which is indicative of a human's actual neurological control structures and logic. Specifically, the motor proprioceptive and tactile neurophysiology functioning of the surgeon's hands and internal hand control system from the muscular level through the intrafusal fiber system of the neural network is considered in creating the robot and method of operation of the present invention. Therefore, the surgery is not slowed down as in the art, because the surgeon is in conscious and subconscious natural agreement and harmonization with the robotically actuated surgical instruments based on neurological mimicking of the surgeon's behavior with the functioning of the robot. Therefore, the robot can enhance the surgeon's humanly limited senses while not introducing disruptive variables to the surgeon's naturally occurring operation of his neurophysiology.
    Type: Grant
    Filed: November 20, 2006
    Date of Patent: August 9, 2011
    Assignee: MacDonald, Dettwiler and Associates Ltd.
    Inventors: Kenneth L. Lipow, Dennis Gregoris
  • Patent number: 7986118
    Abstract: A joint of a robot is controlled by a torque command. The joint has a position controller with a position feedback loop. The torque command is received for the joint, and a velocity feedforward command is determined for realizing the torque command using the position controller. The velocity feedforward command is sent to the position controller and the position feedback loop is canceled. The position feedback loop is canceled by sending a position command to the position controller, where the position command is an actual measured position of the joint. The position feedback loop is also canceled by setting the gain of the position feedback loop to zero.
    Type: Grant
    Filed: April 7, 2008
    Date of Patent: July 26, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventor: Taizo Yoshikawa
  • Patent number: 7979162
    Abstract: A wireless controller for controlling and/or monitoring a device arranged mounted on or relative to an industrial robot. A wireless communicator including a processor arranged with software means handles wireless communication to and from the device. A control carries out at least one control function for one or more actuators of the device. Also, a method, a computer program and a graphic user interface.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: July 12, 2011
    Assignee: ABB Research Ltd.
    Inventors: Esko Niemelä, Pierre Öberg, Jimmy Kjellsson, Martin Strand, Åsa Grönqvist, Seija Tasala
  • Patent number: 7977907
    Abstract: In a system for driving a mobile robot having a body, a plurality of legs each comprising a thigh link and a shank link, a first electric motor and a second motor for driving the thigh link in a forwarding direction, a power line connecting a power source to the first and the second motors, and a motor driver that supplies drive voltage to the first and second motors, a booster that boosts the drive voltage to be supplied to the first and second motors is provided such that the booster and the motor driver are installed in the thigh link where the first and second motors are installed, thereby enabling to satisfy both the low-voltage demand and high-voltage demand and to supply drive voltage to the motors effectively.
    Type: Grant
    Filed: June 17, 2008
    Date of Patent: July 12, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tsukasa Sugino, Masakazu Kawai, Kenro Udono
  • Patent number: 7974735
    Abstract: A robot system includes s a robot (1) which moves a tool (3) attached to an end of the robot (1) by driving a robot drive shaft. The tool (3) applies a laser beam inputted from a laser oscillator (5) by drive of the tool drive shaft to an object. A robot control device (2) controls the robot drive shaft and the tool drive shaft in synchronization.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: July 5, 2011
    Assignees: Kabushiki Kaisha Yaskawa Denki, Toyota Jidosha Kabushiki Kaisha
    Inventors: Toshimitsu Irie, Ryuichi Morita, Seigo Nishikawa, Akio Sato, Takeshi Ikeda
  • Patent number: 7960935
    Abstract: Various robotic devices and related medical procedures are disclosed herein. Each of the various robotic devices have an agent delivery component. The devices include mobile robotic devices and fixed base robotic devices as disclosed herein. The agent delivery component can have at least one agent reservoir and a discharge component in fluidic communication with the at least one reservoir.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: June 14, 2011
    Assignee: The Board of Regents of the University of Nebraska
    Inventors: Shane M. Farritor, Dmitry Oleynikov, Stephen R. Platt, Mark Rentschler, Jason Dumpert, Adnan Hadzialic, Nathan A. Wood
  • Patent number: 7957838
    Abstract: A control system for a plurality of mechanical units, namely robots and/or external axes. A manually-operated control, such as a joy-stick or key panel, is adapted to move at least one of the mechanical units or part thereof. The control system includes an indicator adapted to indicate whether the at least one mechanical unit or part thereof that is to be moved is associated with any other mechanical unit(s) or part(s) thereof and consequently indicate that movement of the at least one mechanical unit or part thereof will also result in the movement of the indicated associated mechanical unit(s) or part(s) thereof.
    Type: Grant
    Filed: December 9, 2004
    Date of Patent: June 7, 2011
    Assignee: ABB AB
    Inventors: Christian Poljén, Fredrik Hedenfalk
  • Patent number: 7940023
    Abstract: A geometric end effector system for use on a robot. The system includes a platform and a frame secured to the platform. At least one base is arranged at a predetermined position on the frame. The system also has an anchor mount secured to the base and a component connected to an end of the anchor mount by a collar assembly. A key is arranged between the component and the anchor mount.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: May 10, 2011
    Assignee: Delaware Capital Formation, Inc.
    Inventors: Jason M. Kniss, Michael J. Goff, Jerry Berendt, Ron Micallef
  • Patent number: 7933667
    Abstract: An industrial robot including a manipulator, a control unit for controlling the manipulator, a portable operating unit for teaching and manually operating the robot, which operating unit is adapted for wireless communication with the control unit and including an operator control. The transmissions may be made wirelessly with redundant software processes for transmission and/or reception. Safety is increased by ensuring that the operator is within the specified operating area.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: April 26, 2011
    Assignee: ABB AB
    Inventors: Ralph Sjöberg, Nick Warren, Jan Endresen, Erik Carlson
  • Patent number: 7925382
    Abstract: An input unit enters angular displacements by which drive shafts of a robot arm are to be turned as teaching data into a control unit. The control unit converts the input angular displacements into position-attitude data, namely, converted commands, indicating a position of the free end of the robot arm and an attitude of the robot in a rectangular coordinate system through forward conversion. The control unit corrects the position-attitude data on the basis of inherent errors in the robot to provide corrected position-attitude data. The control unit converts the corrected position-attitude data into corrected angular displacements through inverse conversion and gives the corrected angular displacements to an actuator included in the robot. The inherent errors in the robot include mechanismic errors resulting from machining errors and assembling errors, installation errors and errors in the origins of axes.
    Type: Grant
    Filed: December 6, 2005
    Date of Patent: April 12, 2011
    Assignee: Kawasaki Jukogyo Kabushiki Kaisha
    Inventors: Tetsuya Kubota, Jun Fujimori, Naoyuki Matsumoto, Tetsuhiko Nishimura
  • Patent number: 7898204
    Abstract: A mechanism for manipulation of a substrate over a substantially planar region has at least three, and up to six, degrees of freedom (DOF). The mechanism may be manufactured in various configurations, including triangular, and may use inherent symmetry to reduce the number of distinct components that must be manufactured. The mechanism may use parallelism to reduce the moving mass and thereby achieve higher levels of performance using less expensive motors while dissipating less power.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: March 1, 2011
    Assignee: Active Precision, Inc.
    Inventor: Bradley Hunter
  • Patent number: 7888900
    Abstract: A robot arm is provided with an end effecter for grasping an object and a force sensor for detecting a force acted upon the end effecter. In the state in which end effecter grasps an object, when there is a change in the force acting on the end effecter detected by the force sensor, outputted is a signal for releasing the force of the end effecter grasping the object. The object grasped by the end effecter can be taken out as if the object were handed from person over to person.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: February 15, 2011
    Assignee: Panasonic Corporation
    Inventors: Shusasku Okamoto, Masamichi Nakagawa, Yasunao Okazaki, Takashi Anezaki, Tamao Okamoto
  • Patent number: 7888901
    Abstract: An active human-machine interface system includes a user interface, one or more motors, one or more motor controllers, one or more electrically controllable dampers, and one or more damper controllers. The motors are coupled to the user interface and are configured, upon being energized, to supply a haptic feedback force to the user interface. The motor controllers are coupled to, and configured to selectively energize, the motors. The electrically controllable dampers are coupled to the user interface and are configured, upon being energized, to supply a damping force to the user interface. The damper controllers are in operable communication with the motor controllers and are coupled to, and configured to selectively energize, the electrically controllable dampers.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: February 15, 2011
    Assignee: Honeywell International Inc.
    Inventors: Keith D. Larson, Joseph M. Walling, John K. Tillotson
  • Patent number: 7877165
    Abstract: In a legged mobile robot control system having leg actuators each driving the individual legs and arm actuators each driving the individual arms, an external force acting on the right arm is detected, operation of the right arm actuators is controlled to produces a handshake posture, and operation of the leg actuators is controlled based on the detected external force acting on the right hand during handshaking, thereby improving communication capability by enabling it to shake hands with humans and to maintain a stable posture during the handshaking.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: January 25, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kenichiro Sugiyama, Taro Yokoyama, Koji Maki, Naohide Ogawa
  • Patent number: 7865269
    Abstract: A robotic surgical system has a robot arm holding an instrument for performing a surgical procedure, and a control system for controlling movement of the arm and its instrument according to user manipulation of a master manipulator. The control system includes a filter in its forward path to attenuate master input commands that may cause instrument tip vibrations, and an inverse filter in a feedback path to the master manipulator configured so as to compensate for delay introduced by the forward path filter. To enhance control, master command and slave joint observers are also inserted in the control system to estimate slave joint position, velocity and acceleration commands using received slave joint position commands and torque feedbacks, and estimate actual slave joint positions, velocities and accelerations using sensed slave joint positions and commanded slave joint motor torques.
    Type: Grant
    Filed: February 10, 2010
    Date of Patent: January 4, 2011
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Giuseppe Maria Prisco, David J. Rosa
  • Patent number: 7863848
    Abstract: An industrial robot system including at least one industrial robot including at least one manipulator located in a robot cell, a control unit for controlling the manipulator, a portable operator control device for teaching and manually operating the manipulator, a detecting unit detecting when the portable operator control device leaves the robot cell, and a warning generator producing a warning to the operator upon detecting that the portable operator control device leaves the robot cell.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: January 4, 2011
    Assignee: ABB AB
    Inventor: Ralph Sjöberg
  • Patent number: 7860613
    Abstract: A legged mobile robot which permits improved follow-up of an actual floor reaction force to a desired floor reaction force and which can be stably controlled is provided. According to a robot 1 in accordance with the present invention, a deformation amount (mechanism deformation amount) of a compliance mechanism 42 that occurs due to a desired floor reaction force of a foot (ground contacting portion) 22 is determined, and the operation of a leg 2 is controlled such that the foot 22 lands onto a floor at a predetermined velocity in a vertical direction or in a direction perpendicular to the floor surface on the basis of a component of the mechanism deformation amount in the vertical direction or a component thereof in the direction perpendicular to the floor surface.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: December 28, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Takashi Matsumoto, Takahide Yoshiike, Kazushi Akimoto, Shinya Shirokura, Minami Asatani
  • Patent number: 7854631
    Abstract: Featured is a controller for a motor that is ultra-compact, with a power density of at least about 20 watts per cubic cm (W/cm3). The controller utilizes a common ground for power circuitry, which energizes the windings of the motor, and the signal circuitry, which controls this energization responsive to signals from one or more sensors. Also, the ground is held at a stable potential without galvanic isolation. The circuits, their components and connectors are sized and located to minimize their inductance and heat is dissipated by conduction to the controller's exterior such as by a thermally conductive and electrically insulating material (e.g., potable epoxy). The controller uses a single current sensor for plural windings and preferably a single heat sensor within the controller. The body of the controller can also function as the sole plug connector.
    Type: Grant
    Filed: March 30, 2009
    Date of Patent: December 21, 2010
    Assignee: Barrett Technology, Inc.
    Inventors: William T. Townsendl, Adam Crowell, Gill Pratt, Traveler Hauptman
  • Patent number: 7853359
    Abstract: A calibration device and method for automatically determining the position and the orientation of a robot used for measurement. First, an initial position of a preliminary position is generated based on a designated basic position, and it is judged whether the initial position is within an operation range of the robot. If the robot cannot reach the initial position, the preliminary position is adjusted close to the basic position. Otherwise, the preliminary position is evaluated by calculating an evaluation index of the preliminary position. When the evaluation index does not satisfy a predetermined condition, an initial value of an posture angle is increased.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: December 14, 2010
    Assignee: Fanuc Ltd
    Inventors: Kazunori Ban, Katsutoshi Takizawa, Gang Shen
  • Patent number: 7847503
    Abstract: A control apparatus includes: a memory storing data regarding an interference matrix; a position compensation calculator calculating position compensation by using the data based on a target position of an output shaft and a detected position of the output shaft; a torque compensation calculator calculating torque compensation by using the data based on the detected position of the output shaft and a detected position of a drive shaft; and a command value calculation unit calculating a command value for the drive source based on the position compensation and the torque compensation.
    Type: Grant
    Filed: May 30, 2008
    Date of Patent: December 7, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Junichiro Ooga
  • Patent number: 7847504
    Abstract: A mobile robot having a height-to-width ratio approximating a normal adult human balances and maneuvers atop a single, spherical wheel. Dynamic balancing techniques incorporating fiber-optic gyroscopes and micro-electromechanical accelerometers measure a number of parameters which, along with data from motor shaft encoders, enable a computer to calculate the forces needed to be applied to the spherical wheel to maintain the robot upright as it maneuvers or remains in place.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 7, 2010
    Assignee: Carnegie Mellon University
    Inventor: Ralph L. Hollis
  • Patent number: 7843158
    Abstract: A medical robotic system includes a surgical instrument, a robotic arm assembly, an input device, and a processor. The surgical instrument has an end effector and a sensor for sensing a force exerted by the end effector, and is operatively mounted on the robotic arm assembly. The processor is configured to receive commanded movement of the end effector from the input device, receive information of the force from the sensor, determine a reduced velocity of the commanded movement that would inhibit damage causing motion of the end effector, and control robotic manipulation of the surgical instrument in response to the commanded movement of the end effector while restricting the velocity of the commanded movement to the reduced velocity.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: November 30, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventor: Giuseppe Prisco
  • Patent number: 7826928
    Abstract: A control device for controlling the movement of a machine determines a base position set value according to a given base track in space. By limitation of a base element of a machine therewith, the above is hence positionally moved along a base track. The control device further determines a corresponding current supplementary end position in space using the base position set value. The control device also determines a supplementary position set value from a given fixed supplementary start position in space and the current supplementary end position. By limitation of a supplementary element of the machine thereto, the above is thus displaced along an current supplementary track from the supplementary start position, to the current supplementary end position.
    Type: Grant
    Filed: May 18, 2005
    Date of Patent: November 2, 2010
    Assignee: Siemens Aktiengesellschaft
    Inventor: Jürgen Olomski
  • Patent number: 7818091
    Abstract: A process and a device are provided for determining the pose as the entirety of the position and the orientation of an image reception device. The process is characterized in that the pose of the image reception device is determined with the use of at least one measuring device that is part of a robot. The device is characterized by a robot with an integrated measuring device that is part of the robot for determining the pose of the image reception device.
    Type: Grant
    Filed: September 28, 2004
    Date of Patent: October 19, 2010
    Assignee: Kuka Roboter GmbH
    Inventors: Arif Kazi, Rainer Bischoff
  • Patent number: 7812560
    Abstract: The present invention relates to a rehabilitation robot and a tutorial learning method for the rehabilitation robot. The rehabilitation robot comprises a robotic device, a rehabilitation mode control unit, and a driving unit. The robotic device comprises at least a motor capable of controlling the joints of the robotic device. The rehabilitation mode control unit further comprises a tutorial learning module capable of enabling the rehabilitation robot to learn a rehabilitation operation of a physiotherapist in a tutorial manner as he/she is operating the rehabilitation robot while registering the rehabilitation operation as an operation mode of the same.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: October 12, 2010
    Assignee: Industrial Technology Research Institute
    Inventors: Wan-Kun Chang, Yung-Ming Kao, Shih-Chang Liang, Chin-Chu Sun, Hsin-Chuan Su
  • Patent number: 7813836
    Abstract: A robotic system that includes a robot and a remote station. The remote station can generate control commands that are transmitted to the robot through a broadband network. The control commands can be interpreted by the robot to induce action such as robot movement or focusing a robot camera. The robot can generate reporting commands that are transmitted to the remote station through the broadband network. The reporting commands can provide positional feedback or system reports on the robot.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: October 12, 2010
    Assignee: InTouch Technologies, Inc.
    Inventors: Yulun Wang, Charles S. Jordan, Marco Pinter, Jonathan Southard
  • Patent number: 7808198
    Abstract: A mechanism for empirically deriving the values of the damping ratio and frequency of the mechanism driven by a servo-controlled control system is disclosed. In accordance with the illustrative embodiment, the values of the damping ratio and frequency are continually re-generated based on empirical data derived from sensor feedback of the maximum-amplitude switch and the linear second-order servo. Because the values of the damping ratio and frequency are generated from empirical data, it is not necessary that they be known, and because the values of the damping ratio and frequency are continually re-generated, variances in their values are continually noticed and compensated for.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: October 5, 2010
    Assignee: Lockheed Martin Corporation
    Inventor: Jyun-Horng Fu
  • Patent number: 7801643
    Abstract: A legged mobile robot and a control program for the robot cancel a spin force, which is generated by motions of a lower body (242), a leg (2) or the like, by a twisting motion of an upper body (241) relative to the lower body (242) and a swinging motion of an arm (80).
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: September 21, 2010
    Assignee: Honda Motor Co., Ltd.
    Inventors: Toru Takenaka, Susumu Miyazaki, Masakazu Kawai, Masanori Takeda
  • Patent number: 7795832
    Abstract: A robot hand equipped with a function of gently pinching an object may include a single degree of freedom joint for allowing bending or stretching at a connecting portion between a distal phalange section and a middle phalange section. The robot hand may further include a driving mechanism for causing this joint to make a rotating motion within a predetermined angular range. This driving mechanism is constituted by a motor and a speed reducer. The joint and the driving mechanism are configured so that the distal phalange section is rotated relative to the middle phalange section in two directions, namely, an inward direction and an outward direction within the predetermined angular range from a state where the distal phalange section is arranged in a straight line with the middle phalange section.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: September 14, 2010
    Assignee: Japan Science and Technology Agency
    Inventors: Ichiro Kawabuchi, Kiyoshi Hoshino
  • Patent number: 7787989
    Abstract: The invention concerns a navigation device for a mobile robot comprising means for measuring the amplitude and the phase of an electromagnetic signal emitted by a wire acting as limit for a working area of the robot. The measuring means samples the amplitude of the signal during each time interval, the result of each measurement is stored in a memory and the measurements are repeated for several time intervals, the collected results being added in said memories until the content of a memory reaches a reference threshold. The number of samples required and the content of each memory is interpreted by numerical analysis to determine the distance or distance variation relative to said limiting elements. Any phase change corresponding to a passage beyond the limiting wire is easily detected and results for example in a command returning the robot to its working area.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: August 31, 2010
    Assignee: Husqvarna
    Inventor: André Colens
  • Patent number: 7783387
    Abstract: A robot system (X-Z) includes a plurality of manipulators (1x-2x, 1y-2y, 1w-2w, 1z-2z) and a portable terminal (3), said terminal being able to connect to the manipulators in wireless mode. The system is conceived so as to enable the terminal (3) to connect to a first manipulator (1x-2x) in a programming mode (Main) and, during the same session, to connect to a second manipulator (1w, 2w) in a monitoring mode (Secondary).
    Type: Grant
    Filed: April 14, 2006
    Date of Patent: August 24, 2010
    Assignee: Comau S.p.A.
    Inventor: Renzo Calcagno
  • Patent number: 7778729
    Abstract: A robot system capable of checking the status of all robot controllers connected to the same network by using at least one robot controller, among the robot controllers, having a function for checking the status. The robot system includes a plurality of robots and a plurality of robot controllers for controlling the robots. The robot controllers are connected to each other via a control network and also connected to an information network. The at least one robot controller, having the function of checking the status, transmits and receives data to and from the other robot controllers and, further, indicates information, concerning the statuses of the networks and the robots, on a display of a teaching operation panel of the at least one robot controller.
    Type: Grant
    Filed: July 19, 2006
    Date of Patent: August 17, 2010
    Assignee: Fanuc Ltd
    Inventors: Hirohiko Kobayashi, Yoshiharu Nagatsuka
  • Patent number: 7774099
    Abstract: A programming device for making a program for returning a robot to its waiting position when the robot is stopped by an error. A robot control device is connected to the programming device via a network line. When the robot during operation is stopped by the error, information including data of a position where the robot is stopped is transferred to the programming device. The programming device makes the returning program, based on layout data, the received information and data including teaching positions and attribute data of the positions, by which the robot may be returned from the stop position to the waiting position without interfering with peripheral devices. The returning program is executed by using an offline simulation function of the programming device. The program is transferred to the robot control device after it is judged that interference will not occur. The robot may be safely returned to the waiting position by executing the returning program.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: August 10, 2010
    Assignee: Fanuc Ltd
    Inventors: Hirohiko Kobayashi, Yoshiharu Nagatsuka
  • Patent number: 7772796
    Abstract: Various robotic devices and related medical procedures are disclosed herein. Each of the various robotic devices have an agent delivery component. The devices include mobile robotic devices and fixed base robotic devices as disclosed herein. The agent delivery component can have at least one agent reservoir and a discharge component in fluidic communication with the at least one reservoir.
    Type: Grant
    Filed: November 29, 2007
    Date of Patent: August 10, 2010
    Assignee: Board of Regents of the University of Nebraska
    Inventors: Shane M. Farritor, Dmitry Oleynikov, Stephen R. Platt, Mark Rentschler, Jason Dumpert, Adnan Hadzialic, Nathan A. Wood
  • Patent number: 7765031
    Abstract: In a robot, a first determining unit determines whether there is an interference region in which a first occupation region and a second occupation region are at least partially overlapped with each other. A second determining determines whether a second movable part of another robot is at least partially located in the interference region based on an actual position of the second movable part. A stopping unit begins stopping, at a predetermined timing, movement of the first movable part if it is determined that there is the interference region, and that the second movable part is at least partially located in the interference region. The predetermined timing is determined based on a positional relationship between an actual position of the first movable part and the interference region.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: July 27, 2010
    Assignee: Denso Wave Incorporated
    Inventor: Kenji Nagamatsu
  • Patent number: 7759894
    Abstract: An aircraft user interface haptic feedback system includes a user interface, a position sensor, a cogless motor, and a control circuit. The user interface is movable to a position. The position sensor senses the position of the user interface and supplies a user interface position signal. The cogless motor is coupled to the user interface, and receives motor drive signals. The cogless motor, in response to the motor drive signals, supplies feedback force to the user interface. The control circuit receives at least the user interface position signal and a signal representative of the motor current and is operable, in response to at least these signals, to control the motor current supplied to the cogless motor using a non-trapezoidal motor commutation scheme.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: July 20, 2010
    Assignee: Honeywell International Inc.
    Inventors: Mark G. Marino, John K. Tillotson, Danial L. Kosht
  • Patent number: 7756606
    Abstract: A method of controlling a redundant manipulator for assigning one or more redundant joints from a plurality of joints and obtaining the solution to an inverse kinematics problem at high-speed. The joints are arbitrarily classified into redundant joints and non-redundant joints, and an initial value is set for the joint angle of the classified redundant joint as a parameter. Then based on an evaluating function or a constraint condition defined by the joint angle of the redundant joint provided as a parameter and the joint angle of the non-redundant joint, which is determined by the inverse kinematics calculation according to the change of the parameter, an optimum solution of a set of joint angles is determined, and until the optimum solution covers the target range of the hand position, the procedure to determine the optimum solution is repeated with relaxing the constraint conditions.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: July 13, 2010
    Assignee: Japan Aerospace Exploration Agency
    Inventors: Atsushi Nakajima, Isao Yamaguchi, Osamu Okamoto, Yoshiaki Ohkami
  • Patent number: 7750593
    Abstract: An active human-machine interface system is implemented without a force sensor. The system includes a user interface that is configured to receive user input and, upon receipt thereof, to move to a position. A position sensor is coupled to the user interface and is operable to sense user interface position and supply a position signal representative thereof. A motor is coupled to the user interface and to receive motor current. In response to the motor current the motor supplies a feedback force to the user interface at a magnitude proportional to the motor current. A control circuit is coupled to receive at least the position signal and a signal representative of the motor current and controls the motor current supplied to the motor.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: July 6, 2010
    Assignee: Honeywell International Inc.
    Inventor: John K. Tillotson
  • Patent number: 7751939
    Abstract: An apparatus and method of optimally correcting a static deflection caused by a weight of an end effector coupled to a robot arm or a load on the end effector when the end effector is activated to handle a large sheet of glass. A deflection angle of the end effector is corrected by inserting a compensation member into a joint of the robot arm, and the static deflection caused by the weight of the handling robot when conveying the sheet of glass is also corrected in real time.
    Type: Grant
    Filed: July 15, 2005
    Date of Patent: July 6, 2010
    Assignee: Samsung Electronics Co. Ltd
    Inventors: Phil Joo Cho, Jae Chul Hwang
  • Patent number: 7751938
    Abstract: There is provided a control device for a robot arm which includes an operation procedure information acquisition means for acquiring information on the procedure of a domestic operation, a progress management means for managing information on the progress of the operation, and a control parameter setting means for setting a control parameter for the robot arm based on the operation procedure information and the progress information, whereby the control device controls an operation of the robot arm based on the control parameter from the control parameter setting means.
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: July 6, 2010
    Assignee: Panasonic Corporation
    Inventors: Yuko Tsusaka, Yasunao Okazaki
  • Patent number: 7746018
    Abstract: At present, the reposition of base plates in an electrochemical process in the cathode stripping machine system is carried out manually, which implies a loss in the efficiency, high exposure to risk associated with the removal of plates and additional labor force being used. Due to these drawbacks, a robotic system is developed for the reposition and/or removal of base plates from cathode stripping machine. The robotic system comprises an anthropomorphous robotic manipulator and a gripping mechanism which allows taking the base plates from a mobile drawer rack and moves it through a defined path to the transfer station in a synchronized way with the control system of the cathode stripping machine, it replaces the base plates as they are rejected. Thus, most of the major problems associated with the safety of the personnel and the productivity of the manual and/or mechanical process are eliminated.
    Type: Grant
    Filed: November 13, 2006
    Date of Patent: June 29, 2010
    Assignee: MI Robotic Solutions
    Inventor: Hugo Salamanca
  • Patent number: 7747351
    Abstract: A control device for a robot arm is designed such that, based on information on a transportation state database in which information on a transportation state of a person operating the arm is recorded, an impedance setting unit sets a mechanical impedance set value of the arm, and an impedance control unit controls a mechanical impedance value of the arm to the mechanical impedance set value thus set.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: June 29, 2010
    Assignee: Panasonic Corporation
    Inventors: Yuko Tsusaka, Yasunao Okazaki
  • Patent number: 7747352
    Abstract: A “construction set” consisting of active and passive parts connected by joints that can be manipulated to form an movable articulated assembly representing things like animals and skeletons. Each active part includes a position sensor for acquiring and storing position data specifying a sequence of positions assumed by the active part as the assembly is reshaped, and a controllable drive motor for moving the active part relative to a connected part in accordance with the position data.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: June 29, 2010
    Assignee: Massachusetts Institute of Technology
    Inventors: Hayes Solos Raffle, Amanda Jane Parkes, Hiroshi Ishii
  • Patent number: 7741802
    Abstract: A medical robotic system has a robot arm holding an instrument for performing a medical procedure, and a control system for controlling movement of the arm and its instrument according to user manipulation of a master manipulator. The control system includes at least one joint controller that includes a controller having programmable parameters for setting a steady-state velocity error and a maximum acceleration error for the joint's movement relative to a set point in response to an externally applied and released force.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: June 22, 2010
    Assignee: Intuitive Surgical Operations, Inc.
    Inventors: Giuseppe M. Prisco, David J. Rosa, David. Q Larkin
  • Patent number: 7738996
    Abstract: A method for joining together at least two sheets with a tool controlled by an industrial robot and including a first arm and a second arm that are mutually movable in relation to each other. An actual position of the sheets is detected by bringing one of the arms to sense the actual position of the sheets. The distance between an ideal position and the actual position is calculated and the actual position of the tool is moved the calculated distance, whereafter the sheets are joined together.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: June 15, 2010
    Assignee: ABB AB
    Inventor: Colin Luthardt
  • Patent number: 7734375
    Abstract: A robot with a body, at least one leg on each side of the body, and a hip connecting the leg to the body. The hip is configured to abduct and adduct the leg. A linkage is configured to rotate the leg along a predetermined path.
    Type: Grant
    Filed: June 9, 2004
    Date of Patent: June 8, 2010
    Assignee: Boston Dynamics
    Inventors: Martin Buehler, Aaron Saunders
  • Patent number: 7729821
    Abstract: When dot-sequential data indicating a temporal variation in position, speed, or acceleration is stored in a memory in an automated guided vehicle as it is, the capacity of the memory is insufficient and thus needs to be increased. A pattern is mounted in a stacker crane 1; the pattern is drawn by dot-sequential data indicating a temporal variation in acceleration (FIG. 2C), and corresponds to an instruction value provided to an actuator installed in the stacker crane 1. In this case, a curve function corresponding to an approximate expression for the dot-sequential data is derived in a form of a Fourier series having a finite number of terms and using time as an independent variable and the position, speed, or acceleration as a dependent variable. Data identifying the Fourier series, having a finite number of terms, is stored in a memory 5 mounted in the stacker crane 1.
    Type: Grant
    Filed: August 7, 2006
    Date of Patent: June 1, 2010
    Assignee: Murata Kikai Kabushiki Kaisha
    Inventors: Toshiki Moriguchi, Takeshi Murakami
  • Patent number: 7729803
    Abstract: A system for returning a robot to a charger includes: a homing signal transmitter, including at least first, second, and third signal transmitters, each adapted to be provided at a front side of the charger and to respectively transmit signals which are different from each other in at least one of a code and a transmission distance, and a fourth signal transmitter, adapted to be provided on at least one lateral side of the charger and to transmit a signal which is different from the signals of the first, second, and third transmitters in code; a homing signal receiver provided at the robot and to receive at least one signal transmitted from the homing signal transmitter; and a controller adapted to identify the at least one signal and to control the robot to return to the charger based at least in part on the at least one signal.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: June 1, 2010
    Assignee: Samsung Gwangju Electronics Co., Ltd.
    Inventors: Kwang-soo Lim, Sam-jong Jeung, Jeong-gon Song, Ju-sang Lee, Jang-youn Ko
  • Patent number: 7719222
    Abstract: An all-terrain mobile robot comprising a mobile robotic platform, having either wheels or tank-treaded-like legs capable of navigating over rough terrain, wherein the robotic platform utilizes dynamic balancing behavior; a hydraulic powered anthropomorphic torso and articulated arms, wherein the hydraulic system possesses a pressure sensor for enabling the anthropomorphic torso and articulated arms to lift a payload using acute and delicate movements that reduce the chance of causing structural harm to the payload.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: May 18, 2010
    Inventor: Daniel Theobald
  • Patent number: 7706922
    Abstract: First of all, in a first step S1, each actuator command value for position command value and posture command value of an end-effector is determined. Next, in a second step S2, rotational resistance values of a first and a second universal joints are obtained, and in a third step S3, the force and the moment exerted to each of the second universal joints are computed using this, and in a fourth step S4, the resultant force and the resultant moment exerted to the end-effector are determined from these. Then, in the fifth step, the elastic deformation amount of a mechanism is computed using these, and a compensation amount of the actuator command value is computed using these values. And then, in the sixth step, the actuator command values determined in the first step are updated with the compensation amount determined in the fifth step taken into account.
    Type: Grant
    Filed: July 18, 2007
    Date of Patent: April 27, 2010
    Assignee: Okuma Corporation
    Inventors: Hiroshi Ueno, Tetsuya Matsushita