Bus Or Line Termination (e.g., Clamping, Impedance Matching, Etc.) Patents (Class 326/30)
  • Patent number: 8581621
    Abstract: A semiconductor memory device includes a first memory chip including a first on die termination (ODT) unit electrically connected to a first pad, the first pad being connected to a first terminal to receive a first signal, and a second memory chip including a second ODT unit electrically connected to a second pad, the second pad being connected to the first terminal to receive the first signal, the first ODT unit being configured to turn on/off according to a memory operation, the second ODT unit being configured to turn off regardless of the memory operation, and the first and second ODT units are switchable.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: November 12, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Joon-Young Park
  • Patent number: 8581619
    Abstract: An embodiment includes an impedance calibration circuit having a calibrator configured to compare voltage levels at an external node and an internal node of the impedance calibration circuit and to generate an output based on the comparison. The calibrator further includes respective filters coupled between the external node and a first input of the comparator, and between the internal node and a second input of the comparator. The filters are configured for symmetric noise injection into the comparator from a chip ground line to which a programmable resistor at the internal node is coupled.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: November 12, 2013
    Assignee: STMicroelectronics International N.V.
    Inventors: Mayank Kumar Singh, Daljeet Kumar, Hiten Advani
  • Patent number: 8581622
    Abstract: To suppress power consumption and enhance signal quality as compared with the case where first and second semiconductor elements are terminated only by on-chip input termination resistor circuits. A first semiconductor element with a switching function and a second semiconductor element with a switching function are connected to each other with a substrate interconnection, and a resistor element is connected in parallel with the substrate interconnection. The resistor element is placed at an arbitrary position or a branch point on the signal interconnection.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: November 12, 2013
    Assignee: Hitachi, Ltd.
    Inventors: Yasuhiro Ikeda, Yutaka Uematsu, Satoshi Muraoka
  • Patent number: 8581620
    Abstract: A semiconductor device includes a code generator configured to generate a supplementary code with a value changing in response to a variation of an impedance code, a main driver configured to receive an output data and drive the received output data to a data output pad, wherein a driving force of the main driver is controlled according to the impedance code, and an auxiliary driver configured to receive the output data and drive the received output data to the data output pad, wherein a driving force of the auxiliary driver is controlled according to the supplementary code.
    Type: Grant
    Filed: December 21, 2011
    Date of Patent: November 12, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Mi-Hye Kim
  • Patent number: 8581628
    Abstract: A transmitter comprises a protection circuit; a first termination resistor having a first end coupled to a first voltage source, and a second end coupled to the protection circuit; a second termination resistor having a first end coupled to the first voltage source, and a second end coupled to the protection circuit, wherein the second end of the first termination resistor and the second end of the second termination resistor form a differential output pair; a current switch coupled to the protection circuit; a current source coupled to the current switch; and a pre-driver circuit coupled to the current switch, for controlling the current switch, making the differential output pair generate an output current. Wherein, the pre-driver circuit receives a second voltage source, and the first voltage source is higher than the second voltage source.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: November 12, 2013
    Assignee: MStar Semiconductor, Inc.
    Inventors: Chun-Wen Yeh, Hsian-Feng Liu
  • Publication number: 20130293260
    Abstract: A method of sharing in use an impedance matching circuit of a memory circuit to perform an initial calibration and a full time refresh mode calibration includes supplying power to the memory circuit, utilizing the impedance matching circuit to perform the initial calibration on the memory circuit, the memory circuit exiting the initial calibration, the memory circuit entering a driving mode, the memory circuit exiting the driving mode every a predetermined interval, utilizing the impedance matching circuit to perform the full time refresh mode calibration on the memory circuit according to a refresh command, an output voltage detection circuit determining a level of an output voltage of the memory circuit, and performing a corresponding operation according to a determination result generated by the output voltage detection circuit.
    Type: Application
    Filed: July 11, 2012
    Publication date: November 7, 2013
    Inventors: Chun Shiah, Sen-Fu Hong, Wen-Wey Chen
  • Patent number: 8575956
    Abstract: A semiconductor device includes an impedance control signal generation unit configured to generate an impedance control signal for controlling an impedance value, a first processing unit configured to process the impedance control signal in response to a first setup value and generate a first process signal, a first clock termination unit configured to be coupled with a first clock path and determine an impedance value responding to the impedance control signal, and a second clock termination unit configured to be coupled with a second clock path and determine an impedance value responding to the first process signal.
    Type: Grant
    Filed: October 31, 2011
    Date of Patent: November 5, 2013
    Assignee: Hynix Semiconductor Inc.
    Inventor: Geun-Il Lee
  • Patent number: 8576640
    Abstract: A data output apparatus includes a driver driving unit configured to generate driving signals by using input data when a data output enable signal is enabled, a data driver unit configured to drive an output terminal to a level corresponding to the input data in response to the driving signals to generate output data, and an output data level control unit configured to open a current path to control a level of the output data, wherein the current path is different from a current path for driving the output terminal to a level corresponding to the input data.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: November 5, 2013
    Assignee: SK hynix Inc.
    Inventor: Ho-Uk Song
  • Patent number: 8570063
    Abstract: Methods of adjusting a centerline voltage of a data signal are described, along with apparatuses to adjust the centerline voltage. In one such method, portions of a termination circuit coupled to a node are selectively programmed to adjust an impedance of the termination circuit to adjust the centerline voltage of the data signal driven to the node. One such apparatus includes pull-up impedances and pull-down impedances that can be programmed to adjust the centerline voltage of the data signal. Additional embodiments are also described.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: October 29, 2013
    Assignee: Micron Technology, Inc.
    Inventor: Terry M. Grunzke
  • Patent number: 8571513
    Abstract: For one disclosed embodiment, an integrated circuit may comprise an internal transmission line in one or more layers of the integrated circuit. The internal transmission line may be coupled to receive a signal from an external transmission line at a first end of the internal transmission line without use of termination circuitry. The internal transmission line may transmit the signal passively to a second end of the internal transmission line. The integrated circuit may also comprise first circuitry having an input coupled to the internal transmission line at a first location of the internal transmission line to receive the signal and second circuitry having an input coupled to the internal transmission line at a second location of the internal transmission line to receive the signal. The second location may be different from the first location. Other embodiments are also disclosed.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: October 29, 2013
    Assignee: Intel Corporation
    Inventors: Frank O'Mahony, Bryan Casper, James Jaussi, Matthew B. Haycock, Joseph Kennedy, Mozhgan Mansuri, Stephen R. Mooney
  • Patent number: 8570064
    Abstract: Methods, circuits, and systems for termination calibration are provided. Differential input buffer circuitry is used to compare a signal level at an input/output pad and a first reference signal level. Control circuitry is used to control a controllably variable impedance based on the output of the differential input buffer circuitry. Optionally, second differential input buffer circuitry is used to compare the signal level at the input/output pad to a second reference signal level. The control circuitry is used to control the controllably variable impedance based on the output of both the first and the second differential input buffer circuitry.
    Type: Grant
    Filed: November 11, 2011
    Date of Patent: October 29, 2013
    Assignee: Altera Corporation
    Inventors: Foong Tek Chan, Ket Chiew Sia
  • Patent number: 8570062
    Abstract: An electromagnetic interference (EMI) shielding circuit and a semiconductor integrated circuit including the same are provided. The EMI shielding circuit includes a data level comparison unit, a control signal generation unit, and a driver for EMI cancellation. The data level comparison unit generates a data comparison signal by comparing a number of high-level data transmitted through a plurality of data lines and a number of low-level data transmitted through the plurality of data lines. The control signal generation unit generates a driving control signal in response to the data comparison signal. The driver for EMI cancellation outputs an EMI cancellation signal in response to the driving control signal.
    Type: Grant
    Filed: December 30, 2011
    Date of Patent: October 29, 2013
    Assignee: SK Hynix Inc.
    Inventor: Jun Ho Lee
  • Publication number: 20130278286
    Abstract: Disclosed herein is a device that includes: a data terminal; an output buffer coupled to the data terminal, the output buffer including a first output unit having a plurality of first output transistors of a first conductivity type and a second output unit having a plurality of second output transistors of a second conductivity type; and a calibration circuit including a first code generation unit that generates a first control code that controls an impedance of the first output unit by performing a first calibration operation based on an impedance of a first reference unit and a second code generation unit that generates a second control code that controls an impedance of the second output unit by performing a second calibration operation based on an impedance of a second reference unit. The calibration circuit performs the first and second calibration operations in parallel.
    Type: Application
    Filed: March 18, 2013
    Publication date: October 24, 2013
    Applicant: ELPIDA MEMORY, INC.
    Inventor: Tatsuya MATANO
  • Patent number: 8566846
    Abstract: Driver systems and methods are provided, such as those that include identifying a process corner of a driver; and configuring the driver based on the identified process corner. Further embodiments provide a method that includes detecting a process corner of a driver, setting a reference voltage of a calibration circuit based on the process corner detected, and configuring the driver based on the reference voltage.
    Type: Grant
    Filed: April 4, 2008
    Date of Patent: October 22, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Sujeet Ayyapureddi, Raghukiran Sreeramaneni, Suryanarayana B. Tatapudi
  • Patent number: 8564327
    Abstract: A USB-based isolator system conveys USB signals between a pair of galvanically isolated circuit systems and supports controlled enumeration by a downstream device on upstream USB signal lines. The isolator system provides a multi-mode voltage regulator to support multiple voltage supply configurations. The isolator system further provides control systems for each of the isolated circuit systems and provides robust control in a variety of start up conditions. Additionally, the isolator system includes refresh timers and watchdog mechanisms to support persistent operation but manage possible communication errors that can arise between the isolated circuit systems.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: October 22, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Eric Gaalaas, Mark Cantrell
  • Patent number: 8558572
    Abstract: Provided is a semiconductor integrated circuit according to an exemplary aspect of the present invention including first and second transmitter-receivers that execute transmission and reception of data through a signal line. The first transmitter-receiver includes a first termination circuit that includes a first resistor and a first switch, the first resistor being provided between a first power supply terminal and the signal line, the first switch controlling a current flowing through the first resistor to be turned on and off, and a control circuit that outputs a first control signal to the first termination circuit so that the first switch is turned on when the first transmitter-receiver receives data, the first switch is turned off when the first transmitter-receiver transmits the data, and the first switch is continuously on during a first predetermined period after receiving the data when the first transmitter-receiver further receives another data after receiving the data.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: October 15, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Masayasu Komyo, Yoichi Iizuka
  • Patent number: 8558573
    Abstract: A communication system having first and second states for use with a shared transmission line composed of at least two conductors and composed of first and second transmission line segments connected to each other at a single connection point. In the first state, a termination is coupled to the single connection point and is operative to at least attenuate a signal propagated between the first and second segments. In the second state, a driver is coupled to the connection point and is operative to conduct a signal over the first and second segments.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: October 15, 2013
    Assignee: Mosaid Technologies Incorporated
    Inventor: Yehuda Binder
  • Publication number: 20130257475
    Abstract: A system for controlling the termination impedance of memory device data bus terminals is fabricated on the same die as the memory device. The system includes a termination resistor connected to each data bus terminal, which is connected in parallel with several transistors that are selectively turned on to adjust the termination impedance. The transistors are controlled by a circuit that determines the resistance of the termination resistor and turns on the correct number of transistors to properly set the termination impedance. In one example, the resistance of the termination resistor is determined by measuring a resistor of the same type as the termination resistor. In another example, the resistance of the termination resistor is determined indirectly by measuring parameters that affect the resistance of the termination resistor. In either case, the system can maintain the termination impedance of the data bus terminals constant despite changes in the termination resistor.
    Type: Application
    Filed: May 21, 2013
    Publication date: October 3, 2013
    Applicant: Micron Technology, Inc.
    Inventor: David Kao
  • Publication number: 20130257474
    Abstract: Semiconductor modules are provided. The semiconductor module includes semiconductor chips with one or more ranks. The semiconductor module includes a mode register configured for storing a first information signal whose logic level is set or determined according to a number of the ranks and an on-die termination (ODT) controller configured for generating an internal control signal for activating an ODT circuit in response to the first information signal. The internal control signal is enabled during a read operation or disabled during a write operation.
    Type: Application
    Filed: September 13, 2012
    Publication date: October 3, 2013
    Applicant: SK hynix Inc.
    Inventor: Tae Jin KANG
  • Patent number: 8548069
    Abstract: A data transmission system comprises: a pair of transmission lines connecting a plurality of apparatuses; a bridge termination resistor connected between the transmission lines and having a resistance value matching a differential impedance of the transmission lines; a first switch connecting the bridge termination resistor to the transmission lines when being turned on, and disconnecting the bridge termination resistor from the transmission lines when being turned off; pull-up/down resistors connected between the transmission lines and a fixed voltage node, and having resistance values respectively matching characteristic impedances of the transmission lines, the fixed voltage node being a power supply or a ground; and second switches connecting the pull-up/down resistors between the transmission lines and the fixed voltage node when being turned on, and disconnecting the pull-up/down resistors from the transmission lines when being turned off.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: October 1, 2013
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Suenaga, Osamu Shibata, Yoshiyuki Saito, Kohei Masuda, Yoshihide Komatsu, Masashi Suzuki
  • Patent number: 8547133
    Abstract: In a semiconductor device, a selector selects a different reference voltage depending on whether the impedance of a transmitter or of a receiver is to be adjusted, and causes a reference voltage generator to generate the selected reference voltage. The reference voltage generator generates the reference voltage selected by the selector and applies the generated reference voltage to an impedance adjuster. The impedance adjuster adjusts the impedance of the transmitter and the impedance of the receiver, separately from each other, in accordance with the input reference voltage.
    Type: Grant
    Filed: September 22, 2011
    Date of Patent: October 1, 2013
    Assignee: Fujitsu Limited
    Inventors: Noriyuki Tokuhiro, Kazumasa Kubotera, Yasutaka Kanayama
  • Patent number: 8547134
    Abstract: A system provides for a serial transmitter with multiplexing and driving functionality that is combined into a single stage to increase the overall speed of the serial transmitter. The single stage includes a dynamic impedance that is configured in parallel with a multiplexing driver to reduce the input capacitance and set the correct output impedance. The single stage can be implemented as a stacked or cross-coupled XOR logic circuit or a stacked or cross-coupled multiplexer (“mux”) as the multiplexing driver. In an embodiment where a mux is used as the multiplexing driver, a clock can be injected into the mux driver to overcome inter-symbol interference.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: October 1, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Axel Zafra-Petersson, Johan H. Mansson, Michael R. Elliott, Brad P. Jeffries
  • Publication number: 20130249592
    Abstract: In a semiconductor device having a terminal connected to an internal portion, a termination circuit for providing on-die termination for the terminal of the device. The termination circuit comprises a plurality of transistors, including at least one NMOS transistor and at least one PMOS transistor, connected between the terminal and a power supply; and control circuitry for driving a gate of each of NMOS transistor with a corresponding NMOS gate voltage and for driving a gate of each PMOS transistor with a corresponding PMOS gate voltage, the control circuitry being configured to control the NMOS and PMOS gate voltages so as to place the transistors in an ohmic region of operation when on-die termination is enabled. The power supply supplies a voltage that is less than each said NMOS gate voltage and greater than each said PMOS gate voltage.
    Type: Application
    Filed: May 28, 2013
    Publication date: September 26, 2013
    Applicant: MOSAID TECHNOLOGIES INCORPORATED
    Inventor: Peter B. GILLINGHAM
  • Patent number: 8542031
    Abstract: Disclosed is a circuit for adjusting a voltage supplied to an IC by a power supply circuit that produces a regulated-output voltage based on an output-control signal generated by a resistive voltage divider. The circuit includes a PVT detector configured to generate an interface control signal and an interface circuit (i) connected to PVT detector and to the resistive voltage divider and (ii) configured to adjust its resistance in response to the interface control signal. Adjusting the resistance of the interface circuit causes the voltage of the output-control signal to be adjusted, thus causing the power supply circuit to adjust the regulated output voltage.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: September 24, 2013
    Assignee: Agere Systems LLC
    Inventors: Kouros Azimi, Mohammad S. Mobin, Gregory W. Sheets, Lane A. Smith
  • Patent number: 8536894
    Abstract: In an integrated circuit for an output interface, a comparator is used to compare a reference voltage and a regulated voltage to provide a comparison output. A state machine is coupled to the comparator to increment or decrement a resistance setting output of the state machine responsive to the comparison output. A reference single-ended driver is coupled to receive the resistance setting output from the state machine. An output node of the reference single-ended driver is coupled to a reference node. From the reference node, the reference voltage is input to the comparator as a feedback voltage. Transistors of the reference single-ended driver are set to be in either at least a substantially conductive state or at least a substantially non-conductive state responsive to the resistance setting output to provide an internal source termination resistance as a reference resistance.
    Type: Grant
    Filed: June 18, 2012
    Date of Patent: September 17, 2013
    Assignee: Xilinx, Inc.
    Inventor: Sing-Keng Tan
  • Publication number: 20130234755
    Abstract: An impedance calibration device includes: a variable impedance, an operational unit, an analog-digital converter, and a controller. The operational unit receives a first analog signal and a second analog signal, and performs a difference operation to generate an output voltage. The analog-digital converter generates an adjustment code according to the output voltage. The controller is coupled to the analog-digital converter and the variable impedance, and adjusts a resistance value of the variable impedance according to the adjustment code.
    Type: Application
    Filed: February 11, 2013
    Publication date: September 12, 2013
    Applicant: REALTEK SEMICONDUCTOR CORP.
    Inventors: Che-Wei CHANG, Cheng-Pang CHAN, Jian-Ru LIN
  • Patent number: 8531206
    Abstract: High resolution output drivers having a relatively small number of sub-driver branches or slices each having nominal impedances substantially larger than a quantization step and that incrementally differ from one another by an impedance step substantially smaller than a quantization step. In one implementation, such “differential” or “non-uniform” sub-driver slices implement respective elements of an n choose k equalizer, with each such differential sub-driver slice being implemented by a uniform-element impedance calibration DAC. In another implementation, each component of a uniform-slice equalizer is implemented by a differential-slice impedance calibration DAC, and in yet another implementation, each component of a differential-slice equalizer is implemented by a differential-slice impedance calibration DAC.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: September 10, 2013
    Assignee: Rambus Inc.
    Inventors: Amir Amirkhany, Chaofeng Huang, Kambiz Kaviani, Wayne D. Dettloff, Kun-Yung Chang
  • Patent number: 8531037
    Abstract: Disclosed is a power supply line in which a voltage drop generated in a resistance component of a metal line which delivers a power voltage is minimized so that the level of the power supply voltage delivered to a semiconductor chip becomes constant in the entire area of the semiconductor chip. The semiconductor chip includes: at least two power supply pads to which a power voltage applied from an external unit of the semiconductor chip is supplied; power supply main metal lines connected to each of the power supply pads; power supply branch metal lines extended from each of the power supply main metal lines to deliver a power voltage to a circuit in the semiconductor chip; and at least an electrostatic discharge (ESD) improvement dummy pad, wherein the ESD improvement dummy pad is electrically connected to the corresponding power supply main metal line and the corresponding power supply branch metal line to minimize a voltage drop.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: September 10, 2013
    Assignee: Silicon Works Co., Ltd.
    Inventors: Yong-Icc Jung, Dae-Keun Han, Dae-Seong Kim, Joon-Ho Na
  • Patent number: 8531205
    Abstract: One embodiment relates to a programmable output buffer which includes first and second programmable variable-impedance single-ended driver circuits and first and second termination circuits. The first termination circuit is coupled to a first output pin which is driven by the first programmable variable-impedance single-ended driver circuit, and the second termination circuit is coupled to a second output pin which is driven by the second programmable variable-impedance single-ended driver circuit. The first and second termination circuits are programmable to either provide parallel termination for a differential signal or drive single-ended signals with the parallel termination turned off. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: September 10, 2013
    Assignee: Altera Corporation
    Inventors: Bonnie I. Wang, Chiakang Sung, Xiaobao Wang, Khai Nguyen, Joseph Huang
  • Patent number: 8525547
    Abstract: A USB-based isolator system conveys USB signals between a pair of galvanically isolated circuit systems and supports controlled enumeration by a downstream device on upstream USB signal lines. The isolator system provides a multi-mode voltage regulator to support multiple voltage supply configurations. The isolator system further provides control systems for each of the isolated circuit systems and provides robust control in a variety of start up conditions. Additionally, the isolator system includes refresh timers and watchdog mechanisms to support persistent operation but manage possible communication errors that can arise between the isolated circuit systems.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: September 3, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Eric Gaalaas, Mark Cantrell
  • Publication number: 20130222009
    Abstract: Semiconductor modules are provided. The semiconductor module includes a first semiconductor chip configured for storing an information signal that is set in response to a command/address signal and which determines reception of an on-die termination (ODT) signal in a power down mode in response to the information signal to control activation of a first ODT circuit; and a second semiconductor chip configured for sharing and utilizing the first ODT circuit included in the first semiconductor chip.
    Type: Application
    Filed: August 21, 2012
    Publication date: August 29, 2013
    Applicant: SK HYNIX INC.
    Inventor: Tae Jin KANG
  • Patent number: 8520348
    Abstract: A differential line driver with N-paralleled slices for driving an impedance-matched transmission line. Each driver slice is a modified H-bridge driver using low-voltage, high-speed transistors. By using a voltage-dropping first resistor in each slice, a high-voltage power supply that would normally damage the transistors can be used to power the driver and produce a differential output signal with peak-to-peak amplitudes that otherwise might not be possible. Each transistor in each driver slice has a resistor disposed between the transistor and the respective output node of the driver to enhance ESD protection of the transistors and, in combination with the first resistor, to impedance match the driver to the transmission line.
    Type: Grant
    Filed: December 22, 2011
    Date of Patent: August 27, 2013
    Assignee: LSI Corporation
    Inventor: Yikui Jen Dong
  • Patent number: 8519737
    Abstract: In one implementation, a memory device includes non-volatile memory and a memory controller communicatively coupled to the non-volatile memory over a first bus. The memory device can also include a host device interface through which the memory controller communicates with a host device over a second bus, wherein the host device interface includes an impedance calibration circuit that is adapted to calibrate a signal transmitted over the second bus by host device interface so that a source impedance associated with the signal matches, within a threshold value, a load impedance associated with the host device over the second bus.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 27, 2013
    Assignee: Apple Inc.
    Inventors: Anthony Fai, Nicholas Seroff, Nir Jacob Wakrat
  • Patent number: 8519738
    Abstract: An impedance calibration circuit includes: a first calibration unit configured to compare a first converted voltage obtained by converting a first calibration signal with a reference voltage and vary the first calibration signal; a voltage detection unit configured to activate a voltage detection signal according to a level of a power supply voltage; a multiplexing unit configured to select and output the reference voltage or the first converted voltage in response to the detection signal; and a second calibration unit configured to compare a second converted voltage obtained by converting a second calibration signal with the level of the output signal of the multiplexing unit and vary the second calibration signal.
    Type: Grant
    Filed: January 3, 2012
    Date of Patent: August 27, 2013
    Assignee: SK Hynix Inc.
    Inventor: Ki Ho Kim
  • Publication number: 20130214812
    Abstract: An impedance tuning circuit includes a calibration unit and a post-processing unit. The calibration unit generates an initial pull-up code and an initial pull-down code by performing a calibration operation using an external resistor during an initial impedance tuning operation. The post-processing unit outputs the initial pull-up code and the initial pull-down code as a final pull-up code and a final pull-down code during the initial impedance tuning operation, and generates the final pull-up code and the final pull-down code by using the initial pull-up code and the initial pull-down code during a subsequent impedance tuning operation.
    Type: Application
    Filed: October 25, 2012
    Publication date: August 22, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8513973
    Abstract: Implementations to mitigating side effects of impedance transformation circuits are described. In particular, mitigation circuitry may be coupled to a high impedance circuit to minimize or eliminate non-linear output of the high impedance circuit in order to provide a well-defined bias voltage to the input of a buffer or amplifier device coupled to a capacitive sensor. Additionally, the mitigation circuitry may be coupled to the high impedance circuit to reduce or eliminate rectifying effects of the high impedance circuit. Accordingly, a bias voltage can be utilized to provide a stable operating point of the buffer or amplifier device via a high impedance circuit utilizing one or more impedance transformations.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: August 20, 2013
    Assignee: Infineon Technologies AG
    Inventor: Dieter Draxelmayr
  • Publication number: 20130207687
    Abstract: A logic signal transmission circuit includes a driving circuit, an isolation section, and a latch section. The driving circuit converts an input digital signal to a differential digital signal. The isolation section blocks direct current and passes the differential digital signal. The latch section has even numbers of inverters which are connected in a loop and output a logic signal by turning ON and OFF a power supply voltage in a complementary manner. An input impedance of the latch section is set so that when a logic level of the differential digital signal changes, a transient voltage inputted through the isolation section to the latch section changes across a threshold voltage of the latch section. When the transient voltage changes across the threshold voltage, a logic level of the logic signal changes.
    Type: Application
    Filed: February 7, 2013
    Publication date: August 15, 2013
    Applicant: DENSO CORPORATION
    Inventor: DENSO CORPORATION
  • Patent number: 8508251
    Abstract: Example embodiments disclose a semiconductor device having an on-die termination (ODT) structure that reduces current consumption, and a termination method performed in the semiconductor device. The semiconductor device includes a calibration circuit for generating calibration codes in response to a reference voltage and a voltage of a calibration terminal connected to an external resistor and an on-die termination device for controlling a termination resistance of a data input/output pad in response to the calibration codes and an on-die termination control signal. The termination resistance of the data input/output pad is greater than a resistance of the calibration terminal.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: August 13, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jung-hwan Choi, Yang-ki Kim, Young Choi
  • Patent number: 8508252
    Abstract: A multi-PAM line driver circuit to drive input data along a transmission line from a voltage source is disclosed. The driver circuit includes a voltage source to supply a regulated voltage and a regulator current. A main branch is coupled between the voltage source and the transmission line and includes variable impedance circuitry. The main branch draws a drive current from the voltage source. A compensating branch is coupled to the voltage source in parallel with the main branch and includes a second variable impedance circuit to draw a compensating current from the voltage source based on the drive current, such that a sum of the drive current and the compensating current is substantially constant during the transmission of the input data.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: August 13, 2013
    Assignee: Aquantia Corporation
    Inventor: Ramin Farjadrad
  • Patent number: 8502557
    Abstract: Electrical networks are formed to produce an approximation of at least one desired performance characteristic, based on the recognition that fabrication variations introduce slight differences in electronic sub-networks which were intended to be identical. These fabrication differences are turned to an advantage by providing a pool of sub-networks, and then selectively connecting particular combinations of these sub-networks to implement networks that approximate the desired performance characteristics. The sub-networks are of like kind (e.g., resistors) and have a like measure.
    Type: Grant
    Filed: June 5, 2007
    Date of Patent: August 6, 2013
    Assignee: Analog Devices, Inc.
    Inventors: Arthur J. Kalb, Evaldo M. Miranda
  • Publication number: 20130194000
    Abstract: Electromagnetic radiation (“EMR”) dissipating devices. One example embodiment includes an electrical circuit including an EMR source configured to generate an output signal at an operating bit rate. The output signal may include an EMR component. The electrical circuit may also include an EMR dissipating device electrically coupled to the EMR source and configured to have a resonance frequency corresponding to the operating bit rate.
    Type: Application
    Filed: January 27, 2012
    Publication date: August 1, 2013
    Applicant: FINISAR CORPORATION
    Inventor: Yongshan Zhang
  • Publication number: 20130194001
    Abstract: A data output circuit includes a pre-code generation unit configured to generate one of a pre-pull-up code and a pre-pull-down code according to a calibration code in response to a voltage level of input data; and a plurality of main driving units configured to be selectively activated in response to an on-die termination code, wherein respective outputs of the plurality of main driving units are commonly connected to an output node, and wherein activated main driving units drive the output node in response to the pre-pull-up code or the pre-pull-down code.
    Type: Application
    Filed: September 3, 2012
    Publication date: August 1, 2013
    Applicant: SK HYNIX INC.
    Inventor: Jiwang LEE
  • Patent number: 8497730
    Abstract: A circuit includes a passive element having an impedance. An active circuit can be configured to receive an impedance signal associated with the impedance. The impedance includes a real portion and an imaginary portion. The active circuit removes at least a portion of the real portion of the impedance signal. The circuit can be utilized in a wide array of applications including radio applications.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: July 30, 2013
    Assignee: Rockwell Collins, Inc.
    Inventor: Russell D. Wyse
  • Patent number: 8497706
    Abstract: Apparatuses and methods for driving input data signals onto signal lines as output data signals are disclosed. An example apparatus includes a detection circuit, a driver adjust circuit, and a data driver. The detection circuit is configured to detect a characteristic(s) of a group of input data signals to be driven onto adjacent signal lines. A characteristic could be, for example, a particular combination of logic levels and/or transitions for, the group of input data signals. The driver adjust circuit is configured to provide a driver adjustment signal based at least in part on a detection signal, that is provided by the detection circuit. A data driver is configured to drive a respective one of the group of input data signals as a respective one of the output data signals, wherein the data driver is adjusted based at least in part on the driver adjustment signal.
    Type: Grant
    Filed: August 15, 2011
    Date of Patent: July 30, 2013
    Assignee: Micron Technology, Inc.
    Inventors: Timothy M. Hollis, Bruce W. Schober
  • Publication number: 20130187679
    Abstract: Digital memory devices and systems, including memory systems and methods for operating such memory systems are disclosed. In the embodiments, a memory system may include a processor and a memory controller communicatively coupled to the processor. A memory bus communicates with at least two memory units through the memory bus. At least one divider unit may be interposed between the memory bus and the at least two memory units that is configured to approximately equally divide levels of received signals while matching an impedance of the memory bus to an impedance of the memory units.
    Type: Application
    Filed: March 12, 2013
    Publication date: July 25, 2013
    Applicant: Micron Technology, Inc.
    Inventor: Micron Technology, Inc.
  • Patent number: 8493110
    Abstract: A device in which a clock generation circuit is connected to a counter circuit for controlling operation timing of a DLL circuit or the like, and the counter circuit is intermittently operated by intermittently supplying a clock signal to the counter circuit from the clock generation circuit.
    Type: Grant
    Filed: July 15, 2011
    Date of Patent: July 23, 2013
    Assignee: Elpida Memory, Inc.
    Inventors: Yoshio Mizukane, Hiroki Fujisawa
  • Publication number: 20130182513
    Abstract: Provided are a semiconductor memory device and a memory system including the same, which may calibrate a level of an output voltage in consideration of channel environment and a mismatch in on-die termination (ODT) resistance of a memory controller. The memory system includes a memory controller and a semiconductor memory device. The semiconductor memory device is configured to generate a reference voltage based on driving information of the memory controller, and calibrate an output voltage level based on a reference voltage when the semiconductor memory device is electrically connected to the memory controller.
    Type: Application
    Filed: September 12, 2012
    Publication date: July 18, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yoon-Joo EOM, Young-Jin JEON, Yong-Cheol BAE, Young-Chul CHO
  • Patent number: 8487650
    Abstract: Disclosed are methods and circuits that support different on-die termination (ODT) schemes for a plurality of signaling schemes using a relatively small number of external calibration pads. These methods and circuits develop control signals for calibrating any of multiple termination schemes that might be used by associated communication circuits. The ODT control circuits, entirely or predominantly instantiated on-die, share circuit resources employed in support of the different termination schemes to save die area.
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: July 16, 2013
    Assignee: Rambus Inc.
    Inventors: Hajee Mohammed Shuaeb Fazeel, Amir Amirkhany, Gundlapalli Shanmukha Srinivas, Chaofeng Huang
  • Patent number: 8483986
    Abstract: Variations of the impedance of each output driver of a semiconductor device can be reduced, and high-speed calibration is achieved. A calibration circuit including a replica circuit having the same configuration as each pull-up circuit or pull-down circuit included in an output driver of a semiconductor device is provided within a chip. During a first calibration operation, the replica circuit is provided with voltage conditions that allow the maximum current to flow through the output driver so that an impedance of the replica circuit is equal to a value of an external resistor. During a second calibration operation, table parameters obtained in the first calibration operation are used to adjust the impedance of the output driver without use of the replica circuit.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: July 9, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Yoshiro Riho
  • Patent number: 8482311
    Abstract: An output buffer circuit includes a control unit and an output driver. The control unit generates a control signal in response to a mode signal applied from an internal circuit. The output driver selectively performs a driver operation, a termination operation or an electrostatic discharge (ESD) protection operation in response to the control signal.
    Type: Grant
    Filed: July 11, 2011
    Date of Patent: July 9, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Kyung-Hoi Koo