With Choice Between Multiple Delayed Clocks Patents (Class 327/152)
  • Patent number: 11456749
    Abstract: A timing margin detecting circuit is provided. The timing margin detecting circuit comprises a delay element, receiving a first data signal and a first clock signal, configured to generate a second data signal and a second clock signal, wherein the second clock signal has a delay relative to the second data signal; a controller, configured to generate the control signal to control the delay of the second clock signal relative to the second data signal; a sampler, coupled to the delay element, configured to generate a sampled data signal according to the second data signal and the second clock signal; and a bit error rate determination circuit, coupled to the sampler, configured to determine whether the sampled data signal is the same as a predefined test pattern and generate a determination result accordingly; wherein the controller determines a timing margin according to the determination result.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: September 27, 2022
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Hao-Wei Hung, Wei-Sheng Tseng
  • Patent number: 11385282
    Abstract: A semiconductor integrated circuit (IC) comprising a signal path combiner, comprising a plurality of input paths and an output path. The IC comprises a delay circuit having an input electrically connected to the output path, the delay circuit delaying an input signal by a variable delay time to output a delayed signal path. The IC may comprise a first storage circuit electrically connected to the output path and a second storage circuit electrically connected to the delayed signal path. The IC comprises a comparison circuit that compares outputs of the signal path combiner and the delayed signal, wherein the comparison circuit comprises a comparison output provided in a comparison data signal to at least one mitigation circuit.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: July 12, 2022
    Assignee: PROTEANTECS LTD.
    Inventors: Evelyn Landman, Shai Cohen, Yahel David, Eyal Fayneh, Inbar Weintrob
  • Patent number: 11275401
    Abstract: Various implementations described herein are directed to a device having alarm circuitry that receives a clock signal and provides alarm chain signals based on the clock signal. The device may include delay chain circuitry that receives the alarm chain signals from the alarm circuitry and provides delay chain signals. The device may include output circuitry that receives the delay chain signals from the delay chain circuitry and provides an alarm control signal based on the delay chain signals.
    Type: Grant
    Filed: January 15, 2020
    Date of Patent: March 15, 2022
    Assignee: Arm Limited
    Inventor: Ivan Michael Lowe
  • Patent number: 11228318
    Abstract: Exemplary aspects of the present disclosure involve a system and related method of PLL circuitry in a chirp signaling FMCW system having a variable PLL bandwidth (BW). To adjust the BW, the PLL circuitry may provide for variable capacitance in the circuitry. This capacitance change may allow for a bandwidth for one slope, as used for the acquisition period. The capacitance may then be adjusted to allow for a different bandwidth for another slope which is used to reset the circuitry in preparation for another frequency sweep. Adjusting the PLL BW, via variable capacitance, may be used to mitigate phase noise which can adversely the PLL.
    Type: Grant
    Filed: October 29, 2020
    Date of Patent: January 18, 2022
    Assignee: NXP B.V.
    Inventors: Tarik Saric, Piotr Gibas, Zhirui Zong
  • Patent number: 11146275
    Abstract: A signal generation circuit includes a synchronization circuit, a pulse width control circuit, and an output circuit. The synchronization circuit synchronizes an input signal with a clock signal to generate a synchronization signal. The pulse width control circuit generates a start signal from the synchronization signal and generate an end signal by delaying the synchronization signal by a time corresponding to an off control signal in synchronization with the clock signal. The output circuit generates an output signal based on the start signal and the end signal.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: October 12, 2021
    Assignee: SK hynix Inc.
    Inventors: Gyu Tae Park, Jin Il Chung
  • Patent number: 10990555
    Abstract: Embodiments herein describe an interface between PL fabric and a hardened block that includes a programmable pipeline. This pipeline includes at least a sequential element and a bypass path. For time critical nets in a netlist, the programmable IC routes a net through the sequential element. Doing so mitigates or eliminates the uncertainty associated with routing the net from the hardened block through PL fabric. Also, the sequential element can increase the available time for capturing the data. For less time critical nets, the net can route through the bypass path. This means the route from the hardened block to the PL fabric is determined on the fly by a routing algorithm rather than being fixed.
    Type: Grant
    Filed: January 6, 2020
    Date of Patent: April 27, 2021
    Assignee: XILINX, INC.
    Inventors: Aashish Tripathi, Sundeep Ram Gopal Agarwal
  • Patent number: 10965442
    Abstract: A receiver is provided that includes a time-to-digital converter for converting a phase difference between a clock signal and a received data signal into a phase-difference digital code. The receiver also includes a logic circuit that controls a programmable delay line to delay the clock signal into a delayed clock signal by a delay that is responsive to a difference between the phase-difference code and a unit interval for the clock signal. The delayed clock signal clocks a flip-flop to register the received data signal.
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: March 30, 2021
    Assignee: QUALCOMM INCORPORATED
    Inventors: Eskinder Hailu, Bupesh Pandita, Jon Boyette, Hadi Goudarzi, Yong Suk Jun, Zhi Zhu, Minhan Chen
  • Patent number: 10944387
    Abstract: A delay line includes a delay chain, a pulse generator generating a pulse based on a received input signal, and a delay chain control circuit. The delay chain control circuit has a first input receiving the pulse, a second input receiving output from a last element of the delay chain, and a selection input receiving a delayed version of the received input signal. The delay chain control circuit has an output coupled to provide input to a first element of the delay chain in response to the delayed version of the received input signal. An output selection circuit receives outputs from each element of the delay chain, counts assertions of the output of the last element of the delay chain and, in response to the count being equal to a desired count, passes a desired one of the outputs of the elements of the delay chain as output.
    Type: Grant
    Filed: June 9, 2020
    Date of Patent: March 9, 2021
    Assignee: STMicroelectronics International N.V.
    Inventors: Ankur Bal, Jeet Narayan Tiwari
  • Patent number: 10581416
    Abstract: Aspects of the present disclosure provide for a method. In some examples, the method includes receiving a synchronization signal, dividing the synchronization signal to form a first divided signal and a second divided signal, generating a first ramp signal and a second ramp signal, setting a latch output to a logical high value when the first divided signal has a logical high value or a value of the first ramp signal exceeds a value of a reference signal, setting the latch output to a logical low value when the second divided signal has a logical high value or a value of the second ramp signal exceeds the value of the reference signal, generating a synchronization clock according to the latch output and an inverse of the latch output, and outputting the latch output or the synchronization clock as a clock signal based on a value of a synchronization active signal.
    Type: Grant
    Filed: March 21, 2019
    Date of Patent: March 3, 2020
    Assignee: Texas Instruments Incorporated
    Inventors: Junhong Zhang, Angelo Pereira, Pinar Korkmaz, Sujan Manohar, Michael Munroe
  • Patent number: 10439615
    Abstract: The present embodiments relate to clock-data phase alignment circuitry in source-synchronous interface circuits. Source-synchronous interface standards require the transmission and reception of a clock signal that is transmitted separately from the data signal. On the receiver side, the clock signal must be phase shifted relative to the data signal to enable the capture of the data. Clock-data phase alignment circuitry is presented that may receive a differential clock with complementary clock signals CLK_P and CLK_N. An adjustable delay circuit and clock distribution network may delay clock signal CLK_P and provide the delayed clock signal to a storage circuit that may store the data signal. A replica clock distribution network and a replica adjustable delay circuit may form a feedback path and provide the delayed first clock signal back to clock phase adjustment circuitry which may control the adjustment of the adjustable delay circuit and the replica adjustable delay circuit.
    Type: Grant
    Filed: January 14, 2019
    Date of Patent: October 8, 2019
    Assignee: Altera Corporation
    Inventors: Dinesh Patil, Kok Hong Chan, Wai Tat Wong, Chuan Thim Khor
  • Patent number: 10218360
    Abstract: The present embodiments relate to clock-data phase alignment circuitry in source-synchronous interface circuits. Source-synchronous interface standards require the transmission and reception of a clock signal that is transmitted separately from the data signal. On the receiver side, the clock signal must be phase shifted relative to the data signal to enable the capture of the data. Clock-data phase alignment circuitry is presented that may receive a differential clock with complementary clock signals CLK_P and CLK_N. An adjustable delay circuit and clock distribution network may delay clock signal CLK_P and provide the delayed clock signal to a storage circuit that may store the data signal. A replica clock distribution network and a replica adjustable delay circuit may form a feedback path and provide the delayed first clock signal back to clock phase adjustment circuitry which may control the adjustment of the adjustable delay circuit and the replica adjustable delay circuit.
    Type: Grant
    Filed: August 2, 2016
    Date of Patent: February 26, 2019
    Assignee: Altera Corporation
    Inventors: Dinesh Patil, Kok Hong Chan, Wai Tat Wong, Chuan Thim Khor
  • Patent number: 10134463
    Abstract: Described is an apparatus which comprises: a comparator to be clocked by a clock signal to be provided by a clocking circuit, wherein the clocking circuit includes: a voltage controlled delay line having two or more delay cells; a multiplexer coupled to the voltage controlled delay line and operable to configure the clocking circuit as a ring oscillator with the voltage controlled delay line forming at least one delay section of the ring oscillator; and select logic coupled to the multiplexer, the select logic is to receive a signal indicating arrival of an input clock, and is to control the multiplexer according to the indication. Described is also an apparatus which comprises: a data path to receive input data; and a clock path to receive an input clock and to provide a preconditioned clock to the data path when the input clock is absent.
    Type: Grant
    Filed: October 9, 2017
    Date of Patent: November 20, 2018
    Assignee: Intel Corporation
    Inventors: Mozhgan Mansuri, Aaron Martin, James A. McCall
  • Patent number: 9935542
    Abstract: A method for implementing a Semiconductor Integrated Circuit device using Near/Sub-threshold technology with SOFTWARE programmable Adaptive Dynamic Voltage Control (ADVC) algorithm using different sensors inside the chip in order to improve the target speed and reduce the energy per operation of the final product. This method achieves the best power per performance for a given solution operating at a required speed.
    Type: Grant
    Filed: March 4, 2016
    Date of Patent: April 3, 2018
    Assignee: PLSense Ltd.
    Inventors: Uzi Zangi, Neil Feldman
  • Patent number: 9853635
    Abstract: A double frequency-shift keying modulating device includes a modulation module. The modulation module receives an oscillating signal and a digital signal, and generates a modulation output signal that has a first frequency. The first frequency is associated with a frequency of the oscillating signal and varies periodically at a second frequency. The second frequency is associated with the digital signal and the frequency of the oscillating signal.
    Type: Grant
    Filed: August 21, 2016
    Date of Patent: December 26, 2017
    Assignee: NATIONAL CHI NAN UNIVERSITY
    Inventors: Yo-Sheng Lin, Chien-Chu Chi, Ching-Hung Peng
  • Patent number: 9800234
    Abstract: A clock and data recovery circuit and a phase interpolator therefor are provided. The clock and data recovery circuit includes a phase-locked loop, a control unit and the phase interpolator, a receiving circuit, a serial-to-parallel conversion circuit. The phase interpolator is connected with the control unit of the clock and data recovery circuit, and the phase interpolator includes: an encoding circuit, two multiplexers, a clock mixer, and two differential to single-ended amplifiers. The control unit is configured to further control the encoding circuit to change a delay position for a clock outputted by the phase interpolator in a case that the data sampled in the current clock position is not the optimal sampled data, to lead or lag the clock, thereby forming a stable state in which the clock follows the data dynamically.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: October 24, 2017
    Assignee: LONTIUM SEMICONDUCTOR CORPORATION
    Inventors: Lianliang Tai, Hongfeng Xia, Xi Xu, Diansheng Ren, Cheng Tao, Feng Chen
  • Patent number: 9768809
    Abstract: This application discusses, among other things, apparatus and methods for improving spurious frequency performance of digital-to-time converters (DTCs). In an example, a method can include receiving a code at selection logic of a digital-to-time converter at a first instant, selecting a first delay path of the DTC to provide a delay associated with the code, associating a second delay path with the code, receiving the code at the selection logic at a second instant, and selecting the second delay path of the DTC to provide the delay associated with the code.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: September 19, 2017
    Assignee: Intel IP Corporation
    Inventors: Stefan Tertinek, Peter Preyler, Thomas Mayer
  • Patent number: 9722537
    Abstract: A novel and useful look-ahead time to digital converter (TDC) that is applied to an all digital phase locked loop (ADPLL) as the fractional phase error detector. The deterministic nature of the phase error during frequency/phase lock is exploited to achieve a reduction in power consumption of the TDC. The look-ahead TDC circuit is used to construct a cyclic DTC-TDC pair which functions to reduce fractional spurs of the output spectrum in near-integer channels by randomly rotating the cyclic DTC-TDC structure so that it starts from a different point every reference clock thereby averaging out the mismatch of the elements. Associated rotation and dithering methods are also presented. The ADPLL is achieved using the look-ahead TDC and/or cyclic DTC-TDC pair circuit.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: August 1, 2017
    Assignee: Short Circuit Technologies LLC
    Inventors: Gerasimos S. Vlachogiannakis, Augusto Ronchini Ximenes, Robert Bogdan Staszewski
  • Patent number: 9672008
    Abstract: A system, method, and computer program product are provided for a pausible bisynchronous FIFO. Data is written synchronously with a first clock signal of a first clock domain to an entry of a dual-port memory array and an increment signal is generated in the first clock domain. The increment signal is determined to transition near an edge of a second dock signal, where the second clock signal is a pausible clock signal. A next edge of the second clock signal of the second clock domain is delayed and the increment signal to the second clock domain and is transmitted.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: June 6, 2017
    Assignee: NVIDIA Corporation
    Inventors: Benjamin Andrew Keller, Matthew Rudolph Fojtik, Brucek Kurdo Khailany
  • Patent number: 9600018
    Abstract: Methods and circuits for performing a clock-stop process of a circuit are disclosed. For example, a circuit includes a clock group having a first clock domain, a first clock multiplexer, a first synchronizer and a controller. The controller is configured to initiate a clock stop process of the circuit by sending an alternative mode signal to the first synchronizer. The first synchronizer is configured to synchronize the alternative mode signal to a clock of the first clock domain and is further configured to output, to a select line of the first clock multiplexer, the alternative mode signal that is synchronized to the clock of the first clock domain. The select line of the first clock multiplexer is for selecting from between an input of the first clock multiplexer for the clock of the first clock domain and an alternative clock input of the first clock multiplexer for an alternative clock signal from the controller.
    Type: Grant
    Filed: June 9, 2014
    Date of Patent: March 21, 2017
    Assignee: XILINX, INC.
    Inventors: Amitava Majumdar, Balakrishna Jayadev, Ismed D. Hartanto
  • Patent number: 9577625
    Abstract: A semiconductor device including a common delay circuit configured to delay an input signal in response to a delay control code to output a first delayed input signal and a second delayed input signal; a first delay circuit configured to delay the first delayed input signal in response to the delay control code and to output a first output signal; and a second delay circuit configured to delay the second delayed input signal in response to the delay control code and to output a second output signal.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 21, 2017
    Assignee: SK Hynix Inc.
    Inventors: Yong-Hoon Kim, Hyun-Woo Lee
  • Patent number: 9484955
    Abstract: A semiconductor memory apparatus may include a cyclic redundancy check (CRC) circuit block electrically coupled with a first pad, and configured to generate internal CRC information from data received from the first pad. The semiconductor memory apparatus may also include a comparison unit configured to compare external CRC information received from outside the semiconductor memory apparatus with the internal CRC information, and generate a read training result signal.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: November 1, 2016
    Assignee: SK HYNIX INC.
    Inventor: Ha Jun Jeong
  • Patent number: 9363069
    Abstract: A clock generating device is disclosed. The clock generating device includes a clock generating unit, for counting a synchronization period of a synchronization signal, generating a first interrupt signal according to the synchronization signal, generating a pulse-width modulation signal according a control signal, counting a phase difference between the synchronization signal and the pulse-width modulation signal, and generating a second interrupt signal according to the pulse-width modulation signal; and a computing unit, for acquiring the synchronization period according to the first interrupt signal, acquiring the phase difference according to the second interrupt signal, and adjusting the control signal according to the synchronization period, a modulation period of the pulse-width modulation signal and the phase difference.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: June 7, 2016
    Assignee: NOVATEK Microelectronics Corp.
    Inventors: Chieh-Hao Wang, Wei-Jen Lo, Sen-Lin Kuo, Pao-Chen Shih
  • Patent number: 9276464
    Abstract: A voltage generation circuit is provided, which includes a pumping unit generating a high voltage and a voltage regulation unit controlling the pumping unit to generate a target voltage in a first mode and controlling the pumping unit to generate a reserve voltage and generating the target voltage through down conversion of the reserve voltage in a second mode.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: March 1, 2016
    Assignee: SK HYNIX INC.
    Inventor: Gyo-Soo Chu
  • Patent number: 9246497
    Abstract: Circuits and techniques for operating an integrated circuit (IC) are disclosed. A disclosed circuit includes a divider circuit that is operable to receive a first signal at a first speed and output a second signal at a second speed based on the first signal. A recovery circuit is coupled to the divider circuit. The recovery circuit is operable to determine the frequency of the second signal and is further operable to generate a first ready signal and a recovered clock signal based on the second signal. A phase aligner circuit, operable to align a phase of the second signal with a phase of the recovered clocks signal based on the first ready signal, is coupled to the recovery circuit.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: January 26, 2016
    Assignee: Altera Corporation
    Inventor: Han Hua Leong
  • Patent number: 9235537
    Abstract: A memory system in which a timing drift that would occur in distribution of a first timing signal for data transport in a memory device is determined by measuring the actual phase delays occurring in a second timing signal that has a frequency lower than that of the first timing signal and is distributed in one or more circuits mimicking the drift characteristics of at least a portion of distribution of the first timing signal. The actual phase delays are determined in the memory device and provided to a memory controller so that the phases of the timing signals used for data transport may be adjusted based on the determined timing drift.
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: January 12, 2016
    Assignee: Rambus Inc.
    Inventors: Jun Kim, Pak Shing Chau, Wayne S. Richardson
  • Patent number: 9112516
    Abstract: According to one embodiment, a semiconductor device is provided with first to third circuits. The first circuit generates first information that indicates a corresponding relationship between a period of a reference clock and a delay amount per delay element. The second circuit generates second information that indicates the number of stages of delay elements corresponding to a set phase difference based on the first information. The third circuit generates a delayed clock by delaying the reference clock just a delay amount of stages of the delay elements indicating the second information.
    Type: Grant
    Filed: September 10, 2013
    Date of Patent: August 18, 2015
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Natsuki Kushiyama
  • Patent number: 9112646
    Abstract: One embodiment relates to an interpolator-based clock and data recovery (iCDR) circuit. The iCDR circuit includes an automatic gain control circuit arranged to generate an interpolation jump size signal when a targeted sampling detection signal is asserted. The targeted sampling detection signal may be asserted when sampling by the phase detector of the iCDR circuit is within a targeted range. The interpolation jump size signal may indicate a number of phase steps to shift an interpolation state signal if a jump is indicated by a filtered feedback signal. Other embodiments and features are also disclosed.
    Type: Grant
    Filed: February 11, 2014
    Date of Patent: August 18, 2015
    Assignee: Altera Corporation
    Inventors: Chuan Thim Khor, Chuan Khye Chai
  • Patent number: 9018990
    Abstract: A duty cycle tuning circuit and a method thereof are provided, in which the duty cycle tuning circuit includes multiple interpolation circuits, an edge detection circuit, and a delay chain. Each interpolation circuit receives multiple phase clocks, and interpolates an interpolation clock from two of the phase clocks. The phase clocks have the same frequency but different phases. The edge detection circuit is connected electrically to the delay chain, and generates an output clock according to an edge of the interpolation clock.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: April 28, 2015
    Assignee: Realtek Semiconductor Corp.
    Inventor: Ye Liu
  • Patent number: 8994419
    Abstract: A semiconductor device may include first to fourth output lines, an input signal latch unit suitable for latching first to fourth input signals that are sequentially inputted in response to first to fourth clocks having sequential phases, respectively, a valid signal latch unit suitable for latching a valid signal in response to one clock among the first to fourth clocks, where the valid signal corresponds to one input signal among the first to fourth input signals and represents whether the corresponding input signal is valid or not, and a signal transfer unit suitable for transferring the latched input signals, which are obtained by latching the input signals in response to the first to fourth clocks, to the first to fourth output lines based on a correspondence relationship that is decided based on a valid signal latch result of the valid signal latch unit.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: March 31, 2015
    Assignee: SK Hynix Inc.
    Inventor: Young-Jun Ku
  • Patent number: 8983012
    Abstract: A novel receive timing manager is presented. The preferred embodiment of the present invention comprises an edge detection logic to detect the data transition points, a plurality of data flip-flops for storing data at different sample points, and a multiplexer to select the ideal sample point based on the transition points found. A sample window is made with multiple samples. The sample window size can be designed smaller or greater than the system clock period based on the data transfer speed and accuracy requirement.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: March 17, 2015
    Assignee: Texas Instruments Incorporated
    Inventors: Denis Roland Beaudoin, Ritesh Dhirajlal Sojitra, Gregory Lee Christison
  • Patent number: 8976054
    Abstract: A time-to-digital conversion circuit for converting a time difference between two input signals to a 1-bit digital value, and adjusting the time difference between the two input signals to generate two output signals includes: a phase comparator configured to compare phases of the two input signals with each other to generate the digital value; a phase selector configured to output one of the two input signals which has a leading phase as a first signal, and the other of the two input signals which has a lagging phase as a second signal; and a delay unit configured to output the first signal with a delay, wherein the time-to-digital conversion circuit outputs the signal output from the delay unit and the second signal as the two output signals.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: March 10, 2015
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Shiro Dosho, Masao Takayama, Takuji Miki
  • Publication number: 20150048870
    Abstract: A semiconductor device may include first to fourth output lines, an input signal latch unit suitable for latching first to fourth input signals that are sequentially inputted in response to first to fourth clocks having sequential phases, respectively, a valid signal latch unit suitable for latching a valid signal in response to one clock among the first to fourth clocks, where the valid signal corresponds to one input signal among the first to fourth input signals and represents whether the corresponding input signal is valid or not, and a signal transfer unit suitable for transferring the latched input signals, which are obtained by latching the input signals in response to the first to fourth clocks, to the first to fourth output lines based on a correspondence relationship that is decided based on a valid signal latch result of the valid signal latch unit.
    Type: Application
    Filed: December 17, 2013
    Publication date: February 19, 2015
    Applicant: SK hynix Inc.
    Inventor: Young-Jun KU
  • Patent number: 8957713
    Abstract: Methods and devices provide for determining whether to operate a radio frequency synthesizer in a first mode of operation or a second mode of operation based on a reference frequency signal. The radio frequency synthesizer includes a digitally-controlled oscillator configured to generate an oscillator signal having an output frequency. A digital frequency locked-loop is configured to control the output frequency of the oscillator signal in a first mode of operation based on a first control signal. A digital phase locked-loop is configured to control the output frequency of the oscillator signal in a second mode of operation based on a second control signal. A controller determines whether to operate in the first mode or second mode based on a reference frequency signal. The controller generates the first or second control signal based on the determination of operating in the first or second mode, respectively.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: February 17, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Olivier Burg, Cao-Thong Tu
  • Patent number: 8957714
    Abstract: A master measure circuit is disclosed that may select from various nodes on a delay path carrying a signal. The master measure circuit measures the delay for propagation of the signal from one selected node to another selected node and controls an adjustable delay circuit in the delay path accordingly.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 17, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Vaishnav Srinivas, Jan Christian Diffenderfer, Philip Michael Clovis, David Ian West
  • Patent number: 8917123
    Abstract: An integrated circuit includes an N number of functional logic blocks, with N being greater than or equal to two, and clock staggering test circuitry. When the clock staggering test circuitry is in a shift mode, N staggered shift clock signals are generated for respective ones of the N functional logic blocks. Each of the N staggered shift clock signals has a frequency equal to a frequency of an external test clock signal divided by M, where M is greater than or equal to N. The peak power of the integrated circuit is reduced during the shift mode as a result of the staggered shift clock signals.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: December 23, 2014
    Assignee: STMicroelectronics International N.V.
    Inventors: Swapnil Bahl, Shray Khullar
  • Patent number: 8816729
    Abstract: Methods and systems for synchronizing an electric grid having unbalanced voltages are provided. A voltage vector may be filtered in a quadrature tracking filter (QTF) to generate a quadrature signal. The inputs to the QTF may be either single input, multiple outputs, or alternatively, multiple inputs, multiple outputs. Furthermore, the second state of either of the two QTF transformations may be either positive or negative. A phase-locked-loop (PLL) operation may be performed on the quadrature signal to monitor a voltage vector between the grid and a connected power converter. The QTF and PLL methods are suitable for either single-phase applications or n-phase (any number of phases) applications.
    Type: Grant
    Filed: May 10, 2012
    Date of Patent: August 26, 2014
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Russel J. Kerkman, Ahmed Mohamed Sayed Ahmed, Brian J. Seibel, Carlos Rodriguez Valdez
  • Publication number: 20140210526
    Abstract: A rotational synchronizer for metastability resolution is disclosed. A synchronizer includes a plurality of M+1 latches each coupled to receive data through a common data input. The synchronizer further includes a multiplexer having a N inputs each coupled to receive data from an output of a corresponding one of the M+1 latches, and an output, wherein the multiplexer is configured to select one of its inputs to be coupled to the output. A control circuit is configured to cause the multiplexer to sequentially select outputs of the M+1 latches responsive to N successive clock pulses, and further configured to cause the M+1 latches to sequentially latch data received through the common data input.
    Type: Application
    Filed: January 31, 2013
    Publication date: July 31, 2014
    Applicant: Oracle International Corporation
    Inventors: Robert P. Masleid, Ali Vahidsafa
  • Patent number: 8766680
    Abstract: A voltage translation circuit (116) provides an output analog voltage signal that has a translated voltage of the voltage of an input analog voltage signal over a range of values of the input analog voltage signal. The voltage translation circuit includes an input stage (202) having a circuit node and an input transistor (210) coupled between the circuit node and a power supply terminal, wherein a gate of the input transistor is coupled to receive the input analog voltage signal; a current path circuit (204) in parallel with the input transistor, wherein the current path includes a first transistor coupled between the circuit node and the power supply terminal; and a circuit coupled to provide a variable body bias voltage to a body of the first transistor.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: July 1, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Xinghai Tang, Gayathri A. Bhagavatheeswaran, Hector Sanchez
  • Patent number: 8742807
    Abstract: An apparatus comprising a first phase circuit, a second phase circuit, and a current steering circuit. The first phase circuit may be configured to generate a first portion of a phase interpolated clock signal in response to (i) a control signal, (ii) a first bias signal, and (iii) a feedback of said phase interpolated clock signal. The second phase circuit may be configured to generate a second portion of the phase interpolated clock signal in response to (i) the control signal, (ii) a second bias signal, and (iii) the feedback of the phase interpolated clock signal. The current steering circuit may be configured to generate the first bias signal and the second bias signal in response to a reference bias signal.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: June 3, 2014
    Assignee: Ambarella, Inc.
    Inventor: Harish S. Muthali
  • Publication number: 20140139275
    Abstract: A method and a system are provided for variation-tolerant synchronization. A phase value representing a phase of a second clock signal relative to a first clock signal and a period value representing a relative period between the second clock signal and the first clock signal are received. An extrapolated phase value of the second clock signal relative to the first clock signal corresponding to a next transition of the first clock signal is computed based on the phase value and the period value.
    Type: Application
    Filed: November 20, 2012
    Publication date: May 22, 2014
    Applicant: NVIDIA CORPORATION
    Inventors: William J. Dally, Stephen G. Tell
  • Patent number: 8724677
    Abstract: Provided are a method and apparatus (receiver) of receiving and processing a radio signal in a transmitter-receiver environment. The radio signals are transmitted across a wireless interface using Ultra Wideband (UWB) pulses. A transmitted reference approach is utilized. The radio signal include pairs of UWB pulses with each pair of pulses separated by a fixed time delay. The two pulses are then combined to provide for improved noise immunity.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: May 13, 2014
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Patent number: 8704562
    Abstract: An apparatus and method for providing an output signal. The apparatus comprises an input for receiving a reference signal, an oscillator for providing an output signal, and an offset signal generator for frequency multiplying the reference signal to generate an offset signal that has a plurality of frequency products in a plurality of frequency bands. The apparatus further includes a mixer for mixing the offset signal with the output signal to produce a combined signal, an offset frequency selector for controllably selecting a frequency band of the offset signal, and a difference detector for detecting a difference between the reference signal and the combined signal and for providing a control signal to the oscillator based on the detected difference.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: April 22, 2014
    Assignee: Nanowave Technologies Inc.
    Inventors: Charles William Tremlett Nicholls, Walid Hamdane
  • Patent number: 8704560
    Abstract: A multi-phase signal generators and methods for generating multi-phase signals are described. In one embodiment, a clock generator generates quadrature signals including those having 90, 180, 270 and 360 degrees phase difference with a first signal. The rising edge of an intermediate signal is compared with the rising edges of two of the other signals to generate an UP and DN pulse signal, respectively. The UP and DN signals are used to adjust the delay of a delay line producing the signals to synchronize the signals. In some embodiments, a reset signal generator is used to truncate the UP or DN signal pulse.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: April 22, 2014
    Assignee: Micron Technology, Inc.
    Inventor: Yantao Ma
  • Patent number: 8704565
    Abstract: According to one embodiment, a lock detection circuit includes an initial state response circuit. The initial state response circuit is configured to output a third control signal to delay lines and cause a charge pump to stop an output of a second control signal when a pulse width modulation signal is not input, the third control signal is configured to control a delay amount to cause a delay amount of an entire delay circuit to be within one selected from a range in which an OVER signal generation circuit is operable, a range in which an UNDER signal generation circuit is operable, and a range that is greater than an UNDER threshold and less than an OVER threshold.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: April 22, 2014
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Toyoaki Uo
  • Patent number: 8638137
    Abstract: A semiconductor device includes a delay unit configured to delay an inputted clock to generate a delay clock, a selection unit configured to select and output one of the inputted clock and the delay clock, a delay locked loop configured to perform a delay locking operation using a signal delivered from the selection unit, and a selection control unit configured to control the selection unit in response to a comparison of one period of the inputted clock and a maximum delay value of the delay locked loop.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: January 28, 2014
    Assignee: Hynix Semiconductor Inc.
    Inventor: Jin Il Chung
  • Patent number: 8588270
    Abstract: The invention includes a method for transmitting and detecting high speed Ultra Wideband pulses across a wireless interface. The transmitter includes a serializer and pulse generator. The receiver comprises a fixed delay line, multiplier, local serializer (with a sequence matching the transmitter), digital delay lines, low noise amplifier and logic fan-out buffer along with an array of D flip-flop pairs. Each flip-flop pair is enabled, at fixed time increments, to detect signals at a precise time; the timing is controlled by the pseudo-random sequence generated by the local serializer. A local tunable oscillator is controlled by detecting the phase change of the incoming signal and applying compensation to maintain the phase alignment and clock synchronization of the receiver to the clock reference of the transmitter. The invention uses a pair of pulses with a fixed delay and then relies on mixing the two to provide better noise immunity.
    Type: Grant
    Filed: December 4, 2012
    Date of Patent: November 19, 2013
    Assignee: University of South Florida
    Inventor: James L. Tucker
  • Patent number: 8559581
    Abstract: Disclosed herein is a CDR circuit including delay elements, including: a divider having a delay element and configured to extract a clock by using, as a trigger, a data input with a signal transition regularly inserted; and a latch configured to latch an input data signal in synchronization with the clock extracted by the divider.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: October 15, 2013
    Assignee: Sony Corporation
    Inventors: Tomokazu Tanaka, Hidekazu Kikuchi
  • Patent number: 8514005
    Abstract: A circuit for generating multiphase clock signals and corresponding indication signals is provided. The circuit includes a multiphase clock generation circuit, a DLL circuit, a timing circuit, and a phase comparison circuit. The multiphase clock generation circuit receives an external clock to provide a plurality of first clock signals, phases of which differ from one another. The DLL circuit receives the external clock signal to provide a second clock signal. The timing circuit receives the second clock signal and a comparison signal to provide a plurality of indication signals. Each of the plurality of indication signals has rising edges which lead the rising edges of a corresponding one of the first clock signals. The phase comparison provides the comparison signal if a delayed phase of the corresponding one of the indication signals is within a phase of one of the first clock signals.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: August 20, 2013
    Assignee: Elite Semiconductor Memory Technology, Inc.
    Inventors: Ming-Chien Huang, Chien-Yi Chang
  • Patent number: 8514995
    Abstract: A circuit includes a receiver circuit, a data valid monitor circuit, a clock signal generation circuit, and a phase shift circuit. The receiver circuit is operable to generate a first periodic signal, a sampled data signal based on an input data signal, and a data valid signal based on a predefined number of bits in the sampled data signal. The data valid monitor circuit is operable to generate a count value by counting periods of the first periodic signal. The data valid monitor circuit is operable to generate a phase error signal based on the data valid signal and the count value. The clock signal generation circuit is operable to generate a second periodic signal. The phase shift circuit is operable to generate a third periodic signal based on the second periodic signal and to adjust a phase of the third periodic signal based on the phase error signal.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: August 20, 2013
    Assignee: Altera Corporation
    Inventors: Boon Hong Oh, Peter Schepers, Da Hai Tang
  • Patent number: 8416955
    Abstract: A system and a method for determining a result of applying a function to signals is disclosed. The function is a polynomial function including monomials, in which the first signal in a first power forming a first part of the monomial and the second signal in a second power forming a second part of the monomial, wherein the first part of the monomial encrypted with a key is a first encrypted signal, and the second part of the monomial encrypted with the key is a second encrypted signal, comprising the steps of transmitting a first input signal encrypted with a second public key to the second processor, wherein the first input signal includes the first encrypted signal, transmitting a second input signal encrypted with a first public key to the first processor, wherein the second input signal includes a product of the first encrypted signal and the second encrypted signal.
    Type: Grant
    Filed: December 7, 2009
    Date of Patent: April 9, 2013
    Assignee: Mitsubishi Electric Research Laboratories, Inc.
    Inventors: Shantanu Rane, Wei Sun, Anthony Vetro