Master-slave Bistable Latch Patents (Class 327/202)
  • Publication number: 20120182056
    Abstract: Embodiments of the present technology are directed toward circuits for gating pre-charging sense nodes within a flip-flop when an input data signal changes and a clock signal is in a given state. Embodiments of the present technology are further directed toward circuits for maintaining a state of the sense nodes.
    Type: Application
    Filed: January 18, 2011
    Publication date: July 19, 2012
    Applicant: NVIDIA CORPORATION
    Inventors: William Dally, Jonah Alben
  • Publication number: 20120182055
    Abstract: A method for determining flop circuit types includes performing a layout of an IC design including arranging master and slave latches of each of a plurality of flops to receive first and second clock signals, respectively. The initial IC design may then be implemented (e.g., on a silicon substrate). After implementation, the IC may be operated in first and second modes. In the first mode, the master latch of each flop is coupled to receive a first clock signal. In the second mode, the first clock signal is inhibited and the master latch is held transparent. The slave latch of each flop operates according to a second clock signal in both the first and second modes. The method further includes determining, for each flop, whether that flop is to operate as a master-slave flip-flop or as a pulse flop in a subsequent revision of the IC.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 19, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Alan P. Smith, Robert P. Masleid, Georgios Konstadinidis
  • Publication number: 20120169392
    Abstract: A flop circuit is disclosed. The flop circuit includes an input circuit configured to hold a logic value of an input signal received on its input node. The flop circuit further includes a storage circuit configured to, responsive to a pulse clock transitioning to a first logic level, receive and store the logic value and a complement of the logic value. A transfer circuit is coupled between the input circuit and the storage circuit, wherein the transfer circuit is configured to transfer the logic value from the input circuit to the storage circuit responsive to the pulse clock transitioning to the first logic level. The transfer circuit includes a first float node and a second float node and is configured such that at least one of the float nodes is floating during a portion of the operational cycle of the flop circuit.
    Type: Application
    Filed: January 4, 2011
    Publication date: July 5, 2012
    Inventors: Robert P. Masleid, Jason M. Hart
  • Patent number: 8207756
    Abstract: In a logic circuit where clock gating is performed, the standby power is reduced or malfunction is suppressed. The logic circuit includes a transistor which is in an off state where a potential difference exists between a source terminal and a drain terminal over a period during which a clock signal is not supplied. A channel formation region of the transistor is formed using an oxide semiconductor in which the hydrogen concentration is reduced. Specifically, the hydrogen concentration of the oxide semiconductor is 5×1019 (atoms/cm3) or lower. Thus, leakage current of the transistor can be reduced. As a result, in the logic circuit, reduction in standby power and suppression of malfunction can be achieved.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: June 26, 2012
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yutaka Shionoiri, Hidetomo Kobayashi
  • Patent number: 8209573
    Abstract: A sequential element having a master stage and a slave stage and a method of testing an IC having a scan chain and an IC. In one embodiment, the sequential element includes an input scan multiplexor configured to place the sequential element in a functional mode or a scan mode in response to a scan enable input and a scan out driver coupled to the slave stage and configured to provide a scan out signal when the sequential element is in the scan mode, the scan out driver coupled to an inverted scan enable input for a negative voltage supply.
    Type: Grant
    Filed: December 22, 2008
    Date of Patent: June 26, 2012
    Assignee: LSI Corporation
    Inventors: Jeff S. Brown, Mark F. Turner, Jonathan Byrn
  • Publication number: 20120154008
    Abstract: A semiconductor apparatus may include a master chip, first to nth slave chips, first to nth slave chip ID generating units, and a master chip ID generating unit. The first to nth slave chip ID generating units are disposed respectively in the first to nth slave chips and connected in series to each other. Each of the first to nth slave chip ID generating units is configured to add a predetermined code value to an mth operation code to generate an (m+1)th operation code. The master chip ID generating unit is disposed in the master chip to generate a variable first operation code in response to a select signal. Here, ‘n’ is an integer that is equal to or greater than 2, and ‘m’ is an integer that is equal to or greater than 1 and equal to or smaller than ‘n’.
    Type: Application
    Filed: June 17, 2011
    Publication date: June 21, 2012
    Applicant: Hynix Semiconductor Inc.
    Inventors: Dae Suk KIM, Jong Chern Lee, Sang Jin Byeon
  • Publication number: 20120146697
    Abstract: Embodiments of a scannable flip-flop are disclosed that may reduce data hold time, which may in turn improve the performance of circuits incorporating the scannable flip-flop. The scannable flip-flop may include a slave latch and a master latch including an input multiplexer. The multiplexer may include a number of input ports, for example to receive normal operating mode data as well as scan operating mode data, and the multiplexer may be operable to controllably select one of the input ports and pass the value of the selected port to an output of the multiplexer. For example, the multiplexer may generate individual control signals for the various ports dependent upon both the clock signal and a select signal, such that each of the ports is qualified with the select signal and the clock signal before the multiplexer presents the input data of the selected port as the output of the multiplexer.
    Type: Application
    Filed: November 14, 2011
    Publication date: June 14, 2012
    Inventors: Derrick A. Leach, Thomas J. Best, Edward M. McCombs
  • Publication number: 20120139599
    Abstract: A multiplex driving circuit receives m master signals and n slave signals, and includes m driving modules for generating m×n gate driving signals. Each driving module includes a voltage boost stage and n driving stages. The voltage boost stage is used for receiving a first master signal of the m master signals and converting the first master signal into a first high voltage signal, wherein a high logic level of the first master signal is increased to a highest voltage by the voltage boost stage. The n driving stages receives the n slave signals, respectively, and receives the first high voltage signal. In response to the highest voltage of the first high voltage signal, the n driving stages sequentially generates n gate driving signals according to the n slave signals.
    Type: Application
    Filed: August 5, 2011
    Publication date: June 7, 2012
    Applicant: AU OPTRONICS CORP.
    Inventors: Chung-Chun CHEN, Hsiao-Wen Wang
  • Patent number: 8181073
    Abstract: A SRAM (Static Random Access Memory) macro test flop circuit includes a flip-flop circuit, a scan control circuit, and an output buffer circuit. The flip-flop circuit includes a master latch circuit and a slave latch circuit. The master latch circuit includes a master feed-back circuit including a master storage node and a master feed-forward circuit. The slave latch circuit includes a slave feed-back circuit including a slave storage node and a slave feed-forward circuit driven from the master latch. The scan control circuit includes a scan slave feed-forward circuit, a scan latch circuit, and a scan driver circuit driven by the scan feed-back circuit. The scan latch circuit includes a scan feed-back circuit comprising a scan storage node and a scan feed-forward circuit driven from the slave latch. The output buffer circuit includes a master driver driven from master latch circuit and a slave driver driven from slave latch circuit.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: May 15, 2012
    Assignee: Oracle America, Inc.
    Inventors: Ali Vahidsafa, Robert P. Masleid, Jason M. Hart, Zhirong Feng
  • Patent number: 8179178
    Abstract: A register circuit including a level shift circuit, a latch isolation circuit, and a keeper circuit for registering data with a lower voltage clock signal. The level shift circuit switches a level shift node between a reference voltage level and an upper voltage level in response to a clock node and an input node. The clock node toggles between the reference voltage level and a lower voltage level. The latch isolation circuit isolates an output node from the input node when the clock node is at the reference voltage level, and asserts the output node to one of the reference voltage level and an upper voltage level based on a state of the input node when the clock node is at the lower voltage level. The keeper circuit maintains a state of the output node when the clock node is at the reference voltage level.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: May 15, 2012
    Assignee: VIA Technologies, Inc.
    Inventor: James R. Lundberg
  • Patent number: 8166286
    Abstract: The invention relates to a data pipeline comprising a first stage with a data input for receiving a digital data input signal, a clock input and a data output, and a first bi-stable element being adapted to be switched in response to an edge of a first clock signal, and a dynamic latch stage comprising an input transfer element, and a second bi-stable element coupled between the input transfer element and a dynamic latch data output, wherein the input transfer element is adapted to be switched by a second clock signal and a delayed second clock signal, which is delayed with respect to the second clock signal by a first period of time being shorter than half a period of the second clock signal, such that the input transfer element allows signal transfer only during the first period of time.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: April 24, 2012
    Assignee: Texas Instruments Deutschland GmbH
    Inventors: Ingolf Frank, Gerd Rombach
  • Patent number: 8166357
    Abstract: A method and apparatus for implementing integrated circuit security features are provided to selectively disable testability features on an integrated circuit chip. A test disable logic circuit receives a test enable signal and responsive to the test enable signal set for a test mode, establishes a test mode and disables ASIC signals. Responsive to the test enable signal not being set, the ASIC signals are enabled for a functional mode and the testability features on the integrated circuit chip are disabled. When the functional mode is enabled, the test disable logic circuit prevents the test mode from being established while the integrated circuit chip is powered up.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: April 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: David Warren Pruden, Dennis Martin Rickert, Brian Andrew Schuelke
  • Patent number: 8151152
    Abstract: A latch circuit includes a first latch that stores data provided from a data input terminal when a clock is provided from a clock input terminal, and stores scan data provided from a scan data input terminal when a first scan clock is provided from a first scan clock input terminal, a logical circuit that performs a logical operation for a second scan clock provided from the second scan clock input terminal and for an operational mode signal provided from the operation mode input terminal, and generates an update clock and a second latch including an update input terminal connected to an output terminal of the first latch, and an update clock input terminal connected to an output terminal of the logical circuit, the second latch holds the data or the scan data provided from the update input terminal when the update clock is provided.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: April 3, 2012
    Assignee: Fujitsu Limited
    Inventor: Katsunao Kanari
  • Patent number: 8143929
    Abstract: A method of operating a circuit includes receiving a first data signal at a first node. The first node is coupled to a second node to couple the first data signal to the second node. After coupling the first node to the second node, the second node is coupled to a third node to couple the first data signal to the third node. The first node is decoupled from the second node and a first step of latching the first data signal at the third node is performed, wherein the first step of latching is through the second node while the second node is coupled to the third node. The second node is decoupled from the third node and a second step of latching is performed wherein the first data signal latched at the third node while the second node is decoupled from the third node.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: March 27, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Ravindraraj Ramaraju, Prashant U. Kenkare
  • Publication number: 20120068749
    Abstract: A digital logic circuit includes a logic element for providing a data signal, a clock for providing a clock signal and a master-slave flip-flop. The master-slave flip-flop includes a master latch for storing data on a master latch input at a first active edge of the clock signal and a slave latch for storing data on an output of the master latch at a second active edge of the clock signal following the first active edge. A timing error detector asserts an error signal in response to a change in the data signal during a detection period following the first active edge of the clock signal. A timing correction module selectively increases a propagation delay of the data signal from the logic element to the master latch input in response to the error signal.
    Type: Application
    Filed: September 22, 2010
    Publication date: March 22, 2012
    Applicant: FREESCALE SEMICONDUCTOR, INC
    Inventors: SANTOSH SOOD, Mukesh Bansal
  • Patent number: 8134395
    Abstract: A digital latch circuit substantially reduces leakage current in output stages of edge-triggered digital switching devices. The circuit comprises first and second NAND gates for receiving first and second input signals and providing first and second output signals. The first NAND gate includes a first A input for receiving the first input signal, a first B input connected to a second NAND gate output, a first leakage current control input connected to a second A input of the second NAND gate, and a first NAND gate output for providing the first output signal. The second NAND gate includes the second A input for receiving the second input signal, a second B input connected to the first NAND gate output, a second leakage current control input connected to the first A input of the first NAND gate, and the second NAND gate output for providing the second output signal.
    Type: Grant
    Filed: July 29, 2009
    Date of Patent: March 13, 2012
    Assignee: LSI Corporation
    Inventor: Ralph Sommer
  • Patent number: 8130018
    Abstract: A latch module comprising a sense pair of transistor elements coupled together for sensing a differential input signal at input terminals, a level-shift module for producing a differential output signal at output terminals, and a regenerative pair of transistor elements coupled together and with the input pair for holding the output signal through the level-shift module. The latch module also includes a pair of gate transistor elements connected in series respectively with the sense pair of transistor elements and with the regenerative pair of transistor elements and responsive to an alternating differential gate signal to activate alternately the sense pair during sense periods and the regenerative pair during store periods. A current injector provides asymmetric operation by injecting current between at least one of the gate transistors and the corresponding sense or regenerative pair of transistor elements so that the sense periods are of different duration from the store periods.
    Type: Grant
    Filed: March 20, 2008
    Date of Patent: March 6, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Trotta Saverio
  • Patent number: 8120404
    Abstract: A flip-flop circuit with an internal level shifter includes an input stage, a clock input stage, an output stage and a level shifting stage. The output stage generates an output signal based on an input signal received by the input stage and a clock signal received by the clock input stage. The level shifting stage shifts-up the voltage level of the output signal.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: February 21, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sunny Arora, Kumar Abhishek, Mukesh Bansal, Shilpa Gupta
  • Patent number: 8115522
    Abstract: A prescaler circuit according to an exemplary aspect of the present invention includes a first flip-flop circuit that detects second output data and outputs the detected data as first output data, and a second flip-flop circuit that detects the first output data and outputs the data as the second output data. The first flip-flop circuit includes a master-side latch circuit that generates intermediate data, a slave-side latch circuit that detects the intermediate data and outputs the data as the first output data, and a control signal switching circuit that selects and outputs the first output data as a control signal in a mode where the frequency is divided by 3, and selects and outputs a predefined fixed signal as a control signal in a mode where the frequency is divided by 4. The master-side latch circuit generates the intermediate data based on the second output data and the control signal.
    Type: Grant
    Filed: April 22, 2010
    Date of Patent: February 14, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Jia Chen
  • Patent number: 8115531
    Abstract: A D flip-flop (DFF), a method of operating a DFF, a latch and a library of standard logic elements including standard logic elements corresponding to a DFF and a latch. In one embodiment, the DFF has a data input and a data output and includes: (1) a master stage passgate coupled to the data input, (2) a master stage coupled to the master stage passgate and having a hysteresis inverter with feedback transistors of opposite conductivity, (3) a slave stage passgate coupled to the master stage and (4) a slave stage coupled between the slave stage passgate and the data output and having a hysteresis inverter with feedback transistors of opposite conductivity.
    Type: Grant
    Filed: March 31, 2008
    Date of Patent: February 14, 2012
    Assignee: LSI Corporation
    Inventors: Jeff S. Brown, Miguel A. Vilchis, Mark F. Turner
  • Patent number: 8116425
    Abstract: A shift register includes a first flip-flop group composed of a plurality of cascaded first flip-flops, each first flip-flop having a first master latch and a first slave latch and having first and second transmission paths for transmitting a master clock and a slave clock, a second flip-flop group composed of a plurality of cascaded second flip-flops, each second flip-flop having a second master latch and a second slave latch which are each composed of a transistor with a relatively small transistor size and having a third transmission path connected to the first transmission path and a fourth transmission path connected to the second transmission path, and a transfer portion configured to transfer pieces of data held in the second flip-flops to one of the first master latches and the first slave latches of the first flip-flops.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: February 14, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hitoshi Iwai
  • Patent number: 8085076
    Abstract: A disclosed embodiment is a data retention flip flop comprising master and slave circuits that are configured to be turned off when a single sleep mode signal is activated. The disclosed embodiment also comprises an always-on balloon circuit coupled to the master circuit, where the always-on balloon circuit includes a common sub-circuit shared with the master circuit. The master circuit writes into the always-on balloon circuit when the single sleep mode signal is activated, and the master circuit reads from the always-on balloon circuit when the single sleep mode signal is deactivated. The always-on balloon circuits comprises high threshold voltage transistors, while the slave circuit comprises low threshold voltage transistors. The master and slave circuits have no leakage current, or substantially no leakage current, after the single sleep mode signal is activated.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: December 27, 2011
    Assignee: Broadcom Corporation
    Inventors: Gregory Djaja, Karthik Chandrasekharan
  • Patent number: 8076965
    Abstract: A disclosed embodiment is a low leakage data retention flip flop comprising a master circuit for retaining data during sleep mode, wherein the master circuit is configured to receive a reduced supply voltage during the sleep mode. The flip flop includes a slave circuit having low threshold voltage transistors, where the slave circuit is turned off during the sleep mode. In various embodiments, the master circuit might utilize high threshold voltage, standard threshold voltage, or low threshold voltage transistors. Similarly, the slave circuit might utilize high threshold voltage, standard threshold voltage, or low threshold voltage transistors. To begin the sleep mode, the master circuit receives a reduced supply voltage and the slave circuit is coupled to ground and is thus turned off. During the sleep mode, the slave circuit experiences virtually no leakage current, and the master circuit experiences a reduced leakage current.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: December 13, 2011
    Assignee: Broadcom Corporation
    Inventors: Gregory Djaja, Mark Slamowitz, Karthik Chandrasekharan
  • Publication number: 20110298516
    Abstract: A master-slave flip-flop circuit is provided with a retention capability to support operation in both a normal mode and a retention mode. During the retention mode the retention circuitry drives the output signal via either a first path 16 or a second path 22, 24, 4, 10 in dependence upon the phase of the clock signal. During both phases of the clock signal the output signal is driven in a well defined state to reflect the signal stored within the retention circuitry. There is thus provided a clock independent retention master-slave flip-flop circuit. Both high density and high speed variants of the flip-flop circuit may use the technique.
    Type: Application
    Filed: December 28, 2010
    Publication date: December 8, 2011
    Applicant: ARM LIMITED
    Inventor: Sumana Pal
  • Publication number: 20110298517
    Abstract: A master-slave flip-flop circuit comprises a master stage for retaining a master signal, a slave stage for retaining a slave signal and a retention stage. During a normal mode of operation, the retention stage captures a retention signal having a value dependent upon the slave signal. During a retention mode of operation, the retention stage isolates the retention signal from changes in the stage signal and retains the retention signal. During the retention mode the retention stage also provides a master restore signal to the master stage and provides a slave restore signal to the slave stage. The master restore signal and the slave restore signal have values dependent on the retention signal for configuring the master stage and slave stage such that the master and slave signals have values corresponding to the retention signal.
    Type: Application
    Filed: June 1, 2011
    Publication date: December 8, 2011
    Applicant: ARM LIMITED
    Inventor: Sumana Pal
  • Patent number: 8067970
    Abstract: Various types of memory circuits are described. A memory circuit may include a state-storage feedback loop coupled to a clock input and to a data input. The data input is introduced into the feedback loop at multiple points, and propagated in parallel from those points to other points in the feedback loop.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: November 29, 2011
    Inventor: Robert P. Masleid
  • Patent number: 8050648
    Abstract: Digital mixers which permit mixing of asynchronous signals may be constructed of Rapid Single Flux Quantum (RSFQ) logic elements. The logic elements may include an RSFQ non-destructive readout cell (NDRO), an RSFQ D flip-flop, an RSFQ XOR circuit, and an RSFQ T flip-flop. A binary tree arrangement of T flip-flops can be used to provide in-phase and quadrature phase-divided replicas of a reference signal. The mixing elements can be either an XOR circuit, a dual port NDRO circuit functioning as a multiplexer or an RS type NDRO functioning as an AND gate. The RSFQ logic elements utilize Josephson junctions which operate in superconducting temperature domains.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: November 1, 2011
    Assignee: Hypres, Inc.
    Inventors: Alexander F. Kirichenko, Deepnarayan Gupta, Saad Sarwana
  • Publication number: 20110260765
    Abstract: A multi-channel regulator system includes serially connected PWM integrated circuits, each of which determines a PWM signal for a respective channel to operate therewith, and individually controls its operation mode according to whether or not an external clock is detected. Therefore, each channel will not be limited to operate under a constant mode and could become a master channel or a slave channel. Additionally, each of the PWM integrated circuits generates a phase shifted synchronous clock for its next channel during it is enabled, and thus all the channels operate in a synchronous but phase interleaving manner.
    Type: Application
    Filed: April 15, 2011
    Publication date: October 27, 2011
    Applicant: RICHTEK TECHNOLOGY CORP.
    Inventors: AN-TUNG CHEN, SHAO-HUNG LU, ISAAC Y. CHEN
  • Publication number: 20110260764
    Abstract: A method for designing a semiconductor integrated circuit according to an embodiment includes: placing standard flip-flop circuits and low power-consumption flip-flop circuits; grouping the placed flip-flop circuits into clusters by using an evaluation function having indices including cell types; assigning a first clock buffer to each cluster formed only by standard flip-flop circuits; assigning a second clock buffer to each cluster including low power-consumption flip-flop circuits, the second clock buffer having a larger size than the first clock buffer; and performing clock wiring.
    Type: Application
    Filed: November 24, 2010
    Publication date: October 27, 2011
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takeshi KITAHARA, Takashi ISHIOKA, Toshiaki SHIRAI
  • Publication number: 20110248759
    Abstract: A master-slave retention flip-flop includes a master latch adapted to latch an input data signal and to output a latched master latch data signal based on an input clock signal, a slave latch coupled to an output of the master latch and adapted to output a latched slave latch data signal based on the input clock signal, and a retention latch embedded within one of the master and slave latches adapted to preserve data in a power down mode based on a power down control signal.
    Type: Application
    Filed: April 12, 2010
    Publication date: October 13, 2011
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shyh-An CHI, Shiue Tsong SHEN, Jyy Anne LEE, Yun-Han LEE
  • Publication number: 20110241744
    Abstract: A processor register file for a multi-threaded processor is described. The processore register file includes, in one embodiment, T threads, having N b-bit wide registers. Each of the registers includes a b-bit master latch, T b-bit slave latches connected to the master latch, and a slave latch write enable connected to the slave latches. The master latch is not opened at the same time as the slave latches. In addition, only one of the slave latches is enabled at any given time. As should be apparent to those skilled in the art, T, N, and b are all integers. Other embodiments and variations are also provided.
    Type: Application
    Filed: August 20, 2009
    Publication date: October 6, 2011
    Applicant: Aspen Acquisition Corporation
    Inventors: Mayan Moudgill, Gary Nacer, Shenghong Wang
  • Patent number: 8030975
    Abstract: A frequency divider includes a first frequency divider stage coupled to a clock signal and operative to generate a first frequency divided signal. A second frequency divider stage is coupled to the clock signal and to the first frequency divider stage and is operative to generate a second frequency divided signal. A third frequency divider stage is coupled to the clock signal and to the second frequency divider stage and is configured to generate a third frequency divided signal using only i) the clock signal and ii) the second frequency divided signal so that any transition of the third frequency divided signal occurs at an edge of the clock signal at which the second frequency divided signal does not transition.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: October 4, 2011
    Assignee: Marvell Israel (M.I.S.L) Ltd.
    Inventor: Mel Bazes
  • Publication number: 20110234283
    Abstract: In accordance with an embodiment, an integrated circuit comprises a master-slave flip-flop, a selection logic circuit, and a pass structure. The selection logic circuit is configured to selectively enable or disable one or more clock signals. The pass structure is configured to pass a data signal to the master-slave flip-flop in response to a selected clock signal being enabled.
    Type: Application
    Filed: April 30, 2010
    Publication date: September 29, 2011
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Miaosong Wu
  • Patent number: 8026752
    Abstract: Disclosed is a delay circuit. The delay circuit includes a pulse generating unit, a timing adjusting unit, and a pulse width adjusting unit. The pulse generating unit is configured to generate a pulse signal having a preset width in response to a rising edge of an input signal. The timing adjusting unit is configured to activate an output signal in response to the pulse signal after a predetermined time has lapsed. The pulse width adjusting unit is configured to adjust a pulse width of the output signal in response to the activation of the output signal.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: September 27, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Yun Seok Hong
  • Patent number: 8008959
    Abstract: A flip-flop circuit operates by a first clock signal whose amplitude is smaller than that of input data D. A pair of transistors receive the input data D and the reversed input data *D, respectively, to latch the input data D. An activation circuit activates the pair of transistors in a conduction state. A control circuit receives the first clock signal and sets the activation circuit to a conduction state for a predetermined time period starting from an edge timing of the received first clock signal. The control circuit increases the amplitude of the first clock signal and sets the activation circuit in a conduction state by using a second clock signal which is the first clock signal with the increased amplitude.
    Type: Grant
    Filed: February 13, 2009
    Date of Patent: August 30, 2011
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Satoru Sekine, Shinji Furuichi
  • Patent number: 8000432
    Abstract: A shift register includes a first flip-flop group composed of a plurality of cascaded first flip-flops, each first flip-flop having a first master latch and a first slave latch and having first and second transmission paths for transmitting a master clock and a slave clock, a second flip-flop group composed of a plurality of cascaded second flip-flops, each second flip-flop having a second master latch and a second slave latch which are each composed of a transistor with a relatively small transistor size and having a third transmission path connected to the first transmission path and a fourth transmission path connected to the second transmission path, and a transfer portion configured to transfer pieces of data held in the second flip-flops to one of the first master latches and the first slave latches of the first flip-flops.
    Type: Grant
    Filed: July 22, 2009
    Date of Patent: August 16, 2011
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hitoshi Iwai
  • Patent number: 7996695
    Abstract: A circuit for reducing sleep state current leakage is described. The circuit includes a hardware unit selected from at least one of a latch, a flip-flop, a comparator, a multiplexer, or an adder. The hardware unit includes a first node. The hardware unit further includes a sleep enabled combinational logic coupled to the first node, wherein a value of the first node is preserved during a sleep state.
    Type: Grant
    Filed: February 15, 2008
    Date of Patent: August 9, 2011
    Assignee: QUALCOMM Incorporated
    Inventors: Martin Saint-Laurent, Jentsung Lin
  • Publication number: 20110187430
    Abstract: The present invention discloses a multi-chip module with master-slave analog signal transmission function. The multi-chip module comprises: a master chip having a first setting input pin for receiving an analog setting signal to generate an analog setting in the master chip, and the master chip duplicating the analog setting to output a first analog output; and a first slave chip for receiving the first analog output from the master chip to generate an internal setting of the first slave chip.
    Type: Application
    Filed: February 4, 2010
    Publication date: August 4, 2011
    Inventors: Chien Fu Tang, Isaac Y. Chen
  • Patent number: 7982514
    Abstract: A system for storing state values during standby mode operation comprises a master flip flop that receives and stores state information during active mode operation and an associated slave flip flop that receives and stores state information during active mode and standby mode operation. The system further comprises a standby mode control circuit to control the state of the master and slave flip flops during active and standby mode operation based on at least two control signals. A first transfer gate determines the current flow to and from the master flip flop based on the output of the standby mode control circuit. Similarly, a second transfer gate determines current flow to and from the slave flip flop based on the output of the standby mode control circuit. A first power supply powers the master flip flop during active mode operation.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 19, 2011
    Assignee: Marvell International Ltd.
    Inventor: Manish Biyani
  • Patent number: 7969209
    Abstract: Fractional frequency division is performed by sequentially selecting phase signals for division, where transitioning from a previous phase signal to a next phase signal for division occurs in response to not only the frequency-divided previous phase signal but also a second one of the phase signals. A phase transition that is triggered at least in part in response to a second phase signal having a phase that is greater (with respect to the phase signal sequence) than the phase of the next phase signal can aid minimization of signal glitches. The first frequency-divided signal can be further divided to produce a second frequency-divided signal having a 50-percent duty cycle.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: June 28, 2011
    Assignee: Skyworks Solutions, Inc.
    Inventor: Dean A. Badillo
  • Patent number: 7969210
    Abstract: A master stage 101 comprises a differential circuit composed of transistors 1 and 2, a differential circuit composed of transistors 3 and 4, a differential circuit composed of transistors 5 and 6, a load circuit 7 (a first load circuit), a load circuit 8 (a second load circuit), and a current source transistor 9. The load circuit 7 (the first load circuit) is composed of an inductor 7A (a first inductor), an inductor 7B (a fifth inductor), and a capacity 7C (a first capacity). The inductor 7B and capacity 7C cooperates together in forming a parallel resonance circuit (a first LC parallel resonance circuit), while the parallel resonance circuit is connected in series to the inductor 7A.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: June 28, 2011
    Assignee: Panasonic Corporation
    Inventors: Yoshifumi Hosokawa, Noriaki Saito, Yoshito Shimizu
  • Publication number: 20110148496
    Abstract: A system and device for reducing leakage current in a sequential circuit is disclosed. In one embodiment, a system for reducing leakage current in a sequential circuit includes a combinational logic circuit, one or more reset flip-flops coupled to the combinational logic circuit, and one or more set-reset flip-flops coupled to the combinational logic circuit. The system further includes a control module coupled to the reset flip-flops and to the set flip-flops and configured to reset the reset flip-flops and to set the set-reset flip-flops when a standby mode of the sequential circuit is triggered.
    Type: Application
    Filed: December 17, 2009
    Publication date: June 23, 2011
    Inventor: SRINIVAS SRIADIBHATLA
  • Patent number: 7966589
    Abstract: The invention comprises a design structure for a dynamic voltage state-saving latch electrical circuit comprising a charge device adapted as a storage element, an integrated recovery mechanism, a supply voltage rail connected to the charge device, a hold signal allocated to the integrated recovery mechanism, a data signal input allocated to said charge device, a data signal output distributed from the charge device, and a clock signal allotted to the charge device, wherein said integrated recovery mechanism maintains a state of the charge device independent of the charge device.
    Type: Grant
    Filed: April 8, 2008
    Date of Patent: June 21, 2011
    Assignee: International Business Machines Corporation
    Inventors: Pascal A. Nsame, Anthony J. Perri, Lansing D. Pickup, Sebastian T. Ventrone, Matthew R. Welland
  • Patent number: 7965119
    Abstract: A method and device for managing metastable signals. The device includes: a first latch and a second latch, a multiple switching point circuit, connected between an output node of the first latch and an input node of the second latch, wherein the multiple switching point circuit includes at least one pull up transistor and at least one pull down transistor that are selectively activated in response to a feedback signal provided from the second latch and in response to a an output signal of the first latch such as to define at least a low switching point that is lower than a high switching point of the multiple-switching point circuit; wherein a switching point of an inverter within the first latch is between the high and low switching points.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: June 21, 2011
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Michael Priel, Dan Kuzmin, Amir Zaltzman
  • Patent number: 7952399
    Abstract: A frequency divider circuit includes a master-slave flip-flop having a master flip-flop and a slave flip-flop. The slave flip-flop is connected to the master flip-flop. The master flip-flop includes a first plurality of logic gates and is configured to receive a first clock signal. The slave flip-flop includes a second plurality of logic gates and is configured to receive a second clock signal. The second plurality of logic gates is implemented using single-ended diode-transistor logic (DTL).
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: May 31, 2011
    Assignee: Lockheed Martin Corporation
    Inventor: Roland Cadotte, Jr.
  • Patent number: 7936191
    Abstract: A start-up reset circuit includes a flip-flop and a clock signal generator. The clock signal generator generates a first clock signal and a second clock signal, wherein there is a phase difference between the first clock signal and the second clock signal. The flip-flop receives an operation voltage and has a setup time, and further includes an input terminal to receive the first clock signal, a clock input terminal to receive the second clock signal, and an output terminal to output a reset signal, wherein the setup time corresponds to the operation voltage.
    Type: Grant
    Filed: December 24, 2007
    Date of Patent: May 3, 2011
    Assignee: Realtek Semiconductor Corp.
    Inventor: Yun-Jan Hong
  • Patent number: 7932762
    Abstract: A single-path latch, a dual-path latch, a method of operating a DFF and a library of cells. In one embodiment, the single-path latch includes: (1) a passgate coupled to the data input, (2) a feedback path coupled to the passgate, the data output coupled thereto and (3) tristate circuitry coupled to the passgate and having a single transistor pair of opposite conductivity coupled to Boolean logic gates, the Boolean logic gates configured to control operation of the single transistor pair based on the data input and a pulse clock signal to drive the feedbacks path.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: April 26, 2011
    Assignee: LSI Corporation
    Inventors: Mark F. Turner, Jeff S. Brown
  • Publication number: 20110084748
    Abstract: A flip-flop may include a first master stage for latching data, a second slave stage for latching data, and an input multiplexer circuit receiving, as input, data to be latched in the flip-flop. The multiplexer may have single clock phase. The first master stage may be clocked based upon a clock phase, whereas the second stage may be clocked based upon another clock phase.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 14, 2011
    Applicant: STMicroelectronics SA
    Inventors: Fabian Firmin, Sylvain Clerc, Jean-Pierre Schoellkopf, Fady Abouzeid
  • Patent number: 7924058
    Abstract: A nonvolatile programmable logic circuit using a ferroelectric memory performs a nonvolatile memory function and an operation function without additional memory devices, thereby reducing power consumption. Also, a nonvolatile ferroelectric memory is applied to a FPGA (Field Programmable Gate Array), thereby preventing leakage of internal data and reducing the area of a chip.
    Type: Grant
    Filed: August 26, 2008
    Date of Patent: April 12, 2011
    Assignee: Hynix Semiconductor Inc.
    Inventor: Hee Bok Kang
  • Patent number: 7920668
    Abstract: Systems for displaying images are provided. An embodiment of such a system has a dynamic shift register. The dynamic shift register includes a sampling unit, a holding unit, and a first logic circuit. The sampling unit, which is coupled to an incoming signal and a first input terminal of the dynamic shift register, samples the incoming signal according to a first input signal received by the first input terminal to generate a sampled value. The holding unit, which is coupled to the sampling unit, is utilized to hold the sampled value. The first logic circuit, which is coupled to the holding unit and an output terminal of the dynamic shift register, generates an output signal according to the sampled value and a second input signal inputted into the first logic circuit.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: April 5, 2011
    Assignee: Chimei Innolux Corporation
    Inventor: Ching-Hone Lee