Scr And Bipolar Transistor Patents (Class 327/475)
  • Patent number: 8575992
    Abstract: A switch is capable of performing switching, while reducing distortion with respect to amplitude of a high frequency signal. The switch includes: an input terminal to which a high frequency signal is input; a first switching unit connected between the input terminal and a first output terminal and selectively outputting the high frequency signal through the first output terminal; and a second switching unit connected between the input terminal and a second output terminal and selectively outputting the high frequency signal through the second output terminal. Each switching unit includes an impedance transformer installed on a signal line, a bipolar transistor having an emitter grounded, a collector connected to the signal line, and a base receiving current according to a control voltage applied thereto; and a bipolar transistor having a collector grounded, an emitter connected to the signal line, and a base receiving current according to the control voltage.
    Type: Grant
    Filed: September 11, 2012
    Date of Patent: November 5, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Kouki Tanji, Eiichiro Otobe
  • Patent number: 8354874
    Abstract: A circuit includes a first current source, a second current source, a third current source and a fourth current source. A load includes a first terminal connected to a first node between the first current source and the second current source and a second terminal connected to a second node between the third current source and the fourth current source. A bias control module includes a first output configured to output a first bias signal to the first and fourth current sources and a second output configured to provide a second bias signal to the second and third current sources. A capacitance is connected to the first and second outputs of the bias control module.
    Type: Grant
    Filed: May 12, 2010
    Date of Patent: January 15, 2013
    Assignee: Marvell International Ltd.
    Inventor: Talip Ucar
  • Patent number: 8294507
    Abstract: An electronic device includes a wide bandgap thyristor having an anode, a cathode, and a gate terminal, and a wide bandgap bipolar transistor having a base, a collector, and an emitter terminal. The emitter terminal of the bipolar transistor is directly coupled to the anode terminal of the thyristor such that the bipolar transistor and the thyristor are connected in series. The bipolar transistor and the thyristor define a wide bandgap bipolar power switching device that is configured to switch between a nonconducting state and a conducting state that allows current flow between a first main terminal corresponding to the collector terminal of the bipolar transistor and a second main terminal corresponding to the cathode terminal of the thyristor responsive to application of a first control signal to the base terminal of the bipolar transistor and responsive to application of a second control signal to the gate terminal of the thyristor. Related control circuits are also discussed.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: October 23, 2012
    Assignee: Cree, Inc.
    Inventors: Qingchun Zhang, James Theodore Richmond, Robert J. Callanan
  • Patent number: 7259407
    Abstract: A vertical SCR switch to be controlled by a high-frequency signal having at least four main alternated layers. The switch includes a gate terminal and a gate reference terminal connected via integrated capacitors to corresponding areas. In the case of a thyristor, having on its front surface side a main P-type semiconductor area formed in an N-type gate semiconductor area, a first portion of the main area being connected to one of the main areas, a second portion of the main area is connected to one of the control terminals via a first integrated capacitor, and a portion of the gate area being connected to the other of the control terminals via a second integrated capacitor.
    Type: Grant
    Filed: October 12, 2004
    Date of Patent: August 21, 2007
    Assignee: STMicroelectronics S.A.
    Inventors: Samuel Menard, Christophe Mauriac
  • Patent number: 6404265
    Abstract: Systems consistent with this invention comprise a trigger circuit for triggering a silicon device having a control terminal, where the silicon device is subject to variations in the intrinsic control requirements. The trigger circuit comprises a source of direct current (DC) supply voltage, and a DC-to-DC current mode Buck converter for converting the supply voltage into an output DC current not subject to undesired variations due to variations in the supply voltage, the Buck converter supplying to the control terminal a minimum current to turn on the silicon device despite the variations in the intrinsic control requirements. The silicon device may comprise a silicon controlled rectifier (SCR) with a gate terminal, an anode terminal, and a cathode terminal, and wherein the control terminal is the gate terminal, and wherein the variations in the intrinsic control requirements are variations in the intrinsic gate-to-cathode control current and voltage requirements.
    Type: Grant
    Filed: August 13, 1999
    Date of Patent: June 11, 2002
    Assignee: York International Corporation
    Inventors: Louis A. Guido, Jr., Harold R. Schnetzka
  • Patent number: 6333664
    Abstract: An integrated ringing access switch circuit for telecommunications switching applications that provides improved dV/dt sensitivity at low operating power by using a pilot controlled rectifier, such as an SCR, that conducts at low ringing signal currents and operates to steer a bias current for causing a relatively larger controlled rectifier in parallel therewith to become conductive during higher load current operation. Also included is circuitry for preventing inadvertent turn-on of the SCRs in response to transient signals.
    Type: Grant
    Filed: August 22, 2000
    Date of Patent: December 25, 2001
    Assignee: Agere Systems Guardian Corp.
    Inventor: Dean M. Umberger
  • Patent number: 6034561
    Abstract: A transient suppressor comprises a self-triggered silicon control rectifier (SCR) that forms a drive circuit for an NPN power transistor. The SCR and the NPN power transistor are combined, along with other elements, into an integrated circuit (IC) by a junction isolated BiCMOS process. The SCR self-triggers upon being subjected to an inductive flyback condition created by an inductive load and renders the NPN transistor conductive, thereby allowing the NPN power transistor, having a relatively large semiconductor region, to effectively snub the current created by the negative feedback condition. The transient suppressor may be used in either a high-side or low-side driver arrangement and the SCR/NPN power transistor combination may further be combined with load driving and other circuitry on a single integrated circuit.
    Type: Grant
    Filed: April 9, 1999
    Date of Patent: March 7, 2000
    Assignee: Delco Electronics Corporation
    Inventors: John Mark Dikeman, Mark Wendell Gose
  • Patent number: 5703520
    Abstract: A transient suppressor comprises a self-triggered silicon control rectifier (SCR) that forms a drive circuit for an NPN power transistor. The SCR and the NPN power transistor are combined, along with other elements, into an integrated circuit (IC) by a junction isolated BiCMOS process. The SCR self-triggers upon being subjected to an inductive flyback condition created by an inductive load and renders the NPN transistor conductive, thereby allowing the NPN power transistor, having a relatively large semiconductor region, to effectively snub the current created by the negative feedback condition. The transient suppressor may be used in either a high-side or low-side driver arrangement and the SCR/NPN power transistor combination may further be combined with load driving and other circuitry on a single integrated circuit.
    Type: Grant
    Filed: April 1, 1996
    Date of Patent: December 30, 1997
    Assignee: Delco Electronics Corporation
    Inventors: John Mark Dikeman, Mark Wendell Gose
  • Patent number: 5554893
    Abstract: A device that provides a control system which is capable of positively preventing a semiconductor from suffering from latch up. In order to prevent this latch up, a control circuit controls the semiconductor through a power source switch. The control circuit is capable of supplying a constant voltage to a power source terminal of the semiconductor when it is electrically connected to the power source circuit by turning on the power source switch, and thereafter supplying a control signal to a control terminal of the semiconductor. The control circuit is capable of stopping the output of the control signal to the control terminal and then stopping the supply of voltage to the power source terminal when disconnected from the power source circuit by turning off the power source.
    Type: Grant
    Filed: February 8, 1995
    Date of Patent: September 10, 1996
    Assignee: Machida Endoscope Co., Ltd.
    Inventor: Toshio Oku
  • Patent number: 5469088
    Abstract: A sense amplifier for implementing a wide or multiple input NOR gate for receiving a product term of a group of array cells in a programmable logic device (PLD). Array cells signals which are all normally received by the sense amplifier in a single product term input are instead connected to the sense amplifier in smaller groups of sub-product terms. Each smaller group of sub-product terms is then connected through a transistor cascode amplifier in the sense amplifier to form the single product term enabling a reduction of capacitance and an increase of output speed of the sense amplifier.
    Type: Grant
    Filed: March 19, 1993
    Date of Patent: November 21, 1995
    Assignee: Advanced Micro Devices, Inc.
    Inventor: Bradley A. Sharpe-Geisler
  • Patent number: 5432471
    Abstract: In order to prevent a malfunction caused by an electrical noise and limit an excessive main current at a high speed while cutting off the same to a value close to zero, the main current is regulated by an IGBT (1) which is connected with a load. A part of this main current is shunted to another IGBT (2). The as-shunted current flows through a resistor (3), to be converted to a voltage across the resistor (3). When the main current is excessively increased by shorting of the load or the like, this voltage exceeds a prescribed value so that a transistor (5) and a thyristor (7) enter conducting states. Consequently, a voltage across a gate (G) and an emitter (E) of the IGBT (1) is so reduced as to cut off the main current. The transistor (5) prevents the main current from excessive increase since the same has a high speed of response, while the thyristor (7) cuts off the main current to zero since the same has lower resistance in conduction.
    Type: Grant
    Filed: August 31, 1993
    Date of Patent: July 11, 1995
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Gourab Majumdar, Shinji Hatae, Mitsuharu Tabata, Takashi Marumo