Including Distributed Parameter-type Coupling Patents (Class 330/286)
  • Patent number: 11012036
    Abstract: A current reuse type FET amplifier according to the present invention has a capacitance provided between a drain of a first FET in a first stage and a gate of a second FET in a next stage, electrically separates a gate voltage of the second FET from a drain voltage of the first FET, and includes a control circuit controlling the gate voltage of the first FET and the gate voltage of the second FET so that a variation of a drain current of the second FET and a variation of a drain voltage of the first FET are reduced in accordance with a variation of a saturation current Idss of the FET. Furthermore, the current reuse type FET amplifier according to the present invention uses only a depression mode FET to provide a circuit configuration operable with a positive single power source.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: May 18, 2021
    Assignee: Mitsubishi Electric Corporation
    Inventor: Hitoshi Kurusu
  • Patent number: 10879655
    Abstract: A splitter for use in an in-home network includes an input and a plurality of outputs including at least a first output and a second output. A split point is between the input and the plurality of outputs. A first resistor and a first capacitor are connected in series between the input and the split point. A second resistor and a second capacitor are connected in series between the split point and the first output. A third resistor and a third capacitor are connected in series between the split point and the second output. The input, the first output, and the second output form a resistive Wye-type splitter. A first path exists between the input and the first output. A second path exists between the input and the second output. The first path and the second path have a substantially equal series resistance, series impedance, insertion loss, and isolation.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: December 29, 2020
    Assignee: PPC BROADBAND, INC.
    Inventor: Paul Bailey
  • Patent number: 10770775
    Abstract: Systems and methods of use for a radial combiner. The radial combiner is made of a radial cavity defined by a top plate, a bottom plate, an outside wall connecting the top plate and the bottom plate, and an interior of the radial waveguide cavity located between the top plate, the bottom plate, and the outside wall with a substantially uniform height throughout. Inside the radial cavity are multiple monopole radiators, while outside the radial cavity multiple coaxial ports are mounted on one of the top plate or the bottom plate. Each of the coaxial ports are electrically connected to a corresponding monopole radiator inside the cavity. The radial combiner also contains a center conductor which is located in the center of the radial cavity, and transitions to a coaxial waveguide which is exterior to the cavity.
    Type: Grant
    Filed: June 8, 2018
    Date of Patent: September 8, 2020
    Assignee: SAAB DEFENSE AND SECURITY USA LLC T/A SENSOR SYSTEM
    Inventor: Richard Kinsey
  • Patent number: 10763802
    Abstract: An amplifier module that implements two or more amplifying units connected in series is disclosed. The amplifier module includes a package, input and output terminals, two or more amplifying units including the first unit and the final unit, an output bias terminal for supplying an output bias to one of amplifying units except for the final unit, and an input bias terminal for supplying an input bias to another one of the amplifying units except for the first unit. A feature of the amplifier module is that the output bias terminal and the input bias terminal are disposed in axial symmetry with respect to a reference axis connecting the input terminal with the output terminal in one side of the package.
    Type: Grant
    Filed: October 24, 2018
    Date of Patent: September 1, 2020
    Assignee: Sumitomo Electric Device Innovations, Inc.
    Inventor: Naoyuki Miyazawa
  • Patent number: 10749276
    Abstract: Spatial power-combining devices and antenna assemblies for spatial power-combining devices are disclosed. A spatial power-combining device may include an input coaxial waveguide section, an output coaxial waveguide section, and a center waveguide section. The center waveguide section may include an input center waveguide section, an output center waveguide section, and a core section. The core section may form an integral single component with an input inner housing of the input center waveguide section and an output inner housing of the output center waveguide section. Alternatively, the core section may be attached to the input inner housing and the output inner housing. The plurality of amplifiers may be registered with the core section. Antenna assemblies may include antennas with signal and ground conductors that are separated by air. Representative spatial power-combining devices may be designed with high efficiency, high or low frequency ranges, ultra-wide bandwidth operation, and high output power.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: August 18, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Ankush Mohan
  • Patent number: 10741899
    Abstract: A spatium amplifier includes a plurality of amplifiers connected between a pair of spatial couplers, each having a core member and a shell member forming an antenna. The core member includes a cylindrical core portion and a plurality of tapering core fins extending radially outwardly from the cylindrical core portion. The shell member includes a cylindrical shell portion and a plurality of tapering shell fins extending radially inwardly from the cylindrical shell portion to form a plurality of fin pairs. Each fin pair forms a tapering channel having a first channel height at a first end of the antenna and a second channel height larger than the first channel height at a second end of the antenna. Each of the plurality of amplifiers is electromagnetically coupled to a respective fin pair at the first end of each of the antennas.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: August 11, 2020
    Assignee: Qorvo US, Inc.
    Inventor: John Kitt
  • Patent number: 10715091
    Abstract: A low-noise amplifier in a receiver supporting a beam forming function may selectively change a phase shift for beam steering. The low-noise amplifier may include first and second transistors and a variable capacitance circuit connected to a gate of the second transistor. The variable capacitance circuit may selectively change capacitance thereof based on a capacitance control signal applied thereto according to beam-forming information, where the changed capacitance correspondingly causes a phase change in an output signal of the low-noise amplifier. A similar scheme may be employed for amplifiers in transmit signal paths to steer a transmit beam.
    Type: Grant
    Filed: October 10, 2018
    Date of Patent: July 14, 2020
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Young-min Kim, Jae-seung Lee, Jung-seok Lim, Pil-sung Jang
  • Patent number: 10693245
    Abstract: Spatial power-combining devices and antenna assemblies for spatial power-combining devices are disclosed. A spatial power-combining device may include an input coaxial waveguide section, an output coaxial waveguide section, and a center waveguide section. The center waveguide section may include an input center waveguide section, an output center waveguide section, and a core section. The core section may form an integral single component with an input inner housing of the input center waveguide section and an output inner housing of the output center waveguide section. Alternatively, the core section may be attached to the input inner housing and the output inner housing. The plurality of amplifiers may be registered with the core section. Antenna assemblies may include antennas with signal and ground conductors that are separated by air. Representative spatial power-combining devices may be designed with high efficiency, high or low frequency ranges, ultra-wide bandwidth operation, and high output power.
    Type: Grant
    Filed: May 16, 2018
    Date of Patent: June 23, 2020
    Assignee: Qorvo US, Inc.
    Inventor: Ankush Mohan
  • Patent number: 10658990
    Abstract: The invention relates to a high frequency amplifier unit comprising several amplifier modules to amplify high frequency input signals into high frequency output signals and a coaxial combiner having an outer conductor and an inner conductor arranged coaxially to this to combine the high frequency output signals of the amplifier modules, wherein the amplifier modules are arranged on the outside of the outer conductor of the coaxial combiner and the amplifier modules are connected to the coaxial inner conductor of the coaxial combiner to transmit the high frequency output signals to the coaxial combiner. The invention additionally relates to an amplifier system.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: May 19, 2020
    Assignee: Cryoelectra GmbH
    Inventors: Helmut Piel, Sergei Kolesov, Nico Pupeter
  • Patent number: 10658725
    Abstract: A spatium amplifier includes a plurality of amplifiers connected between a pair of spatial couplers, each having a core member and a shell member forming an antenna. The core member includes a cylindrical core portion and a plurality of tapering core fins extending radially outwardly from the cylindrical core portion. The shell member includes a cylindrical shell portion and a plurality of tapering shell fins extending radially inwardly from the cylindrical shell portion to form a plurality of fin pairs. Each fin pair forms a tapering channel having a first channel height at a first end of the antenna and a second channel height larger than the first channel height at a second end of the antenna. Each of the plurality of amplifiers is electromagnetically coupled to a respective fin pair at the first end of each of the antennas.
    Type: Grant
    Filed: June 12, 2018
    Date of Patent: May 19, 2020
    Assignee: Qorvo US, Inc.
    Inventor: John Kitt
  • Patent number: 10644665
    Abstract: An amplifier includes amplification stages connected in parallel between an input point and an output point and a feedback circuit, wherein the amplification stages each include a transistor configured to amplify a signal supplied from the input point, a harmonic processing unit configured to process harmonics present in an amplified signal output from an output node of the transistor, a connection point between the output node and the harmonic processing unit, and a transmission line connecting the connection point and the output point, wherein the feedback circuit feeds back a signal at the output point or a midway point of the transmission line of a given one of the amplification stages to a first end of a resistor connected to the connection point of the given one of the amplification stages, a second end of the resistor being connected to the connection point of another one of the amplification stages.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: May 5, 2020
    Assignee: FUJITSU LIMITED
    Inventors: Naoko Kurahashi, Masaru Sato
  • Patent number: 10637418
    Abstract: A power amplifier includes an input terminal configured to receive a low voltage input signal, an output terminal configured to output a high voltage output signal, and a plurality of amplifiers stacked in series between a first voltage terminal and a second voltage terminal. Each of the amplifiers includes an input capacitor, an output capacitor, an input coupled to the input terminal through the input capacitor, an output coupled to the output terminal through the output capacitor, and a feedback element coupled between the input and the output of the amplifier.
    Type: Grant
    Filed: July 6, 2018
    Date of Patent: April 28, 2020
    Assignee: SHENZHEN GOODIX TECHNOLOGY CO., LTD.
    Inventors: Ahmed Emira, Rami Khatib, Faisal Hussien
  • Patent number: 10622952
    Abstract: A distributed amplifier system constituted of: an input transmission line exhibit a plurality of sections; an output transmission line; an amplifier stage, an output of the amplifier stage coupled to the output transmission line and an input of the amplifier stage coupled to the input transmission line between a respective pair of the plurality of sections; a PIN diode coupled between a first end of the input transmission line and a common potential; and a circuitry coupled between a second end of the input transmission line and the common potential, the second end opposing the first end, such that there is a direct current (DC) flow through the first unidirectional electronic valve, the input transmission line and the circuitry.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: April 14, 2020
    Assignee: Microsemi Corporation
    Inventor: Peter Shveshkeyev
  • Patent number: 10615482
    Abstract: Spatial power-combining devices with increased output power are disclosed. A spatial power-combining device includes a plurality of amplifier assemblies and each of the amplifier assemblies includes a plurality of amplifiers separately coupled to a plurality of antennas. An amplifier assembly includes a first amplifier sub-assembly and a second amplifier sub-assembly. The first amplifier sub-assembly includes a first amplifier, a first input antenna structure coupled to the first amplifier, and a first output antenna structure coupled to the first amplifier. The second amplifier sub-assembly includes a second amplifier, a second input antenna structure coupled to the second amplifier, and a second output antenna structure coupled to the second amplifier.
    Type: Grant
    Filed: March 23, 2018
    Date of Patent: April 7, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Ankush Mohan, Dan Denninghoff
  • Patent number: 10594275
    Abstract: A power amplifying radiator is disclosed that includes an electric field receiver or radiofrequency (RF) energy coupling and impedance matching element, a capacitive coupler, a cavity combiner including a coaxial-cavity section providing electromagnetic communication with the capacitive coupler, and a phased-array antenna/one or more phased-array antennas. The RF energy coupling and impedance matching element is in electromagnetic communication with the one or more phased-array antennas via the cavity combiner. The cavity combiner includes a center conductor configured and disposed to project from the coaxial-cavity section such that the cavity combiner defines a co-axial cross-sectional configuration. The power amplifying radiator may be included within a high power microwave system.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: March 17, 2020
    Inventors: Hoon Ahn, Erich Enrique Kunhardt, Christine Kunhardt
  • Patent number: 10530316
    Abstract: A power amplifier includes a two-dimensional matrix of N×M active cells formed by stacking main terminals of multiple active cells in series. The stacks are coupled in parallel to form the two-dimensional matrix. The power amplifier includes a driver structure to coordinate the driving of the active cells so that the effective output power of the two-dimensional matrix is approximately N×M the output power of each of the active cells.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: January 7, 2020
    Assignee: Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V.
    Inventor: Friedbert van Raay
  • Patent number: 10530312
    Abstract: An RF power amplifier includes an input coupler including a first resistor and a first capacitor, an input phase difference network of the input coupler including a first input direct current (DC) bias injection network and a second capacitor connected in series with the first resistor. The second capacitor increases a bandwidth of the RF power amplifier. The RF power amplifier may further include a first power amplifier and a second power amplifier. The first input DC bias injection network provides power to the first power amplifier and the second power amplifier. The RF power amplifier includes a lateral dimension narrower than a lateral dimension of an RF power amplifier comprising bias circuitry on two opposing sides.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: January 7, 2020
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventor: Daniel C. Boire
  • Patent number: 10530479
    Abstract: Optical network units (ONUs) for high bandwidth connectivity, and related components and methods are disclosed. A fiber optical network ends at an ONU, which may communicate with a subscriber unit wirelessly at an extremely high frequency avoiding the need to bury cable on the property of the subscriber. In one embodiment, an optical network unit (ONU) is provided. The ONU comprises a fiber interface configured to communicate with a fiber network. The ONU further comprises an optical/electrical converter configured to receive optical downlink signals at a first frequency from the fiber network through the fiber interface and convert the optical downlink signals to electrical downlink signals. The ONU further comprises electrical circuitry configured to frequency convert electrical downlink signals to extremely high frequency (EHF) downlink signals at an EHF, and a wireless transceiver configured to transmit the EHF downlink signals to a proximate subscriber unit through an antenna.
    Type: Grant
    Filed: August 19, 2016
    Date of Patent: January 7, 2020
    Assignee: Corning Optical Communications LLC
    Inventors: Bruce Cinkai Chow, Anthony Ng'Oma, Michael S Pambianchi, Michael Sauer
  • Patent number: 10523158
    Abstract: Provided is a load modulation amplifier including: a high frequency circuit board; and on the board, an input distribution circuit unit (DC) including: a distributor for dividing one input signal into two signals IS1 and IS2; and a phase delay circuit formed on a signal line for the divided IS2; a carrier amplifier (CA) including a first high frequency transistor for amplifying the IS1; a peak amplifier (PA) including a second high frequency transistor and for amplifying the IS2; and an output combination circuit (OCCU) including: a 90-degree phase delay circuit (90DC) formed on a signal line for output of the CA; a combiner for combining output of the 90DC and output of the PA; and an impedance conversion circuit for converting an output impedance of the combiner. The CA and the PA are directly connected to the OCCU without converting an output impedance.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: December 31, 2019
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shintaro Shinjo, Yuji Komatsuzaki, Keigo Nakatani, Koji Yamanaka
  • Patent number: 10498000
    Abstract: A method and apparatus for producing an RF part of an antenna system is disclosed, as well as thereby producible RF parts. The RF part has at least one surface provided with a plurality of protruding elements. In particular, the RF part may be a gap waveguide. The protruding elements are monolithically formed and fixed on a conducting layer, and all protruding elements are connected electrically to each other at their bases via the conductive layer. The RF part is produced by providing a die having a plurality of recessions forming the negative of the protruding elements of the RF part. The die may be a multilayer die, having several layers, at least some having through-holes to form the recessions. A formable piece of material is arranged on the die, and pressure is applied, thereby compressing the formable piece of material to conform with the recessions of the die.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: December 3, 2019
    Assignee: Gapwaves AB
    Inventors: Farid Hadavy, Per-Simon Kildal
  • Patent number: 10470258
    Abstract: High frequency heating device is provided with heater disposed adjacent to mount base on which object to be heated is mounted and having a plurality of surface wave transmission lines electrically isolated from each other, and first and second high frequency power generators, each of which generates high frequency power having different frequency. Surface wave transmission lines receive at least one of the high frequency power generated by first high frequency power generator and the high frequency power generated by second high frequency power generator. According to this aspect, interference between the high frequency powers is not occurred and electromagnetic field coupling is not occurred. As a result, in the high frequency heating device provided with the surface wave transmission line using a periodic structure, uneven baking caused by the electromagnetic field coupling can be suppressed, and a heating state of an object to be heated can be easily controlled.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: November 5, 2019
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Toshiyuki Okajima, Yoshiharu Oomori, Koji Yoshino
  • Patent number: 10461705
    Abstract: Apparatus and methods for oscillation suppression of cascode power amplifiers are provided herein. In certain implementations, a power amplifier system includes a cascode power amplifier including a plurality of transconductance devices that operate in combination with a plurality of cascode devices to amplify a radio frequency input signal. The power amplifier system further includes a bias circuit that biases the plurality of cascode devices with two or more bias voltages that are decoupled from one another at radio frequency to thereby inhibit the cascode power amplifier from oscillating.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 29, 2019
    Assignee: Skyworks Solutions, Inc.
    Inventor: John William Mitchell Rogers
  • Patent number: 10374309
    Abstract: A mm-wave antenna apparatus with beam steering function that includes: a Butler Matrix feeding network; a plurality of power combiners, each power combiner having one input and N outputs, configured to apply equal phase and power to a phase distributed output signal generated by the Butler Matrix feeding network and to generate N processed signals; and a plurality of millimeter wave switched beam planar antenna arrays having at least 1.5 GHz of bandwidth and located on a top low loss dielectric substrate, each antenna array of N elements, configured to obtain direct and narrow width beams from the N processed signals combined by each power combiner.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: August 6, 2019
    Assignee: King Fahd University of Petroleum and Minerals
    Inventor: Mohammad Said Sharawi
  • Patent number: 10365682
    Abstract: A network including a current-mode transmitter configured to receive a first voltage and output a first current to a first node in accordance with a first control signal. A transmission line is configured to conduct a signal transmission between the first node and a second node, wherein the transmission line comprises an internal tapping point at a third node. A first transimpedance amplifier is configured to receive a second current from the second node and output a second voltage in accordance with a second control signal. Further; a second transimpedance amplifier is configured to receive a third current from the third node and output a third voltage in accordance with a third control signal.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: July 30, 2019
    Assignee: REALTEK SEMICONDUCTOR CORP.
    Inventor: Chia-Liang (Leon) Lin
  • Patent number: 10320336
    Abstract: A cascode power cell for a power amplifier circuit includes a radio frequency signal input node, a radio frequency signal output node, and a plurality of sub-cells each including a first transistor having a collector coupled to the radio frequency signal output node, each of the plurality of sub-cells further including a second transistor having a collector coupled to an emitter of the first transistor at a connection node, and a base coupled to the radio frequency signal input node, the connection nodes for each of the plurality of sub-cells being electrically isolated from one another.
    Type: Grant
    Filed: August 15, 2017
    Date of Patent: June 11, 2019
    Inventor: John William Mitchell Rogers
  • Patent number: 10320359
    Abstract: The present invention discloses a signal processing device for processing a differential signal from a sensor at a prescribed signal frequency, having a positive signal input (5-1), which is couplable to a positive sensor output of the sensor, and a negative signal input (6-1), which is couplable to a negative sensor output of the sensor, having a positive signal output (7-1) and having a negative signal output (8-1), having a first frequency-dependent resistance (C1H) between the positive signal input (5-1) and the positive signal output (7-1) and having a second frequency-dependent resistance (C1L) between the negative signal input (6-1) and the negative signal output (8-1), wherein the first and second frequency-dependent resistances (C1H, C1L) are designed to allow electrical signals at the prescribed signal frequency to pass in approximately unattenuated fashion, having a first voltage divider (11), which is arranged at least in part in parallel with the first frequency-dependent resistance (C1H) and is
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: June 11, 2019
    Assignee: Robert Bosch GmbH
    Inventor: Tim Bruckhaus
  • Patent number: 10243250
    Abstract: A two-way microwave power divider (the “power divider”) may include an input port and two output ports. The power divider may also include a junction that is configured to split a feedline from the input port into a first transmission line and a second transmission line. One or more resistors may be placed along the first transmission line and the second transmission line to provide isolation between the two output ports.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: March 26, 2019
    Assignee: The United States of America, as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Kongpop U-Yen, Nathan Kovarik
  • Patent number: 10224878
    Abstract: A power amplification device, including a first amplification branch, a second amplification branch, a harmonic injection circuit, and a first output matching circuit. A first amplifier in the first amplification branch supports a first frequency. A second amplifier in the second amplification branch supports the first frequency and a second frequency, and the second amplifier is turned off for a signal of the first frequency that has a power value lower than an enabling threshold. The harmonic injection circuit injects a signal of the second frequency that is input from a second input terminal (I2) to a signal of the first frequency that is input from a first input terminal (I1) to obtain a signal of the first frequency that has undergone harmonic injection.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: March 5, 2019
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Yanhui Wang, Xikun Zhang, Qianhua Wei
  • Patent number: 10205427
    Abstract: A multi-way power amplifier circuit includes two baluns and a number (2×N) of differential power amplifiers, where N?2. Each balun generates a number (N) of corresponding differential intermediate signal pairs based on a respective to-be-amplified signal. Each differential power amplifier generates a respective differential amplified signal pair based on a respective differential intermediate signal pair. One of the baluns includes: a first transmission line and a second transmission line connected to each other; a number (N) of third transmission lines electromagnetically coupled to the first transmission line; and a number (N) of fourth transmission lines electromagnetically coupled to the second transmission line.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: February 12, 2019
    Assignee: NATIONAL CHI NAN UNIVERSITY
    Inventors: Yo-Sheng Lin, Jin-You Liao
  • Patent number: 10200077
    Abstract: Described herein are radio-frequency (RF) modules that include shielding for improved RF performance. The RF modules including a packaging substrate with a receiving system implemented thereon. The RF module includes a shield implemented to provide RF shielding for at least a portion of the receiving system. The receiving system can include any combination of pre-amplifier or post-amplifier bandpass filters, amplifiers, switching networks, impedance matching components, phase-shifting components, input multiplexers, and output multiplexers. The shielding can include a conductive layer within a conformal shielding on an upper side and side walls of the RF module. The shielding can be an overmold formed over the packaging substrate. The conductive layer can be connected to one or more ground planes. The packaging substrate can include contact features on an underside of the substrate for mounting an underside component.
    Type: Grant
    Filed: April 28, 2017
    Date of Patent: February 5, 2019
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Yi Liu, Anthony James Lobianco, Matthew Sean Read, Hoang Mong Nguyen, Howard E. Chen, Stephane Richard Marie Wloczysiak, William J. Domino, Bipul Agarwal
  • Patent number: 10164667
    Abstract: Spatial power-combining devices having amplifier connectors are disclosed. A spatial power-combining device structure includes a plate including a first face, a second face that opposes the first face, an exterior surface between the first face and the second face, and a plurality of amplifier connectors accessible at the exterior surface. A waveguide assembly is coupled to the plate at the first face, the waveguide assembly including an inner housing including a plurality of antenna signal conductors and an outer housing including a plurality of antenna ground conductors. A coaxial waveguide section is coupled to the waveguide assembly. The plurality of amplifier connectors may be radially arranged in the plate. A plurality of amplifier modules are on the exterior surface and coupled to corresponding ones of the plurality of amplifier connectors.
    Type: Grant
    Filed: March 21, 2018
    Date of Patent: December 25, 2018
    Assignee: Qorvo US, Inc.
    Inventor: John Kitt
  • Patent number: 10164579
    Abstract: A distributed amplifier includes an input transmission circuit, an output transmission circuit, at least one cascode amplifier coupled between said input and output transmission circuits. Each cascode amplifier includes a first common-gate configured transistor coupled to the output transmission circuit, a common-source configured transistor coupled between the input transmission circuit and the common-gate configured transistor, and a second common-gate configured transistor coupled between the first common-gate configured transistor and common-source configured transistor.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: December 25, 2018
    Assignee: HITTITE MICROWAVE LLC
    Inventor: Keith Benson
  • Patent number: 10116272
    Abstract: An amplifier with switchable and tunable harmonic terminations and a variable impedance matching network is presented. The amplifier can adapt to different modes and different frequency bands of operation by appropriate switching and/or tuning of the harmonic terminations and/or the variable impedance matching network.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: October 30, 2018
    Assignee: pSemi Corporation
    Inventors: Gary Frederick Kaatz, Chris Olson
  • Patent number: 10110307
    Abstract: Optical network units (ONUs) for high bandwidth connectivity, and related components and methods are disclosed. A fiber optical network ends at an ONU, which may communicate with a subscriber unit wirelessly at an extremely high frequency avoiding the need to bury cable on the property of the subscriber. In one embodiment, an optical network unit (ONU) is provided. The ONU comprises a fiber interface configured to communicate with a fiber network. The ONU further comprises an optical/electrical converter configured to receive optical downlink signals at a first frequency from the fiber network through the fiber interface and convert the optical downlink signals to electrical downlink signals. The ONU further comprises electrical circuitry configured to frequency convert electrical downlink signals to extremely high frequency (EHF) downlink signals at an EHF, and a wireless transceiver configured to transmit the EHF downlink signals to a proximate subscriber unit through an antenna.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: October 23, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Bruce Cinkai Chow, Anthony Ng'Oma, Michael S Pambianchi, Michael Sauer
  • Patent number: 10090816
    Abstract: A two-stage amplifier of a type of the current re-use configuration is disclosed. The amplifier includes first to third transistors, where the first transistor constitute the first stage, while, the latter two transistors constitute the second stance. The first to third transistors are connected in series between a power supply and ground such that a bias current supplied to the third transistor flows in the second and first transistors. The first transistor in the source thereof is grounded in the DC mode. The second transistor is grounded in the AC mode but floated in the DC mode. The third transistor that outputs an amplified signal is connected in parallel in the AC mode but in series in the DC mode with respect to the second transistor.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: October 2, 2018
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Seiji Fujita, Tsuneo Tokumitsu
  • Patent number: 10069466
    Abstract: Solder bumps are placed in direct contact with the silicon substrate of an amplifier integrated circuit having a flip chip configuration. A plurality of amplifier transistor arrays generate waste heat that promotes thermal run away of the amplifier if not directed out of the integrated circuit. The waste heat flows through the thermally conductive silicon substrate and out the solder bump to a heat-sinking plane of an interposer connected to the amplifier integrated circuit via the solder bumps.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: September 4, 2018
    Assignee: Skyworks Solutions, Inc.
    Inventors: Michael Joseph McPartlin, Bharatjeet Singh Gill, Stephen Joseph Kovacic
  • Patent number: 10063211
    Abstract: The disclosure generally relates to a compact bypass and decoupling structure that can be used in a millimeter-wave radio frequency integrated circuit (RFIC). For example, according to various aspects, an RFIC incorporating the compact bypass and decoupling structure may comprise a grounded substrate, a mid-metal ground plane, a bypass capacitor disposed between the grounded substrate and the mid-metal ground plane, and a decoupling inductor disposed over the mid-metal ground plane. The bypass capacitor may close a current loop in the RFIC and the decoupling inductor may provide damping in a supply network associated with the RFIC. Furthermore, the decoupling conductor may have a self-resonance substantially close to an operating band associated with the RFIC to increase series isolation, introduce substrate losses that facilitate the damping in the supply network, and prevent high-Q resonances.
    Type: Grant
    Filed: February 1, 2017
    Date of Patent: August 28, 2018
    Assignee: QUALCOMM Incorporated
    Inventors: Alon Yehezkely, Sagi Kupferman
  • Patent number: 10009103
    Abstract: A microwave-frequency source at frequency fM comprises: a dual optical-frequency reference source, an electro-optic sideband generator, an optical bandpass filter, an optical detector, a reference oscillator, an electrical circuit, and a voltage-controlled oscillator (VCO). The sideband generator modulates dual optical reference signals at v2 and v1 to generate sideband signals at v1±n1fM and v2±n2fM. The bandpass filter transmits sideband signals at v1+N1fM and v2?N2fM. The optical detector generates a beat note at (v2?N2fM)?(v1+N1fM). The beat note and a reference oscillator signal are processed by the circuit to generate a loop-filtered error signal to input to the VCO. Output of the VCO at fM drives the sideband generator and forms the microwave-frequency output signal. The resultant frequency division results in reduced phase noise on the microwave-frequency signal.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: June 26, 2018
    Assignees: CALIFORNIA INSTITUTE OF TECHNOLOGY, THE UNITED STATES OF AMERICA, AS REPRESENTED BY THE SECRETARY OF COMMERCE
    Inventors: Kerry Vahala, Scott Diddams, Jiang Li, Xu Yi, Hansuek Lee
  • Patent number: 10003118
    Abstract: A spatium amplifier includes a plurality of amplifiers connected between a pair of spatial couplers, each having a core member and a shell member forming an antenna. The core member includes a cylindrical core portion and a plurality of tapering core fins extending radially outwardly from the cylindrical core portion. The shell member includes a cylindrical shell portion and a plurality of tapering shell fins extending radially inwardly from the cylindrical shell portion to form a plurality of fin pairs. Each fin pair forms a tapering channel having a first channel height at a first end of the antenna and a second channel height larger than the first channel height at a second end of the antenna. Each of the plurality of amplifiers is electromagnetically coupled to a respective fin pair at the first end of each of the antennas.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: June 19, 2018
    Assignee: Qorvo US, Inc.
    Inventor: John Kitt
  • Patent number: 9991854
    Abstract: Embodiments of an RF amplifier include a transistor with a control terminal and first and second current carrying terminals, and a shunt circuit coupled between the first current carrying terminal and a ground reference node. The shunt circuit includes a first shunt inductive element, a second shunt inductance, and a shunt capacitor coupled in series. Instead of a separate inductive element, the second shunt inductance may be achieved via magnetic coupling of the first shunt inductive element and an envelope inductive element of a video bandwidth circuit that is coupled between an RF cold point node (between the first and second shunt inductances) and the ground. Alternatively, an envelope inductance in the video bandwidth circuit may be achieved via magnetic coupling of first and second shunt inductive elements. A better RF cold point may be achieved without physically incorporating separate inductive elements, allowing for reduction in cost and size.
    Type: Grant
    Filed: March 3, 2017
    Date of Patent: June 5, 2018
    Assignee: NXP USA, INC.
    Inventors: Ning Zhu, Damon G. Holmes, Ricardo Uscola, Jeffrey Kevin Jones
  • Patent number: 9941851
    Abstract: An amplifier arrangement comprises N amplifier stages 101 to 10N, wherein N is an integer equal or greater than five. The amplifier arrangement comprises a cascade of quarter wavelength transmission line segments 111 to 11M coupled between an output of an amplifier of a first amplifier stage and an output node 15 of the amplifier arrangement. At least one intermediate junction 12 in the cascade of quarter wavelength transmission line segments comprises: a first amplifier coupled directly to the intermediate junction 12; and a second amplifier coupled to the same intermediate junction 12 via a connecting quarter wavelength trans mission line 131.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: April 10, 2018
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventor: Richard Hellberg
  • Patent number: 9929701
    Abstract: A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs) is disclosed herein. A cascode having a “common source” input stage and a “common gate” output stage can be turned on or off using the gate of the output stage. A first switch is provided that allows a connection to be either established or broken between the source terminal of the input stage of each cascode. Further switches used for switching degeneration inductors, gate/sources caps and gate to ground caps for each legs can be used to further improve the matching performance of the invention.
    Type: Grant
    Filed: September 21, 2016
    Date of Patent: March 27, 2018
    Assignee: pSemi Corporation
    Inventors: Hossein Noori, Chih-Chieh Cheng
  • Patent number: 9923259
    Abstract: A device and a method for utilizing the device for radio-frequency (RF) power coupling, particularly a power combiner and/or divider, includes a box shaped casing forming the outside conductor, and connectors for inputting and outputting RF-power, which are electrically connected to at least one center conductor, where the electrical connection between the connectors and the at least one center conductor is a direct electrical and mechanical connection.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: March 20, 2018
    Assignee: OOO SIEMENS
    Inventors: Alexey Gudovich, Andrey Krasnov, Konstantin Nikolskiy, Alexander Smirnov
  • Patent number: 9912303
    Abstract: A power combining and outphasing system and related techniques for simultaneously providing both wide-bandwidth linear amplification and high average efficiency is described. Providing linear amplification encompasses the ability to dynamically control an RF output power level over a wide range while still operating over a wide frequency bandwidth. The system and techniques described herein also operate to maintain high efficiency across a wide range of output power levels, such that a high average efficiency can be achieved for highly modulated output waveforms.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: March 6, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Taylor W. Barton, David J. Perreault
  • Patent number: 9866181
    Abstract: Embodiments for a power amplifier that can increase a low-frequency resonance frequency are provided. The power amplifier includes a power amplifying transistor die, a first metal oxide semiconductor capacitor, a direct current decoupling capacitor, and an output matching network, where: a drain of the power amplifying transistor die is connected to a first end of the first metal oxide semiconductor capacitor by using a bonding wire, and a second end of the first metal oxide semiconductor capacitor is grounded; the drain of the power amplifying transistor die is directly connected to the output matching network by using a bonding wire; a source of the power amplifying transistor die is grounded; the first end of the first metal oxide semiconductor capacitor is connected to one end of the direct current decoupling capacitor by using a bonding wire; and the other end of the direct current decoupling capacitor is grounded.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: January 9, 2018
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Xiaomin Zhang, An Huang, Liuyan Jiao
  • Patent number: 9843343
    Abstract: This invention is about the switched multiplexers used for adaptive filtering in systems operating in signal dense environments such as electronic warfare systems. The aim of this invention is to design a switched multiplexer with lower input/output return losses and having lower level of destructive interaction between channels compared to the known examples.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: December 12, 2017
    Assignee: ASELSAN ELEKTRONIK SANAYI VE TICARET ANONIM SIRKETI
    Inventor: Bulent Alicioglu
  • Patent number: 9831837
    Abstract: The present disclosure includes dynamic power divider circuits and methods. In one embodiment, a dynamic power divider includes first and second quarter wave lines that receive an input signal and produce first and second signal on second terminals of the lines. Dynamic power division of the input signal uses a variable impedance circuit between the second terminal of the first quarter wave line and the second terminal of the second quarter wave line. The variable impedance may reduce impedance between two output paths as the input signal power increases or increase impedance between the output paths as the input signal power decreases.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: November 28, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Joonhoi Hur, Paul Joseph Draxler
  • Patent number: 9825603
    Abstract: A distributed amplifier is disclosed having a plurality of amplifier sections, each having an input gate and an output drain, and a first plurality of inductive elements coupled in series between a DA input terminal and a gate termination terminal to form a first plurality of connection nodes. Each of the connection nodes is coupled to a corresponding adjacent pair of the first plurality of inductive elements and to a corresponding input gate of the plurality of amplifier sections. A second plurality of inductive elements is coupled in series between a drain termination terminal and a DA output terminal to form a second plurality of connection nodes, each being coupled to a corresponding adjacent pair of the second plurality of inductive elements and to a corresponding output drain of the plurality of amplifier sections. An active impedance termination circuitry has a termination output coupled to the drain termination terminal.
    Type: Grant
    Filed: August 1, 2016
    Date of Patent: November 21, 2017
    Assignee: Qorvo US, Inc.
    Inventor: Kevin Wesley Kobayashi
  • Patent number: 9806673
    Abstract: An outphasing amplifier includes a first class-E power amplifier (16-1) having an output coupled to a first conductor (31-1) and an input receiving a first RF drive signal (S1(t)). A first reactive element (CA-1) is coupled between the first conductor and a second conductor (30-1). A second reactive element (LA-1) is coupled between the second conductor and a third conductor (32-1). A second class-E power amplifier (17-1) includes an output coupled to a fourth conductor (31-2) and an input coupled to a second RF drive signal (S2(t)), a third reactive element (CA-3) coupled between the second and fourth conductors. Outputs of the first and second power amplifiers are combined by the first, second and third reactive elements to produce an output current in a load (R). An efficiency enhancement circuit (LEEC-1) is coupled between the first and fourth conductors to improve power efficiency at back-off power levels. Power enhancement circuits (20-1,2) are coupled to the first and fourth conductors, respectively.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: October 31, 2017
    Assignee: TEXAS INSTRUMENT INCORPORATED
    Inventors: Aritra Banerjee, Joonhoi Hur, Baher Haroun, Nathan Richard Schemm, Rahmi Hezar, Lei Ding
  • Patent number: 9800208
    Abstract: An embodiment of a radio-frequency (RF) device includes at least one transistor, a package, and a surface-mountable capacitor. The package contains the at least one transistor and includes at least one termination. The surface-mountable capacitor is coupled in a shunt configuration between the at least one transistor and a power supply terminal of the device to decouple the at least one transistor from a power supply.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: October 24, 2017
    Assignee: NXP USA, INC.
    Inventors: Mahesh K. Shah, Jerry L. White, Li Li, Hussain H. Ladhani, Audel A. Sanchez, Lakshminarayan Viswanathan, Fernando A. Santos