Having Different Configurations Patents (Class 330/311)
-
Patent number: 11606067Abstract: Methods and circuital arrangements for turning OFF branches of a multi-branch cascode amplifier are presented. First and second switching arrangements coupled to a branch allow turning OFF the branch while protecting transistors of the branch from a supply voltage that may be greater than a tolerable voltage of the transistors. The first switching arrangement includes a transistor-based switch that is in series connection with the transistors of the branch. The first switching arrangement drops the supply voltage during the OFF state of the branch and provides a conduction path for a current through the branch during the ON state of the branch. A resistor and a shunting switch are coupled to a gate of the transistor-based switch to reduce parasitic coupling effects of the transistor-based switch upon an RF signal coupled to the branch during the ON state and OFF state of the branch.Type: GrantFiled: March 1, 2021Date of Patent: March 14, 2023Assignee: pSemi CorporationInventors: Miles Sanner, Emre Ayranci, Parvez Daruwalla
-
Patent number: 11588447Abstract: A receiver front end capable of receiving and processing intraband non-contiguous carrier aggregate (CA) signals using multiple low noise amplifiers (LNAs). Cascode circuits, each having a “common source” configured input FET and a “common gate” configured output FET, serve as the LNAs. An amplifier-branch control switch, configured to withstand relatively high voltage differentials by means of a relatively thick gate oxide layer and coupled between a terminal of the output FET and a power supply, controls the ON and OFF state of each LNA while enabling use of a relatively thin gate oxide layer for the output FETs, thus improving LNA performance. Some embodiments may include a split cascode amplifier and/or a power amplifier.Type: GrantFiled: December 21, 2020Date of Patent: February 21, 2023Assignee: pSemi CorporationInventors: Joseph Golat, David Kovac
-
Patent number: 11555897Abstract: Mechanisms for evaluating amplitude for current pulses provided to a transimpedance amplifier (TIA) for current levels beyond the linear range of the TIA where clipping circuit(s) may limit the input voltage of the TIA are disclosed. In one aspect, an example TIA arrangement includes a clipping arrangement that includes multiple clipping circuits. Each clipping circuit can be biased by different bias voltages such that the different clipping circuits are activated at different input current amplitudes. Different clipping circuits can have different impedances, which can result in different recovery time characteristics. With the multiple clipping circuits in clipping arrangements discussed herein, a saturated dynamic range of a TIA can be divided into sub-regions and different pulse widening characteristics for each region may be defined, which may enable determination of amplitude for current pulses provided to the TIA even for current levels beyond the linear range of the TIA.Type: GrantFiled: June 3, 2019Date of Patent: January 17, 2023Assignee: Analog Devices International Unlimited CompanyInventors: Yalcin Alper Eken, Mehmet Arda Akkaya, Alp Oguz
-
Patent number: 11533031Abstract: Amplifiers, amplification circuits, and phase shifters, for example, for flexibly adjusting an output phase to thereby meet a requirement of a constant phase on a link in a communications field, are provided. In one aspect, an amplifier includes first, second, and third MOS transistors. The first MOS transistor includes a gate separately coupled to a signal input end and a bias voltage input end, a source coupled to a power supply, and a drain separately coupled to sources of the second and third MOS transistors. A drain of the third MOS transistor is coupled to a ground, and a drain of the second MOS transistor is coupled to a signal output end. The bias voltage input end is configured to receive a bias voltage to adjust a phase difference between an input signal at the signal input end and an output signal at the signal output end.Type: GrantFiled: September 29, 2020Date of Patent: December 20, 2022Assignee: Huawei Technologies Co., Ltd.Inventors: Keji Cui, Yongli Wang, Lei Lu
-
Patent number: 11515850Abstract: In a distributed amplifier, a plurality of cascode amplifiers connected in parallel between an input side transmission line and an output side transmission line are provided, a transmission line is connected to an input terminal of an output transistor of each of the amplifiers, and a bias potential is applied from a bias circuit to the input terminal of the output transistor via the transmission line.Type: GrantFiled: May 31, 2019Date of Patent: November 29, 2022Assignee: NIPPON TELEGRAPH AND TELEPHONE CORPORATIONInventors: Teruo Jo, Munehiko Nagatani, Hideyuki Nosaka
-
Patent number: 11507529Abstract: A configurable serial link interface circuit includes a first transceiver for coupling to a first serial link. The first transceiver includes a first transmit circuit to selectively drive first transmit data along the first serial link and a first receive circuit. The first receive circuit selectively receives first receive data along the first serial link. The interface includes a second transceiver for coupling to a second serial link. The second transceiver includes a second transmit circuit to selectively drive second transmit data along the second serial link, a second receive circuit to selectively receive second receive data along the second serial link, and control circuitry to control the selectivity of the first transmit circuit, the second transmit circuit, the first receive circuit and the second receive circuit. For a first mode of operation, the control circuitry configures the first and second transceivers to define a dual-duplex architecture.Type: GrantFiled: August 9, 2021Date of Patent: November 22, 2022Assignee: Marvell Asia Pte, Ltd.Inventor: Ramin Farjadrad
-
Patent number: 11469715Abstract: A power amplifier circuit includes first and second bias circuits configured to provide first and second biases, respectively, a first transistor having an emitter connected to a reference potential, a base configured to receive the first bias via a first resistor and receive a radio-frequency input signal via a first capacitor, and a collector configured to output an amplified radio-frequency signal, a second transistor having a base connected to the reference potential via a second capacitor and configured to receive the second bias via a second resistor, an emitter configured to receive the radio-frequency signal, and a collector connected to a power supply potential via a third inductor and configured to output a radio-frequency output signal, and an impedance circuit having a first end connected to an output section of the second bias circuit and configured to apply an alternating-current signal to a path extending from the second bias circuit.Type: GrantFiled: December 2, 2020Date of Patent: October 11, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Jun Enomoto, Kazuo Watanabe, Satoshi Tanaka, Yusuke Tanaka, Makoto Itou
-
Patent number: 11463049Abstract: A digitally modulated polar power amplifier uses a thin-oxide amplifying transistor with a protection diode. The polar power includes a driver amplifier in a driver stage that can receive a phase-modulated signal with a constant envelope and amplify the signal for the output stage, which includes only a single thin-oxide transistor, leading to improved efficiency over systems that require a thick-oxide transistor. A protection diode can be added between the output of the polar power amplifier and the supply voltage to limit the output to the sum of the supply voltage plus the forward voltage of the diode. Amplitude modulation can be achieved through dynamically turning on and off the digital power amplifier via an amplitude control word (acw) input signal.Type: GrantFiled: May 26, 2021Date of Patent: October 4, 2022Assignee: INPLAY, INC.Inventors: Ruifeng Liu, Russell Mohn
-
Patent number: 11456703Abstract: The present invention relates to a novel and inventive compound device structure, enabling a charge-based approach that takes advantage of sub-threshold operation, for designing analog CMOS circuits. In particular, the present invention relates to a solid state device based on a complementary pair of n-type and p-type current field-effect transistors, each of which has two control ports, namely a low impedance port and gate control port, while a conventional solid state device has one control port, namely gate control port. This novel solid state device provides various improvement over the conventional devices.Type: GrantFiled: June 30, 2020Date of Patent: September 27, 2022Assignee: Circuit Seed, LLCInventors: Robert C. Schober, Susan Marya Schober
-
Patent number: 11456711Abstract: The measurement method includes operations of applying a first gate bias voltage to a gate terminal of a first transistor that is included in a radio frequency (RF) power amplifier during a direct current (DC) measurement period, wherein the first transistor operates in a linear operation mode during the DC measurement period; measuring a first drain-source voltage of the first transistor and a current flowing through the first transistor via a connection node during the DC measurement period; applying a second gate bias voltage and a drain bias voltage to a gate terminal and a drain terminal of a second transistor that is electrically connected to the first transistor via the connection node; and measuring a DC value of the second transistor via the connection node during the DC measurement period.Type: GrantFiled: August 31, 2020Date of Patent: September 27, 2022Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: En-Hsiang Yeh, Wen-Sheng Chen, Chia-Ming Liang, Chung-Ho Chai, Zong-You Li, Tzu-Jin Yeh
-
Patent number: 11431371Abstract: A radio-frequency module includes an integrated circuit (IC) device and an external inductor provided outside the IC device. The IC device includes a plurality of low-noise amplifiers, one or more inductors, and a switching circuit. The plurality of low-noise amplifiers includes a plurality of transistors in one to one correspondence. The one or more inductors are coupled to one or more of the plurality of transistors. Each inductor is coupled to the emitter or source of a corresponding one of the plurality of transistors. The switching circuit is coupled between the emitter or source of each of the plurality of transistors and the external inductor. The external inductor is coupled between the switching circuit and ground in series with each of the one or more inductors via the switching circuit.Type: GrantFiled: June 3, 2021Date of Patent: August 30, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Daisuke Yoshida
-
Patent number: 11387796Abstract: A power amplifier circuit includes a lower-stage transistor having a first power supply voltage supplied to a first terminal, a second terminal connected to ground, and a first signal supplied to a third terminal; an upper-stage transistor having a second power supply voltage supplied to a first terminal, a second signal obtained by amplifying the first signal being output from the first terminal, a second terminal connected to the first terminal of the lower-stage transistor via a first capacitor, and a third terminal connected to ground via a ground path; an inductor that connects the second terminal of the upper-stage transistor to ground; and an adjustment circuit that adjusts impedance seen from the third terminal of the upper-stage transistor. The adjustment circuit includes a second capacitor and at least one resistance element connected in series with the ground path between the third terminal of the upper-stage transistor and ground.Type: GrantFiled: December 10, 2019Date of Patent: July 12, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Satoshi Tanaka, Kazuo Watanabe, Norio Hayashi, Makoto Itou
-
Patent number: 11387799Abstract: A power amplifier including a cascode output stage, a bias circuit, and a temperature compensation and bias boost circuit. The cascode output stage has an input and an output and includes first and second transistors connected in series. A base of the first transistor is coupled to the input, an emitter of the first transistor is coupled to a reference potential, a collector of the first transistor is coupled to an emitter of the second transistor, and a collector of the second transistor is coupled to a supply voltage and the output. The bias circuit is coupled to the base of the second transistor. The bias boost circuit is coupled to the base of the first transistor, compensates for changes in temperature of the cascode output stage, and increases a bias current provided to the first transistor responsive to an increase in the temperature of the cascode output stage.Type: GrantFiled: October 23, 2020Date of Patent: July 12, 2022Assignee: SKYWORKS SOLUTIONS, INC.Inventor: John William Mitchell Rogers
-
Patent number: 11387786Abstract: An amplifier includes amplifier circuits connected in series between a ground and a power supply, each amplifier circuit includes: a transistor; and a first capacitance, one end of which is connected to a drain of the transistor, a first amplifier circuit connected closest to the power supply includes a load connected between the drain of the transistor and the power supply, each of the amplifier circuits except for the first amplifier circuit includes a load connected between the drain of the transistor of an own amplifier circuit and a source of the transistor of an amplifier circuit adjacent to the own amplifier circuit, each of the amplifier circuits except for an amplifier circuit connected farthest from the power supply includes a second capacitance connected between the source of the transistor and the ground, and the second capacitance has a capacitance value larger than a capacitance value of the first capacitance.Type: GrantFiled: December 22, 2020Date of Patent: July 12, 2022Assignee: Fujitsu LimitedInventor: Yoichi Kawano
-
Patent number: 11342891Abstract: An amplifier circuit (1) includes a FET (10) having a source terminal (S1), a drain terminal (D1), and a gate terminal (G1), a FET (20) having a source terminal (S2), a drain terminal (D2), and a gate terminal (G2) and coupled in parallel with the FET (10), a FET (30) having a source terminal (S3) coupled to the drain terminals (D1 and D2), a drain terminal (D3), and a gate terminal (G3) and cascoded with the FETs (10 and 20), and feedback circuits (21 and 22) configured to feed back to the gate terminal (G2) a high frequency signal outputted from the source terminal (S2) or the drain terminal (D2).Type: GrantFiled: November 16, 2020Date of Patent: May 24, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Daisuke Watanabe, Nobuyasu Beppu
-
Patent number: 11336243Abstract: A receiver topology for supporting various combinations of interband carrier aggregation (CA) signals, intraband non-contiguous CA and non-CA signals having different combinations of signals aggregated therein.Type: GrantFiled: September 2, 2020Date of Patent: May 17, 2022Assignee: pSemi CorporationInventors: Emre Ayranci, Miles Sanner, Phanindra Yerramilli
-
Patent number: 11323078Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.Type: GrantFiled: August 6, 2020Date of Patent: May 3, 2022Assignee: pSemi CorporationInventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
-
Patent number: 11303252Abstract: Systems, methods, and apparatuses for improving reliability and/or reducing the likelihood of breakdown of an amplifier or a component thereof. A system can include a sensing circuit electrically coupled to a transistor of the amplifier and configured to sense an AC voltage associated with the transistor. A protection circuit can be electrically coupled to the sensing circuit and the amplifier and can be configured to supply a DC voltage to the transistor of the amplifier based on the AC voltage sensed by the sensing circuit.Type: GrantFiled: September 25, 2019Date of Patent: April 12, 2022Assignee: Analog Devices International Unlimited CompanyInventor: Mohamed Moussa Ramadan Esmael
-
Patent number: 11296661Abstract: An amplifier circuit that amplifies a high frequency signal includes a transistor that is an example of an amplifier integrated into an IC device and an inductor connected to an input terminal of the transistor, and the inductor includes a first inductor integrated into the IC device and a second inductor connected in series to the first inductor and included in a first component different from the IC device.Type: GrantFiled: March 18, 2020Date of Patent: April 5, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Ken Wakaki
-
Patent number: 11245365Abstract: A power amplifier circuit includes a first transistor, a capacitor, and a second transistor. The first transistor has an emitter electrically connected to a reference potential, a base, and a collector electrically connected to a first power supply potential. A first end of the capacitor is electrically connected to the collector of the first transistor. The second transistor has an emitter electrically connected to a second end of the capacitor and electrically connected to the reference potential, a base, and a collector electrically connected to the first power supply potential. An RF output signal obtained by amplifying the RF input signal is output from the collector of the second transistor. A second bias circuit includes a third transistor having a collector electrically connected to a second power supply potential, a base, and an emitter from which the second bias current or voltage is output.Type: GrantFiled: March 24, 2020Date of Patent: February 8, 2022Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Toshikazu Terashima, Satoshi Tanaka, Kazuo Watanabe, Makoto Itou, Jun Enomoto
-
Patent number: 11223329Abstract: A power amplifier circuitry (100) comprises: a transistor stack (110) comprising at least two stacked transistor units (112A, 112B, 112C) for amplifying input signals; wherein each stacked transistor unit (112A, 112B, 112C) comprises a plurality of controllable segments (120-1 to 120-N, 130-1 to 130-N, 140-1 to 140-N), each comprising a segment transistor (122, 132, 142), wherein source terminals (123, 133, 143) within each transistor unit are connected, drain terminals (125, 135, 145) within each transistor unit are connected and gate terminals (124, 134, 144) within each transistor unit are connected, wherein each segment transistor (122, 132, 142) further comprises a back gate terminal (126, 136, 146) for setting a body bias, wherein at least two of the segment transistors (122, 132, 142) within each transistor unit have independently connected back gate terminals (126, 136, 146); and a control unit (190) configured to control the body bias for selecting an amplifier class of each of the controllable segmeType: GrantFiled: February 12, 2020Date of Patent: January 11, 2022Assignees: IMEC USA NANOELECTRONICS DESIGN CENTER, Inc., IMEC VZWInventors: Aritra Banerjee, Pierre Wambacq
-
Patent number: 11201594Abstract: An amplifier circuit is a cascade amplifier circuit that includes a first transistor circuit including a signal input portion to which a signal is input from outside; a load circuit connected between the first transistor circuit and a power-supply line; and a second transistor cascode-connected between the load circuit and the first transistor circuit. The first transistor circuit is constituted by a plurality of transistors connected in parallel, and a bias circuit is provided that selectively supplies a bias voltage to the plurality of transistors.Type: GrantFiled: February 7, 2020Date of Patent: December 14, 2021Assignee: MURATA MANUFACTURING CO., LTD.Inventor: Nobuyasu Beppu
-
Patent number: 11190139Abstract: Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are possible where the amplifier is configured to operate in at least an active mode and a standby mode. Circuital arrangements can reduce bias circuit and stacked transistors standby current during operation in the standby mode and to reduce impedance presented to the gates of the stacked transistors during operation in the active mode while maintaining voltage compliance of the stacked transistors during both modes of operation.Type: GrantFiled: May 22, 2020Date of Patent: November 30, 2021Assignee: pSemi CorporationInventors: Poojan Wagh, Kashish Pal, Robert Mark Englekirk, Tero Tapio Ranta, Keith Bargroff, Simon Edward Willard
-
Patent number: 11177782Abstract: Methods and devices to fabricate low-cost wideband LNAs that are tunable to multiple frequency bands. Decoupling capacitors are used as part of a tuning circuit implemented at the LNA input. The capacitors are switchably selectable to also tune a signal into desired frequency bands.Type: GrantFiled: January 23, 2020Date of Patent: November 16, 2021Assignee: PSEMI CORPORATIONInventor: Cheng-Kai Luo
-
Patent number: 11133783Abstract: A power amplifier may comprise: an element for amplifying an electrical signal received through an input terminal, and outputting the amplified electrical signal through an output terminal; a first impedance adjustment circuit connected to the input terminal of the element and adjusting impedance with respect to a frequency of a fundamental component at the input terminal; a second impedance adjustment circuit connected to the input terminal of the element and adjusting impedance with respect to a frequency of a multiplied harmonic component at the input terminal; a third impedance adjustment circuit connected to the output terminal of the element and adjusting impedance with respect to the frequency of the fundamental component at the output terminal; a fourth impedance adjustment circuit connected to the output terminal of the element and adjusting impedance with respect to the frequency of the multiplied harmonic component at the output terminal; a first frequency separation circuit which prevents an impedType: GrantFiled: February 2, 2018Date of Patent: September 28, 2021Inventors: Sung-Ku Yeo, Bum-Man Kim, Yun-Sik Park, Sang-Wook Kwon, Dong-Gyu Min, Sung-Bum Park
-
Patent number: 11025205Abstract: When a potential difference V1 between a source terminal of an E-type FET (11) and a source terminal of a D-type FET (12) is larger than a threshold voltage Vth, a protection circuit (13) starts an operation to reduce the potential difference V1 such that the potential difference V1 is smaller than the threshold voltage Vth. This makes it possible to prevent destruction of the E-type FET (11) even when a signal to be amplified is an RF signal.Type: GrantFiled: February 22, 2017Date of Patent: June 1, 2021Assignee: MITSUBISHI ELECTRIC CORPORATIONInventors: Eigo Kuwata, Yutaro Yamaguchi
-
Patent number: 10958220Abstract: A biasing circuit with high current drive capability for fast settling of a biasing voltage to a stacked cascode amplifier is presented. According to a first aspect, the biasing circuit uses transistors matched with transistors of the cascode amplifier to generate a boost current during a transition phase that changes the biasing voltage by charging or discharging a capacitor. The boost current is activated during the transition phase and deactivated when a steady-state condition is reached. According to a second aspect, the biasing circuit uses an operational amplifier in a feedback loop that forces a source node of a cascode transistor of a reference circuit, that is a scaled down replica version of the cascode amplifier, to be at a reference voltage. The high gain and high current capability of the operational amplifier, provided by isolating a high frequency signal processed by the cascode amplifier from the reference circuit, allow for a quick settling of the biasing voltage.Type: GrantFiled: January 28, 2020Date of Patent: March 23, 2021Assignee: pSemi CorporationInventors: Jonathan James Klaren, Tero Tapio Ranta
-
Patent number: 10951171Abstract: Power amplifiers and related methods are disclosed having configurable switched mode operation in a high-power mode of operation and a low-power mode of operation. The power amplifiers have a first cascode amplifier coupled to receive a positive differential input and a second cascode amplifier coupled to receive a negative differential input. The first and second cascode amplifiers include output stages and first/second input stages. The first input stages and the second input stages are enabled in a high-power mode of operation. The first input stages are disabled and the second input stages are enabled during a low-power mode of operation. For further embodiments, a switchable clamp operates in the low-power mode to clamp a voltage output for the second input stages. For further embodiments, the output stages are provided a variable voltage bias or are coupled to tunable capacitances that are varied between the low-power and high-power modes.Type: GrantFiled: March 5, 2019Date of Patent: March 16, 2021Assignee: NXP USA, Inc.Inventors: Maicol Cannella, Aurelien Larie, Stefano Dal Toso
-
Patent number: 10917057Abstract: A power amplifier circuit includes a first transistor, wherein a radio frequency signal is inputted to a base or gate of the first transistor; a second transistor having an emitter connected to a collector or drain of the first transistor, wherein a first voltage is supplied to a collector of the second transistor, and a first amplified signal obtained by amplifying the radio frequency signal is outputted from the collector of the second transistor; and a third transistor configured to supply a bias voltage to a base of the second transistor. A second voltage is supplied to a collector or drain of the third transistor, a third voltage corresponding to the first voltage is supplied to a base or gate of the third transistor, and the bias voltage, which corresponds to the third voltage, is supplied from an emitter or source of the third transistor.Type: GrantFiled: October 16, 2019Date of Patent: February 9, 2021Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Hidetoshi Matsumoto, Satoshi Tanaka, Masatoshi Hase
-
Patent number: 10804951Abstract: Described herein are variable-gain amplifier configurations that include a multi-input gain stage, a cascode buffer, and a bypass block. Degeneration switching blocks can be used for the entire multi-input gain stage or for individual input nodes of the multi-input gain stage. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality.Type: GrantFiled: January 7, 2020Date of Patent: October 13, 2020Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Patent number: 10804849Abstract: A self-biased amplifier includes a capacitor, a bias generation circuit and a common source amplifier. The capacitor is used to receive an input voltage and output an alternating component of the input voltage. The bias generation circuit is coupled to the capacitor, and used to generate a first bias voltage according to the alternating component. The common source amplifier is coupled to the bias generation circuit, and used to generate an amplified voltage according to the first bias voltage.Type: GrantFiled: December 28, 2018Date of Patent: October 13, 2020Assignee: UNITED MICROELECTRONICS CORP.Inventors: Ke-Han Chen, Min-Chia Wang
-
Patent number: 10771023Abstract: An amplifier including a signal input terminal, at least one signal output terminal, a first and a second cascode amplifier circuits, a capacitor and a loading circuit. The signal input terminal receives an input signal. The first cascode amplifier circuit includes a first and a second input terminals and a first and a second output terminals. The first input terminal coupled to the signal input terminal receives the input signal. The second cascode amplifier circuit includes a third and a fourth input terminals and a third output terminal. The third input terminal is coupled to the first output terminal, and the third output terminal is coupled to the second input terminal. Two terminals of the capacitor are coupled to the fourth input terminal and the first output terminal respectively. A terminal of the loading circuit is coupled to the third output terminal, and another terminal of the loading circuit is coupled to the second output terminal.Type: GrantFiled: September 19, 2018Date of Patent: September 8, 2020Assignee: RichWave Technology Corp.Inventor: Ting-Yuan Cheng
-
Patent number: 10756684Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.Type: GrantFiled: May 9, 2019Date of Patent: August 25, 2020Assignee: pSemi CorporationInventors: Dan William Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
-
Patent number: 10715200Abstract: A monolithic integrated circuit (IC), and method of manufacturing same, that includes all RF front end or transceiver elements for a portable communication device, including a power amplifier (PA), a matching, coupling and filtering network, and an antenna switch to couple the conditioned PA signal to an antenna. An output signal sensor senses at least a voltage amplitude of the signal switched by the antenna switch, and signals a PA control circuit to limit PA output power in response to excessive values of sensed output. Stacks of multiple FETs in series to operate as a switching device may be used for implementation of the RF front end, and the method and apparatus of such stacks are claimed as subcombinations. An iClass PA architecture is described that dissipatively terminates unwanted harmonics of the PA output signal.Type: GrantFiled: July 18, 2019Date of Patent: July 14, 2020Assignee: pSemi CorporationInventors: Mark L. Burgener, James S. Cable
-
Patent number: 10530412Abstract: Described herein are variable gain amplifiers that selectively provide variable or tailored impedances at a degeneration block and/or feedback block depending at least in part on a gain mode of the variable gain amplifier. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality. The degeneration block can be selectively isolated from a reference potential node to improve performance.Type: GrantFiled: March 12, 2019Date of Patent: January 7, 2020Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Patent number: 10469039Abstract: In an exemplary structure, a transformer has a primary side and a secondary side. Output from the primary side is coupled to the secondary side. A first power supply is connected to a center tap of the primary side of the transformer. An oscillator includes a first transistor and a second transistor. The front-gate of the first transistor is connected to the drain of the second transistor and the primary side of the transformer. The front-gate of the second transistor is connected to the drain of the first transistor and the primary side of the transformer. A third transistor is connected to the first transistor and a fourth transistor is connected to the second transistor. The third and fourth transistors inject a desired frequency to the oscillator. A voltage source is connected to the back-gate of the first transistor and the back-gate of the second transistor.Type: GrantFiled: March 23, 2018Date of Patent: November 5, 2019Assignee: GLOBALFOUNDRIES INC.Inventors: See T. Lee, Abdellatif Bellaouar
-
Patent number: 10454426Abstract: Methods and apparatus for providing high efficiency power amplifiers for both high and low output power levels are disclosed. An example apparatus includes a first amplifier to amplify a signal from a host device; and transmit the amplified signal to an antenna; a second amplifier to amplify the signal from the host device; and transmit the amplified signal to the antenna; and first, second, and third switches to: when the first and second switches are closed and the third switch is open, couple the first amplifier to the second amplifier in a parallel structure; and when the first and second switches are open and the third switch is closed, couple the first amplifier to the second amplifier in a stacked structure.Type: GrantFiled: November 30, 2017Date of Patent: October 22, 2019Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Oddgeir Fikstvedt
-
Patent number: 10333471Abstract: A scalable periphery tunable matching power amplifier is presented. Varying power levels can be accommodated by selectively activating or deactivating unit cells of which the scalable periphery tunable matching power amplifier is comprised. Tunable matching allows individual unit cells to see a constant output impedance, reducing need for transforming a low impedance up to a system impedance and attendant power loss. The scalable periphery tunable matching power amplifier can also be tuned for different operating conditions such as different frequencies of operation or different modes.Type: GrantFiled: November 30, 2017Date of Patent: June 25, 2019Assignee: pSemi CorporationInventors: Dan Willaim Nobbe, David Halchin, Jeffrey A. Dykstra, Michael P. Gaynor, David Kovac, Kelly Michael Mekechuk, Gary Frederick Kaatz, Chris Olson
-
Patent number: 10291194Abstract: In accordance with an embodiment, a circuit includes: a replica input transistor, a first replica cascode transistor, an active current source, and an active cascode biasing circuit. The active current source is configured to set a current flowing through the first replica cascode transistor and the replica input transistor to a predetermined value by adjusting a voltage of a control node of the replica input transistor; and an active cascode biasing circuit including a first output coupled to the control node of the first replica cascode transistor, and the active cascode biasing circuit configured to set a drain voltage of the replica input transistor to a predetermined voltage by adjusting a voltage of the control node of the first replica cascode transistor.Type: GrantFiled: October 9, 2017Date of Patent: May 14, 2019Assignee: INFINEON TECHNOLOGIES AGInventors: Nikolay Ilkov, Andreas Baenisch, Peter Pfann, Hans-Dieter Wohlmuth
-
Patent number: 10243523Abstract: Design of ultra broadband transimpedance amplifiers (TIA) for optical fiber communications is disclosed. In one embodiment, a TIA comprises a gm-boosted dual-feedback common-base stage, a level shifter and an RC-degenerated common-emitter stage, and a first emitter-follower stage, wherein the first emitter follower stage is inductively degenerated. An output of the TIA is buffered using a second emitter-follower stage.Type: GrantFiled: October 4, 2017Date of Patent: March 26, 2019Assignee: THE REGENTS OF THE UNIVERSITY OF CALIFORNIAInventors: Payam Heydari, Seyed Mohammad Hossein Mohammadnezhad, Alireza Karimi Bidhendi, Michael M. Green, David Howard, Edward Preisler
-
Patent number: 10243519Abstract: Various methods and circuital arrangements for biasing one or more gates of stacked transistors of an amplifier are presented, where the amplifier can have a varying supply voltage that varies according to a control voltage. The control voltage can be related to a desired output power of the amplifier and/or to an envelope signal of an input signal to the amplifier. Particular biasing for selectively controlling the stacked transistors to operate in either a saturation region or a triode region is also presented. Benefits of such controlling, including increased linear response of an output power of the amplifier, are also discussed.Type: GrantFiled: September 28, 2016Date of Patent: March 26, 2019Assignee: pSemi CorporationInventors: Jeffrey A. Dykstra, David Kovac
-
Patent number: 10236872Abstract: A positive-logic FET switch stack that does not require a negative bias voltage, exhibits high isolation and low insertion/mismatch loss, and may withstand high RF voltages. Embodiments include a FET stack comprising series-coupled positive-logic FETs (i.e., FETs not requiring a negative voltage supply to turn OFF), series-coupled on at least one end by an “end-cap” FET of a type that turns OFF when its VGS is zero volts. The one or more end-cap FETs provide a selectable capacitive DC blocking function or a resistive signal path. Embodiments include a stack of FETs of only the zero VGS type, or a mix of positive-logic and zero VGS type FETs with end-cap FETs of the zero VGS type. Some embodiments withstand high RF voltages by including combinations of series or parallel coupled resistor ladders for the FET gate resistors, drain-source resistors, body charge control resistors, and one or more AC coupling modules.Type: GrantFiled: March 28, 2018Date of Patent: March 19, 2019Assignee: pSemi CorporationInventors: Simon Edward Willard, Tero Tapio Ranta
-
Patent number: 10230417Abstract: Described herein are variable gain amplifiers that selectively provide variable or tailored impedances at a degeneration block and/or feedback block depending at least in part on a gain mode of the variable gain amplifier. This advantageously reduces or eliminates performance penalties in one or more gain modes. The variable impedances can be configured to improve linearity of the amplification process in targeted gain modes. The variable gain amplifier can be configured to provide a low-loss bypass mode in a low gain mode to improve signal quality.Type: GrantFiled: August 30, 2017Date of Patent: March 12, 2019Assignee: SKYWORKS SOLUTIONS, INC.Inventors: Johannes Jacobus Emile Maria Hageraats, Junhyung Lee, Joshua Haeseok Cho, Aravind Kumar Padyana, Bipul Agarwal
-
Patent number: 10199992Abstract: System-on-chip (SOC) products using high frequency, wideband, highly linear, CMOS and BiCMOS processes will be the next evolution of wireless and wireline communications integrated circuits. Aspects described herein can provide enhanced overall performance over existing prior art single-ended, wideband RF amplifier topologies. A single-ended third order intermodulation distortion nulling circuit can extend the dynamic range for wideband amplifiers up to an order-of-magnitude, without a DC power or noise figure (NF) penalty. The application of distortion nulling can be extended to all the building blocks used in CMOS/BiCMOS RF transceivers to improve performance. The application of this concept to all of the building blocks in an RF transceiver will allow the dynamic range of the transceiver to be increased without suffering a DC power dissipation increase or a significant noise increase.Type: GrantFiled: October 3, 2017Date of Patent: February 5, 2019Inventors: Wais M. Ali, Lloyd F. Linder
-
Patent number: 10187016Abstract: An amplifier having improved linearity is disclosed. The amplifier includes a main transistor having a first current input terminal, a first current output terminal, and a first control terminal coupled to an RF input terminal that receives a signal voltage. A cascode transistor has a second current input terminal coupled to an RF output terminal for outputting an amplified signal. The cascode transistor has a second control terminal, and a second current output terminal coupled to the first current input terminal. Linearization circuitry has a bias output terminal coupled to the second control terminal. The linearization circuitry is configured to generate a bias signal at the bias output terminal to maintain a quiescent point of the main transistor for a given load coupled to the RF output terminal such that output conductance of the main transistor decreases nonlinearly with increasing main voltage and increases nonlinearly with decreasing main voltage.Type: GrantFiled: April 20, 2017Date of Patent: January 22, 2019Assignee: Qorvo US, Inc.Inventors: George Maxim, Kelvin Kai Tuan Yan, Marcus Granger-Jones, Dirk Robert Walter Leipold, Baker Scott
-
Patent number: 10177724Abstract: A power amplifier circuit includes first and second transistors and a first voltage output circuit. A radio frequency signal is input into a base of the first transistor. The first voltage output circuit outputs a first voltage in accordance with a power supply voltage. The first voltage is supplied to a base or a gate of the second transistor. An emitter or a source of the second transistor is connected to a collector of the first transistor. A first amplified signal generated by amplifying the radio frequency signal is output from a collector or a drain of the second transistor.Type: GrantFiled: May 22, 2017Date of Patent: January 8, 2019Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Satoshi Tanaka, Kazuo Watanabe, Takayuki Tsutsui, Masao Kondo, Satoshi Arayashiki, Fumio Harima, Masatoshi Hase
-
Patent number: 10148234Abstract: Systems, methods and apparatus for practical realization of an integrated circuit comprising a stack of transistors operating as an RF amplifier are described. As stack height is increased, capacitance values of gate capacitors used to provide a desired distribution of an RF voltage at the output of the amplifier across the stack may decrease to values approaching parasitic/stray capacitance values present in the integrated circuit which may render the practical realization of the integrated circuit difficult. Coupling of an RF gate voltage at the gate of one transistor of the stack to a gate of a different transistor of the stack can allow for an increase in the capacitance value of the gate capacitor of the different transistor for obtaining an RF voltage at the gate of the different transistor according to the desired distribution.Type: GrantFiled: April 11, 2018Date of Patent: December 4, 2018Assignee: pSemi CorporationInventor: Jaroslaw Adamski
-
Patent number: 10044330Abstract: A power amplifier module includes a first current source that outputs a first current corresponding to a level control voltage for controlling a signal level of an amplified signal, a second current source that outputs a second current corresponding to the level control voltage, a first transistor in which an input signal and a first bias current are supplied to a base and an emitter is grounded, a second transistor in which an emitter is connected to a collector of the first transistor, the second current is supplied to a base, and a first amplified signal obtained by amplifying the input signal is output from a collector, and a third transistor in which the first current is supplied to a collector, a bias control current or voltage is supplied to a base, and the first bias current is supplied from an emitter to the base of the first transistor.Type: GrantFiled: September 20, 2017Date of Patent: August 7, 2018Assignee: MURATA MANUFACTURING CO., LTD.Inventors: Shota Ishihara, Seiko Ono, Yusuke Shimamune, Fuminori Morisawa, Shizuki Nakajima, Yuri Honda, Kazuhiro Koshio, Masato Sato
-
Patent number: 9973145Abstract: An envelope tracking amplifier having stacked transistors is presented. The envelope tracking amplifier uses dynamic bias voltages at one or more gates of the stacked transistors in addition to a dynamic bias voltage at a drain of a transistor.Type: GrantFiled: December 3, 2015Date of Patent: May 15, 2018Assignee: pSemi CorporationInventors: Dan William Nobbe, Jeffrey A. Dykstra, Chris Olson, James S. Cable
-
Patent number: 9960737Abstract: Systems, methods and apparatus for efficient power control of an RF amplifier for amplification of a constant envelope RF signal are described. A reduction in a size of a pass device of an LDO regulator is obtained by removing the pass device of the LDO regulator from a main current conduction path of the RF amplifier. Power control is provided by varying one or more gate voltages to cascoded transistors of a transistor stack of the RF amplifier according to a power control voltage. Various configurations for controlling the gate voltages are presented by way of a smaller size LDO regulator or by completely removing the LDO regulator. In a case where a supply voltage to the transistor stack varies, such as in a case of a battery, a compensation circuit is used to adjust the power control voltage in view of a variation of the supply voltage, and therefore null a corresponding drift in output power of the RF amplifier.Type: GrantFiled: March 6, 2017Date of Patent: May 1, 2018Assignee: pSemi CorporationInventor: David Kovac