Tuning Compensation Patents (Class 331/16)
  • Patent number: 8264286
    Abstract: A first exemplary aspect of an embodiment of the present invention is a phase-locked loop circuit including: a voltage-current converter that converts a control voltage into a control current, the control voltage generated according to a phase difference between an input pulse signal and a feedback pulse signal fed back from an output side of a current controlled oscillator; the current controlled oscillator that generates an output pulse signal having a frequency according to the control current; a current detection unit that detects the control current; and a frequency range switch that switches a frequency range of the output pulse signal according to the detected control current.
    Type: Grant
    Filed: August 28, 2009
    Date of Patent: September 11, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshitaka Hirai
  • Patent number: 8264283
    Abstract: A single side band mixer is composed of standard digital logic elements and field effect transistors, forming a pair of quadrature generators coupled with a mixer-splitter circuit. This design results in a single side band mixer with a bandwidth from DC to at least 100 MHz when realized with CMOS digital logic circuitry. This design allows the single side band mixer to bring particular improvement to circuits including frequency synthesizers, quadrature demodulators and up-converters.
    Type: Grant
    Filed: October 19, 2009
    Date of Patent: September 11, 2012
    Assignee: Scientific Components Corporation
    Inventor: Doron Gamliel
  • Patent number: 8264285
    Abstract: A digitally controlled circuit and method includes an error input coupled to a proportional path. The proportional path includes a selector which directly receives the error input as a select signal. The selector receives a proportional control weight from a location other than the proportional path wherein the proportional control weight is input to a digitally controlled oscillator (DCO).
    Type: Grant
    Filed: July 17, 2008
    Date of Patent: September 11, 2012
    Assignee: International Business Machines Corporation
    Inventors: Alexander V. Rylyakov, Jose A. Tierno
  • Patent number: 8264294
    Abstract: A semiconductor device contrived to prevent a reference voltage and a reference current which are supplied to a high speed OCO from varying with a change in ambient temperature and/or a change in an external power supply voltage and to reduce the circuit area of a power supply module. The high speed OCO outputs a high speed clock whose magnitude is determined by the reference current and the reference voltage. A logic unit adjusts the values of the reference current and reference voltage, according to the reference voltage and reference current trimming codes related to detected ambient temperature and operating voltage.
    Type: Grant
    Filed: February 4, 2011
    Date of Patent: September 11, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Tsukasa Oishi, Katsuyoshi Mitsui, Naoki Otani
  • Patent number: 8259888
    Abstract: The present invention provides a method of processing signal data comprising generating a first clock signal and a second clock signal and processing the signal data using the first clock signal and the second clock signal. While processing the signal data, the phase difference between the first clock signal and the second clock signal is measured and corrected for so that a target phase difference between the first clock signal and the second clock signal is maintained.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: September 4, 2012
    Assignee: Integrated Device Technology, Inc.
    Inventors: Junqi Hua, Alberto Baldisserotto, Steven White
  • Patent number: 8254849
    Abstract: An FM radio with a wide frequency range operates in a cell phone without interfering with the VCO of the RF transceiver. The FM transceiver generates a VCO signal whose frequency varies by less than ±7% from the midpoint of a narrow first range. A synthesizer signal is generated by dividing the VCO frequency by a first divisor such that the synthesizer frequency varies over a lower frequency second range. The VCO frequency is also divided by a second divisor such that the synthesizer frequency varies over a third range. The upper limit of the second range falls at the lower limit of the third range. The lower limit of the second range is 85.5 MHz and the upper limit of the third range is 108.0 MHz. By also using a third divisor, a synthesizer signal with a range of 76-108 MHz is generated from the narrow first frequency range.
    Type: Grant
    Filed: April 2, 2009
    Date of Patent: August 28, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Tzu-wang Pan, Yi Zeng, I-Hsiang Lin, Pushp K. Trikha, Jeremy D. Dunworth, Rahul Apte
  • Patent number: 8253500
    Abstract: A frequency-phase adjusting device includes a first controller, a second controller, and an oscillating circuit. The first controller generates a first control signal according to a target frequency and a current frequency. The second controller generates a second control signal according to the first control signal, wherein the second control signal is related to a first frequency difference, a second frequency difference, and a designated duration. The oscillating circuit adjusts the current frequency according to the first frequency difference, the second frequency difference, and the designated duration. The current frequency is set as a first frequency during a first duration, set as a second frequency during the designated duration, and set as a third frequency during a second duration. The first frequency difference equals a difference between the first frequency and the second frequency, and the second frequency difference equals a difference between the second frequency and the third frequency.
    Type: Grant
    Filed: July 21, 2010
    Date of Patent: August 28, 2012
    Assignee: Realtek Semiconductor Corp.
    Inventors: Liang-Wei Huang, Ting-Fa Yu, Ta-Chin Tseng, Li-Wei Fang
  • Patent number: 8253498
    Abstract: A phase-locked loop circuit includes: a phase and frequency comparing section configured to compare a phase of an external reference clock signal with a phase of a comparison clock signal, and generate an error signal corresponding to a result of comparison; an oscillating section configured to generate an internal clock signal of an oscillation frequency corresponding to the error signal; a frequency dividing section configured to generate the comparison clock signal by frequency-dividing the internal clock signal by a predetermined frequency dividing ratio; an oscillator control section configured to generate an oscillation control signal for controlling frequency of the internal clock signal output from the oscillating section on a basis of the error signal; and a frequency divider control section configured to generate a frequency division control signal for controlling a bias current of the frequency dividing section on a basis of the error signal.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: August 28, 2012
    Assignee: Sony Corporation
    Inventors: Yuki Yagishita, Yasunori Tsukuda
  • Patent number: 8253502
    Abstract: A spread spectrum clock generator includes a voltage-controlled oscillator generating an operation clock, a feedback control unit, a modulated pulse generation unit generating a pulse signal obtained by performing a delta-sigma modulation on a component fluctuating a frequency of the operation clock, a level set unit setting an amplitude of the pulse signal, an adder adding a voltage generated by the feedback control unit and the pulse signal whose amplitude is set by the level set unit, and a low pass filter filtering a signal outputted from the adder and generating a control voltage applied to the voltage-controlled oscillator. The feedback control unit compares a phase of the operation clock with a phase of a reference clock, and based on results of the comparison, generates a voltage used as a reference to oscillate the voltage-controlled oscillator.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: August 28, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Yoshinori Kanda
  • Patent number: 8248127
    Abstract: A Digital Phase-Locked Loop (DPLL) has a digitally-controlled oscillator (DCO) that generates an output clock frequency determined by a digital input with most-significant-bits (MSB's) and a least-significant-bit (LSB). The LSB is generated by a Pulse-Width-Modulation (PWM) controller clocked by a control clock that is the output clock divided by C. A reference clock is compared to a feedback clock that is the output clock divided by M. The PWM controller generates M/C LSB's for each reference clock period and loads them in parallel to a parallel-to-serial shift register that serially delivers the LSBs. The pulse width is determined by a fine digital loop filter that filters phase comparison results using a fine time resolution. A coarse digital loop filter generates the MSB's from phase comparison results using a coarse time resolution. LSB waveforms are dithered by randomly selecting high-going or low-going pulses and randomly adjusting pulse widths.
    Type: Grant
    Filed: August 5, 2010
    Date of Patent: August 21, 2012
    Assignee: Hong Kong Applied Science and Technology Research Institute Co., Ltd.
    Inventors: Chi Fat Chan, Chien-Wei Lin, Gordon Chung
  • Patent number: 8248168
    Abstract: Various embodiments relate to a receiver and a timing circuit for synchronization between a transmitter clock of an MPEG stream and the local system clock of a receiver. The timing circuit may implement a phase-locked loop (PLL) circuit with a PID controller to produce a control signal based on the difference between the transmitter reference clock and the local system clock. Various embodiments may use clock differential signals and an accumulated error signal to produce proportional, integral, and derivative output components for a control signal. The control signal may control a signal generator that adjusts the frequency and/or phase of the local signal clock to lock with the transmitter reference clock. Various embodiments may also include an outlier filter to remove error signals outside a defined range and/or a programmable system clock to add precision to the generated local system clock.
    Type: Grant
    Filed: January 11, 2011
    Date of Patent: August 21, 2012
    Assignee: NXP B.V.
    Inventors: Shanmugasundaram Ganesh, Dominic Pushparaj
  • Patent number: 8248175
    Abstract: An oscillator output is controlled from an external voltage control terminal using an interpolative divider as a frequency modulator. The oscillator includes a reference clock generator, analog to digital converter, and an interpolative divider. Nominal output frequency is determined by the frequency of the reference clock and the nominal divide value of the interpolative divider. The divide value is changed according to the voltage control input value which is converted to a digital value via an analog to digital converter. Multiple interpolative dividers may be coupled to the single reference clock generator and each have a voltage control input and analog to digital converter.
    Type: Grant
    Filed: December 30, 2010
    Date of Patent: August 21, 2012
    Assignee: Silicon Laboratories Inc.
    Inventor: Susumu Hara
  • Patent number: 8248167
    Abstract: The present invention discloses a continuous voltage controlled oscillator (VCO) frequency temperature compensation apparatus for a phase locked loop (PLL) and a continuous VCO frequency temperature compensation method for a PLL. The system utilizes a VCO with one digital coarse tuning input, a first analog fine tuning input, and a second analog fine tuning input. The system uses the second analog fine tuning inputs to compensate the VCO for frequency shifts due to temperature fluctuation. When the PLL transitions to the fine lock (FL) mode, the system starts driving the second fine tuning input with a differential amplifier. The differential amplifier compares the first fine tuning input with a reference voltage, and drives the second fine tuning input to compensate the first fine tuning input.
    Type: Grant
    Filed: June 28, 2010
    Date of Patent: August 21, 2012
    Assignees: MStar Semiconductor, Inc., MStar France SAS, MStar Software R&D (Shenzhen) Ltd., MStar Semiconductor, Inc. (Cayman Islands)
    Inventor: Eric K. Bolton
  • Patent number: 8248172
    Abstract: A wideband oscillation circuit outputting oscillation signals (divided signals) of continuous frequencies is disclosed and the wideband oscillation circuit includes an oscillator that outputs an oscillation signal, a filter that filters the oscillation signal output from the oscillator and outputs an injection locked signal, and an injection locked frequency divider that performs a free-run operation and outputs a divided signal of the oscillation signal while its oscillating operation is regulated by the injection locked signal, the division ratio of which varies in accordance with a control signal, wherein the filter generates the injection locked signal by controlling the passing characteristic that caused the oscillation signal to pass with respect to time in accordance with a filter control signal locked with the divided signal.
    Type: Grant
    Filed: February 1, 2011
    Date of Patent: August 21, 2012
    Assignee: Semiconductor Technology Academic Research Center
    Inventors: Kenichi Okada, Shoichi Hara
  • Patent number: 8237511
    Abstract: According to one embodiment, a local oscillator includes: an adder that adds an oscillator integer phase and an oscillator fraction phase and outputs the addition value as first phase information; a delayer that outputs an addition output of a frequency command word at one clock before and second phase information as estimated oscillator phase data; a correcting unit that outputs an addition of compensation information to the first phase information as the second phase information when |the first phase information?the estimated oscillator phase data|>|the first phase information+the compensation information?the estimated oscillator phase data| is satisfied and otherwise outputs the first phase information as the second phase information.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: August 7, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Kobayashi
  • Patent number: 8228127
    Abstract: Systems and methods for operating with oscillators configured to produce an oscillating signal having an arbitrary frequency are described. The frequency of the oscillating signal may be shifted to remove its arbitrary nature by application of multiple tuning signals or values to the oscillator. Alternatively, the arbitrary frequency may be accommodated by adjusting operation one or more components of a circuit receiving the oscillating signal.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: July 24, 2012
    Assignee: Sand 9, Inc.
    Inventors: Reimund Rebel, Klaus Juergen Schoepf, Jan H. Kuypers
  • Patent number: 8222939
    Abstract: The present invention relates to a method and system for glitch correction in an all digital phase lock loop. An all digital phase lock loop can include a phase error signal generation unit, a multi-phase oscillator, a glitch correction unit, and a phase to digital converter. The phase to digital converter receives a multi-phase signal from the multi-phase oscillator and generates a phase signal. The error signal generation unit receives the phase signal and a reference phase signal and generates a phase error signal, which is fed to the glitch correction unit. The glitch correction unit removes the glitches in the phase error signal by a portion of the phase error signal. The phase lock loop can also include a phase rotator and a calibration block. The calibration block instructs the phase rotator to rotate the multi-phase signal by the phase rotation which generates the minimum number of glitches.
    Type: Grant
    Filed: July 19, 2010
    Date of Patent: July 17, 2012
    Assignee: Panasonic Corporation
    Inventors: Koji Takinami, Richard Strandberg, Paul Cheng-Po Liang
  • Patent number: 8222961
    Abstract: A method and a device for determining closed loop bandwidth characteristic of a Phase Locked Loop (PLL) (52) comprising a voltage controlled oscillator (VCO) (53) controlled by means of a tuning voltage (Vtune) is disclosed.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: July 17, 2012
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Christian Grewing, Anders Jakobsson, Ola Pettersson, Anders Emericks, Bingxin Li
  • Patent number: 8212627
    Abstract: A wideband digitally-controlled oscillator (DCO) is provided. The wideband DCO includes an active element which is driven by a first digital control signal; a single inductor which is connected to the active element in parallel, and comprises fixed inductance; and a plurality of capacitors which are connected to the single inductor in parallel, and vary operating frequency by being selectively turned on or off by a second digital control signal. Accordingly, the wideband DCO capable of operating in a wideband frequency range using a single inductor is provided, and if the wideband DCO is implemented using a single integrated circuit (IC) chip, the size of chip is reduced as the single inductor is used.
    Type: Grant
    Filed: February 24, 2010
    Date of Patent: July 3, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Li Yang, Hyun-koo Kang, Dae-yeon Kim, LuoSheng Li
  • Patent number: 8203390
    Abstract: According to one embodiment, a local oscillator includes a digitally-controlled oscillator that outputs an oscillating signal having a frequency N times as large as an oscillating frequency according to an oscillator tuning word; a frequency divider that performs a 1/N frequency division of the oscillating signal, and outputs a 2N phase clock; a counter that counts the clock and outputs the count value as integer oscillator phase data based upon a reference signal; a first flip-flop that latches the clock with the reference signal, and outputs the resultant as first phase information; a variable delay circuit that delays the reference signal and outputs the resultant as a delay reference signal; a second flip-flop that latches the clock with the delay reference signal, and outputs the resultant as second phase information; a delay control unit that controls a delay amount of the variable delay circuit; a data conversion unit that outputs fractional oscillator phase data based upon the first and second phase i
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: June 19, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroyuki Kobayashi
  • Patent number: 8198943
    Abstract: An oscillation signal with a selectable frequency is generated with a phase locked loop (10, 12, 14). The oscillator (10) of the loop receives a feedback signal, to which an offset is added in order to reduce transient effects when a frequency modification is made. A first and second offset control value are used to control the offset successively. The first offset control value is controlled by a combination of the frequency settings before and after the modification. The second offset control value is controlled by the frequency settings after the modification. The first and second offset control values are used to control an offset of applying to a frequency control signal of an oscillator (10) of the phase locked loop (10, 12, 14). The offset controlled by the first control offset value is applied during a predetermined time interval before the offset controlled by the second control offset value is applied.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: June 12, 2012
    Assignee: NXP B.V.
    Inventors: Remco Cornelis Herman van de Beek, Jozef Reinerus Maria Bergervoet
  • Patent number: 8198944
    Abstract: Techniques for calibrating digitally controlled oscillators (DCOS) are disclosed. In one aspect of the disclosure, an initial set of control codes for operating the DCO with a coarse frequency tuning bank with multiple overlapping coarse frequency tuning segments (LTBs) and one fine main frequency tuning bank (MTB) is determined. A range of output frequencies produced from the initial set is identified. Instances of overlap are identified in the frequency range between consecutive LTB segments. An offset in the MTB is added that corresponds to the overlap instance between consecutive LTBs to establish a revised set. The revised control codes are utilized to tune the DCO over the desired frequency range.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: June 12, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Bo Sun, Zixiang Yang
  • Patent number: 8193866
    Abstract: For decreasing errors within an analog phase-locked loop, an all-digital phase-locked loop (ADPLL) with only digital components and digital operations is used. The ADPLL may also be used for direct frequency modulation (DFM). By modulating certain parameters within the ADPLL by following an all-pass frequency response, a loop gain of the ADPLL may be precisely modulated, and an available bandwidth of the ADPLL is also significantly broadened.
    Type: Grant
    Filed: August 31, 2008
    Date of Patent: June 5, 2012
    Assignee: Mediatek Inc.
    Inventor: Hsiang-Hui Chang
  • Patent number: 8193963
    Abstract: Methods and apparatuses for time to digital conversion (TDC) are disclosed. A timing circuit comprises a TDC circuit, a calibration module, and a correction module. The TDC circuit is configured to provide a timing signal indicative of a timing difference between edges of a periodic reference clock signal and a variable feedback signal. The TDC circuit is also configured to provide a delay signal that is variably delayed relative to the reference clock signal. The calibration module is configured to provide a calibration signal to increase and decrease a total delay of the TDC circuit based on a time delay of the calibration signal plus a time delay of a correction signal. The correction module, which is configured to receive the timing signal and provide the correction signal, minimizes harmonic spurs in a frequency response of the timing signal by operating at a frequency of the reference clock signal.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: June 5, 2012
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: You-Jen Wang, Shen-Iuan Liu, Feng-Wei Kuo, Chewn-Pu Jou, Fu-Lung Hsueh
  • Patent number: 8188797
    Abstract: Adjustable circuit components may be formed from arrays of differential circuit elements such as differential capacitors and differential current sources. The differential circuit elements may each have a control input. The differential circuit elements in each array of differential circuit elements may be connected in parallel between first and second terminals. A thermometer code control signal may be provided to the control inputs to adjust the capacitance, current, or other parameter associated with the adjustable circuit component. Adjustable circuit components may also be formed from an array of capacitors or other circuit elements having successively increasing strengths.
    Type: Grant
    Filed: July 7, 2008
    Date of Patent: May 29, 2012
    Assignee: Altera Corporation
    Inventor: Mohsen Moussavi
  • Patent number: 8183935
    Abstract: This invention describes new and improved phased shifted injection oscillator, a phased shifted injection locked push-push oscillator and a phased array antennas (PAA). The PAAs in accordance with an exemplary embodiment of the present invention are low cost, and therefore can be used in various commercial applications, such as wireless communication or satellite mobile television.
    Type: Grant
    Filed: October 3, 2006
    Date of Patent: May 22, 2012
    Inventors: Alberto Milano, Hillel Weinstein
  • Patent number: 8183934
    Abstract: In a PLL circuit, a threshold discriminator generates a control signal indicating a relative level of a control voltage. A controller outputs a controlling value based on the control signal. If the control signal indicates a high level when the controlling value specifies a control voltage-to-oscillation frequency correspondence relation whose upper and lower limits of oscillation frequency are highest, and if the control signal indicates a low level when the controlling value specifies a correspondence relation whose upper and lower limits of oscillation frequency are lowest, the controller outputs a predetermined controlling value. An oscillator has the correspondence relations set therein such that the correspondence relations have respective different upper and lower limits of oscillation frequency and are correlated with the respective controlling values.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: May 22, 2012
    Assignee: Fujitsu Limited
    Inventors: Tetsuji Yamabana, Kouichi Kanda
  • Patent number: 8183943
    Abstract: When a direct-current voltage is applied from a power supply, a signal line generates a standing wave having the ¾ wavelength where a starting end of the signal line connected to the power supply is used as a node and a terminating end is used as an antinode. Strips are connected to a ground layer through switches, respectively. The switches switch connection and non-connection of the strips and the ground layer, under the control from a switch controller. By switching the connection and non-connection of the switches, the distance between the signal line and the ground layer is pseudo adjusted and the effective permittivity in a transmission line unit changes. Therefore, the frequency of the standing wave can be adjusted.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: May 22, 2012
    Assignee: Fujitsu Limited
    Inventor: Tszshing Cheung
  • Patent number: 8183950
    Abstract: A phase locked loop (“PLL”) includes a voltage controlled oscillator (“VCO”) operable to acquire and maintain lock at a selected output frequency of the VCO and control logic operable to perform steps in a method of selecting a frequency band for operating the VCO.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: May 22, 2012
    Assignee: International Business Machines Corporation
    Inventors: Daniel W. Storaska, Michael A. Sorna
  • Patent number: 8183949
    Abstract: A method is provided for selecting an operating band of a voltage-controlled oscillator (“VCO”) of a phase locked loop (“PLL”) for which the lock frequency is closest to a center of the frequency range of the operating band. In such method, steps can be performed to determine the maximum and minimum frequencies of the operating band and the center frequency between them. From the center frequency of the operating band and the lock frequency within such operating band, a difference value can then be determined. The operating bands of the PLL can be tested until an operating band having the smallest difference value is determined. The VCO can then be set to such operating band in order for the lock frequency to be closest to the center frequency of the operating band.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: May 22, 2012
    Assignee: International Business Machines Corporation
    Inventors: Daniel W. Storaska, Michael A. Sorna
  • Patent number: 8179294
    Abstract: The application relates to a calibration apparatus and calibration method for a tuneable resonator of a delta-sigma modulator of the continuous time, band pass type. The calibration apparatus comprises: a resonator driver capable of causing an oscillating behavior in a resonator output signal, a reference signal source that provides a reference signal, a frequency detector that provides a frequency relation signal corresponding to the frequency relation between the resonator output signal and the reference signal, and a controller that controls the tuneable resonator in dependence from the frequency relation signal so as to reduce frequency deviation.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: May 15, 2012
    Assignee: Ubidyne, Inc.
    Inventors: Udo Karthaus, Stephan Ahles
  • Publication number: 20120112842
    Abstract: A design for an oscillator, and a PLL incorporating such an oscillator, which takes up little physical area but maintains a large tuning range and low phase noise. Two LC-tanks are nested and switched. Through tuning the inactive tank, the range of the active tank may be increased and finer tuning becomes possible.
    Type: Application
    Filed: January 16, 2012
    Publication date: May 10, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: HERSCHEL A. AINSPAN, JOHN F. BULZACCHELLI, DANIEL J. FRIEDMAN, ANKUSH GOEL, ALEXANDER V. RYLYAKOV
  • Patent number: 8174324
    Abstract: A digital phase detector includes a quantization unit that quantizes a frequency of a reference signal to generate reference delay information and reference integer phase information, and quantizes a frequency of an oscillation signal to generate oscillation delay information and oscillation integer phase information. A first conversion unit converts the frequency of the reference signal into reference frequency information based upon the reference delay information and the reference integer phase information. A second conversion unit converts the frequency of the oscillation signal into oscillation frequency information based upon the oscillation delay information and the oscillation integer phase information. A calculation unit converts the reference frequency information and the oscillation frequency information into first and second phase information, respectively, and outputs a digital phase difference between the first phase information and the second phase information.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: May 8, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Tae-Wook Kim, Hee-Mun Bang, Heung-Bae Lee
  • Patent number: 8174327
    Abstract: Example embodiments are directed toward configuration of a phase lock loop (PLL) circuits for low power operation. In particular embodiments, a fraction related to a desired gain of a PLL circuit is determined. A set of possible frequency-divider values and a set of possible feedback divider values are determined. A PLL configuration is selected from a combination of the sets of frequency divider and feedback divider values that forms a ratio indicated the determined fraction.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: May 8, 2012
    Assignee: NXP B.V.
    Inventor: Kevin Locker
  • Patent number: 8174326
    Abstract: In one embodiment, a cross zero best error selection system includes an error input interface, a most significant bit summation component and a multiplexer. The error input interface in coupled to a most significant bit summation component which in turn is coupled to a multiplexer. The error input interface receives a plurality of future error values. The most significant bit summation component sums most significant bits of said future error values. The multiplexer for selects error value based upon said summation of said most significant bits.
    Type: Grant
    Filed: October 30, 2006
    Date of Patent: May 8, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventor: Shuliang Li
  • Patent number: 8174332
    Abstract: A phase lock loop pre-charging system and method are described. In one embodiment, a phase lock loop pre-charge system includes a bias component for generating a pre-charge voltage, and an activation component for activating the bias component. In one exemplary implementation the pre-charge voltage is utilized to facilitate pre-charging of a phase lock loop voltage controlled oscillator. In one embodiment, the bias component includes replica bias components that track the voltage controlled oscillation control voltage over varying process, voltage and temperature characteristics. The phase lock loop pre-charging systems and methods can be utilized to reduce lock time for a circuit.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: May 8, 2012
    Assignee: Cypress Semiconductor Corporation
    Inventors: Carel J. Lombaard, Eugene O'Sullivan, Paul Walsh
  • Patent number: 8154354
    Abstract: Methods and apparatus for implementing stable self-starting and self-sustaining high-speed electrical nonlinear pulse (e.g., soliton, cnoidal wave, or quasi-soliton) oscillators. Chip-scale nonlinear pulse oscillator devices may be fabricated using III-V semiconductor materials (e.g., GaAs) to attain soliton pulse widths on the order of a few picoseconds or less (e.g., 1 to 2 picoseconds, corresponding to frequencies of approximately 300 GHz or greater). In one example, a nonlinear pulse oscillator is implemented as a closed loop structure that comprises a nonlinear transmission line and a distributed nonlinear amplifier arrangement configured to provide a self-adjusting gain as a function of an average voltage of the oscillator signal.
    Type: Grant
    Filed: September 6, 2006
    Date of Patent: April 10, 2012
    Assignee: President and Fellows of Harvard College
    Inventors: David Ricketts, Donhee Ham, Xiaofeng Li
  • Patent number: 8154350
    Abstract: An apparatus is provided. The apparatus comprising a voltage controlled oscillator (VCO), an amplifier, a switch, a calibration capacitor, and a control loop. The VCO includes a capacitive network that receives a first tuning voltage that is based at least in part on an input signal and a switched capacitor array that is coupled to the capacitive network. The amplifier amplifies the difference between the reference voltage and the first tuning voltage. The switch receives the reference voltage and the amplified difference between the reference voltage and the first tuning voltage. The calibration capacitor receives the output from the switch and generates a second tuning voltage. The control loop receives the input signal and the second tuning voltage.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: April 10, 2012
    Assignee: Texas Instruments Incorporated
    Inventor: Kevin G. Faison
  • Patent number: 8145139
    Abstract: An oscillator is provided that is arranged to function as a simplified receiver. The oscillator has a resonator portion and a non-linear portion, which cooperate to generate an oscillating signal. The resonator portion is positioned to receive a modulated signal. In one configuration, the oscillator operates at a frequency offset from the frequency of the carrier for the modulated signal. In this simple arrangement, the oscillator functions as an active mixer, and generates a product output signal. The output signal is extracted from a high impedance point of the oscillator's non-linear device. The output signal is a demodulated or mixed signal, and may be further processed to detect a data signal.
    Type: Grant
    Filed: October 25, 2005
    Date of Patent: March 27, 2012
    Assignee: AVAAK, Inc.
    Inventor: Bar-Giora Goldberg
  • Patent number: 8143957
    Abstract: Techniques to effectively handle large voltage-controlled oscillator (VCO) gain are described. The techniques utilize (1) a slow high-gain path to provide an average control current that adjusts the center frequency of a VCO and (2) a fast low-gain path to provide an instantaneous control current that adjusts the VCO frequency during normal operation. In one design, the VCO includes a voltage-to-current converter, a current amplifier, a summer, and a current-controlled oscillator (ICO). The voltage-to-current converter receives a control voltage and generates a first current and a second current. The current amplifier amplifies and filters the first current and generates a third current. The summer sums the second current and the third current and generates a control current. The ICO receives the control current and generates an oscillator signal having a frequency determined by the control current.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: March 27, 2012
    Assignee: QUALCOMM, Incorporated
    Inventors: Xiaohong Quan, Marzio Pedrali-Noy
  • Patent number: 8145935
    Abstract: A clock signal generator can include a clock signal generation unit that is configured to generate a clock signal. A clock signal control unit is configured to count a number of pulses of the clock signal during a reference time, and to compare the number of pulses with a reference value to provide a comparison result, and to generate a control signal based on the comparison result, where the clock signal generation unit increases or decreases the number of pulses of the clock signal based on the control signal.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: March 27, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung Geun Park, Chul Joon Choi, Hyuk Jun Sung, Byung Yoon Kang
  • Patent number: 8138841
    Abstract: A method and apparatus controlling the output phase of a VCO (Voltage Controlled Oscillator). The apparatus has a phase locked loop 20 having a first input 21 for receiving a reference signal and a second input 22 for receiving a feedback signal and the output for controlling of a VCO. A phase shifter 50 is provided on the feedback path between the VCO and the second input of the phase locked loop. The phase shifter is arranged for shifting the phase for feedback signal by controlled amount. The phase shifter may be a variable phase shifter for controlling and varying the amount by which the phase feedback signal is shifted.
    Type: Grant
    Filed: August 19, 2009
    Date of Patent: March 20, 2012
    Assignee: City University of Hong Kong
    Inventors: Kwun Chiu Wan, Quan Xue
  • Patent number: 8138842
    Abstract: A frequency synthesizer includes a voltage-controlled oscillator, a frequency range tuning circuit which detects a frequency control code that sets a voltage-controlled frequency range of the voltage-controlled oscillator corresponding to the frequency division ratio which is variably-set, and a frequency control code memory which stores the frequency control code detected by the frequency range tuning circuit corresponding to the frequency division ratio. In an initialization interval, the frequency range tuning circuit detects the frequency control code corresponding to the frequency division ratio which is variably-set, and the frequency control code memory stores the frequency control code which is detected. In a normal operation interval, in response to the frequency selection signal, the frequency control code, which is stored in the frequency control code memory and corresponds to the frequency division ratio which is variably-set, is output to the voltage-controlled oscillator.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: March 20, 2012
    Assignee: Fujitsu Limited
    Inventors: Masafumi Kondou, Toshihiko Mori
  • Patent number: 8138840
    Abstract: A digital phase locked loop (DPLL) and method include an adjustable delay line configured to receive a reference clock as an input and to output a dithered reference clock signal. A phase and frequency detector (PFD) is configured to compare the dithered reference clock signal with a feedback clock signal to determine phase and frequency differences between the dithered reference clock signal and the feedback clock signal. A digitally controlled oscillator (DCO) is configured to receive early or late determinations from the PFD to adjust an output in accordance therewith, wherein the dithered reference clock signal distributes jitter response to enhance overall operation of the DPLL.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: March 20, 2012
    Assignee: International Business Machines Corporation
    Inventors: Herschel A. Ainspan, John F. Bulzacchelli, Zeynep Toprak Deniz, Daniel J. Friedman, Alexander V. Rylyakov, Jose A. Tierno
  • Patent number: 8134411
    Abstract: A novel and useful apparatus for and method of spur reduction using computation spreading with dithering in a digital phase locked loop (DPLL) architecture. A software based PLL incorporates a reconfigurable calculation unit (RCU) that is optimized and programmed to sequentially perform all the atomic operations of a PLL or any other desired task in a time sharing manner. An application specific instruction-set processor (ASIP) incorporating the RCU is adapted to spread the computation of the atomic operations out over a PLL reference clock period wherein each computation is performed at a much higher processor clock frequency than the PLL reference clock rate. This significantly reduces the per cycle current transient generated by the computations. The frequency content of the current transients is at the higher processor clock frequency which results in a significant reduction in spurs within sensitive portions of the output spectrum.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: March 13, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Fuqiang Shi, Roman Staszewski, Robert B. Staszewski
  • Patent number: 8134412
    Abstract: A digital apparatus for phase aligning output signals of a silicon device to an applied input clock signal in same device allows synchronization of data transfers between the device and another device such as a controller. It includes a digital or analog oscillator of higher frequencies than the applied clock and in multiples of powers 2n where n=1, 2, 4, etc., with provisions for synchronization and control by the applied input clock. The main oscillator frequency is subdivided to lower frequencies. An internally derived duplicate frequency clock is phase shifted by either 45 or 22.5 degrees. The system measure both a desired coarse delay, and a fine delay to be applied to the path to phase align the output signal to the phase of the applied input clock.
    Type: Grant
    Filed: September 8, 2009
    Date of Patent: March 13, 2012
    Assignee: Urenschi Assets Limited Liability Company
    Inventor: Chris Karabatsos
  • Patent number: 8134413
    Abstract: Techniques for synthesizing a signal having a desired frequency from an oscillation signal. In an aspect, a reference signal having a known frequency may be periodically used to determine a ratio between the desired frequency and the frequency of the oscillation signal. The oscillation signal may be decimated by the ratio to generate a synthesized signal having approximately the desired frequency. In an aspect, the decimation may be performed by generating a pulse in response to the output of an accumulator that accumulates in steps of the ratio. To save power, the oscillation signal may be derived from a low-power oscillator, while the reference signal may be turned on only during periodic calibration. Further aspects for improving the frequency accuracy of the synthesized signal are disclosed.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: March 13, 2012
    Assignee: QUALCOMM Incorporated
    Inventors: Daniel Filipovic, Hongbo Yan
  • Patent number: 8134392
    Abstract: A phase locked loop (PLL) which has a desired frequency characteristic even though a manufacturing process of a semiconductor integrated circuit has fluctuations. The semiconductor integrated circuit includes the PLL and a control unit. The PLL has a phase frequency detector, a loop filter, a voltage controlled oscillator (VCO) and a divider. The VCO comprises a voltage-current converter (VIC) and a ring oscillator. In response to a control voltage, the VIC generates a control current for setting each operating current of the ring oscillator. The control unit switches the PLL to a calibration operating period of its open loop and a normal operating period of its closed loop.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: March 13, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Takashi Kawamoto
  • Patent number: 8130046
    Abstract: A wireless communication device incorporating a set of comparators and logic interrupt into the local oscillator generation circuit block is described. In one design, the local oscillator circuit block includes a RF VCO with coarse and fine frequency tuning. The RF VCO fine frequency tuning signal is monitored continuously to determine if the control voltage is within specified limits. If the RF VCO fine frequency tuning voltage is too low or too high for the RF VCO to meet system requirements or lock on the current desired frequency, an interrupt signal is asserted. In response to the interrupt signal, a wireless communications processor or a hardware state machine initiates coarse frequency calibration of the RF VCO at the desired frequency. After coarse frequency calibration has completed, the RF VCO fine frequency tuning voltage is within specified limits and is continuously monitored.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: March 6, 2012
    Assignee: Qualcomm Incorporated
    Inventor: Sai C. Kwok
  • Patent number: 8130047
    Abstract: In many types of wireless applications (like wireless modems), it is important that the phase locked loops (PLLs) be able to synthesize clock frequencies in a wide tuning range. Because of the complexity of many conventional PLLs (which were deigned to cover wide tuning ranges), there was often a significant delay to achieve phase and frequency lock. Here, an open loop calibration system is provided to coarse tune a PLL very rapidly. Generally, this calibration system employs binary searches to coarsely adjust a voltage controlled oscillator (VCO) from a VCO bank to within a predetermined range around a target frequency.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: March 6, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Salvatore Finocchiaro, Francesco Dantoni