Strain Gauge Type Patents (Class 338/2)
  • Patent number: 10371562
    Abstract: A system includes a span block configured to couple with an extension from a top drive at a first end of the span block and configured to couple to a tubular at a second end of the span block. The system also includes a sensor block of the span block. The sensor block extends between the first end and the second end of the span block. Moreover, the sensor block is configured to provide an electronic indication of deformation of a portion of the sensor block in response to forces placed on the span block.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: August 6, 2019
    Assignee: Nabors Drilling Technologies USA, Inc.
    Inventor: Brian Dale Dewald
  • Patent number: 10352799
    Abstract: In the pressure sensor of the present application, at least two resistors are simultaneously formed on the foldable portion and the fixed portion to ensure the uniformity and consistency of the resistance values of all the resistors, and at least one is a strain sensing resistor R1, the foldable portion is folded to the fixed portion, and the resistors are electrically connected to form a pressure measuring circuit. Connecting the pressure sensor to the desired panel can accurately detect the curved deformation of the panel. The resistors in a pressure measuring circuit are adjacently distributed, and the resistance value of the resistor changes with temperature at the same time, so that the influence of the temperature change on the pressure measuring circuit is very small, and the interference against the external environment is good.
    Type: Grant
    Filed: February 6, 2016
    Date of Patent: July 16, 2019
    Assignee: SHENZHEN NEW DEGREE TECHNOLOGY CO., LTD.
    Inventor: Hao Li
  • Patent number: 10318089
    Abstract: Several techniques for driving a force sensor to reduce common mode offset are disclosed. The force sensor can include at least one set of individual strain sensitive structures formed on or in a surface of a substrate. Each set of individual strain sensitive structures can include one or more strain sensitive structures. At least one external resistor is operably connected in series between a first output of one or more transmitter channels and at least one set of strain sensitive structures. The external resistor(s) effectively increases the resistances of the strain sensitive structures to reduce the common mode offset. Additionally or alternatively, one or more signal generators may be connected to one or more transmitter channels. Each signal generator is configured to produce one or more signals that is/are designed to reduce common mode offset.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 11, 2019
    Assignee: Apple Inc.
    Inventors: John Stephen Smith, Manu Agarwal, Christian M. Sauer
  • Patent number: 10316881
    Abstract: A member (10), for bearing a load, including a load receiving portion (12) at which the load is applicable to the member. A strainable portion (14) is connected to the load receiving portion to be strained by the load. A datum (16a) is defined and an elongate portion (18) defines another datum (18a). The datums are arranged such that relative displacement therebetween indicates an amount by which the strainable portion is strained. The strainable portion defines the datum.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: June 11, 2019
    Assignee: INTEGRITY ENGINEERING SOLUTIONS PTY LTD
    Inventor: Ian Warren Brown
  • Patent number: 10307181
    Abstract: The present invention provides a system and method for inserting a surgical port to minimize trauma. The system includes an access port and a guiding mechanism on the distal end of the access port, wherein the guiding mechanism has an adaptive atraumatic tip. The system also includes an introducer probe with a handle on the proximal end of the introducer probe, an atraumatic tip on the distal end of the introducer probe and a flexible body for insertion through the access port, the flexible body comprising one or more bendable elbows along the length of the introducer probe, wherein the introducer slidably engages the interior of the surgical access port to define an access path. The method includes inserting an access port down a sulcal path, inserting an introducer probe through the access port, and navigating the sulcal path with the introducer to the target.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: June 4, 2019
    Inventors: Cameron Anthony Piron, Michael Frank Gunter Wood, Murugathas Yuwaraj, Joshua Lee Richmond
  • Patent number: 10309846
    Abstract: A strain-responsive sensor incorporating a strain-sensitive element is disclosed. The strain-sensitive element includes a matched-pair of resistive structures disposed on opposite sides of a substrate. One resistive structure is coupled to a crossover, either a physical crossover or a soft crossover, such that current within the resistive structures of the matched pair flows in the same direction. In addition, one resistive structure of the matched pair has a different loop area than the other resistive structure.
    Type: Grant
    Filed: July 24, 2017
    Date of Patent: June 4, 2019
    Assignee: Apple Inc.
    Inventor: John Stephen Smith
  • Patent number: 10302459
    Abstract: A bend sensor includes a flexible circuit substrate, an insulation pad and a flexible conductive substrate. The flexible circuit substrate includes an insulating body, a first circuit and a second circuit. The first and second circuits are disposed on opposing sides of the insulating body. The first circuit has first fingers, while the second circuit has second fingers. The insulation pad disposed on the insulating body exposes the first and second fingers. The flexible conductive substrate disposed on the insulating pad has a conductive layer separated from the first fingers and the second fingers. While the bend sensor is bent, the conductive layer on the flexible conductive substrate would deform toward the flexible circuit substrate so as to form multiple contacts with the first and second fingers. Through these contacts, a number of resistors are formed to contribute a detectable resistance for the corresponding bending amplitude to be further realized.
    Type: Grant
    Filed: September 18, 2017
    Date of Patent: May 28, 2019
    Assignee: TAIWAN ALPHA ELECTRONIC CO., LTD.
    Inventors: Tzu-Hsuan Huang, Wei-Liang Liu, Huang-Chao Chan
  • Patent number: 10295418
    Abstract: A sensor system includes a body, which includes an outer wall defining an inner opening centered about an axis, and radiating structures disposed in the opening and extending radially from the axis to the outer wall. The radiating structures are spaced circumferentially around the axis by a substantially equal angle. The system includes sensors that generate signals in response to deformations of the radiating structures. The signals provide vectors corresponding to the deformations. The deformations are caused by: (i) a torque about the axis, and (ii) a secondary torque or force. The system includes a controller electrically coupled to the sensors and configured to determine, by combining the vectors provided by the signals, a measurement of the torque about the axis. The sensors are arranged on the radiating structures such that combining the vectors substantially eliminates any effect of the secondary torque or force from the measurement.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: May 21, 2019
    Assignee: X Development LLC
    Inventor: Eric Holland
  • Patent number: 10247335
    Abstract: An expansion joint including a hollow elastomeric body having coupling flanges at each open end configured to connect to flanges of a pipe system. The hollow elastomeric body is made of a material including an elastomer and fibers. A stretchable sensor is located within the material of the hollow elastomeric body. The sensor is configured to provide a varying electrical characteristic when the sensor is stretched or contracts. An analysis circuit is connected to the sensor, the analysis circuit configured to receive the varying electrical characteristic and to emit a signal corresponding to a level of the electrical characteristic received by the analysis circuit.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: April 2, 2019
    Assignee: THE METRAFLEX COMPANY
    Inventor: James R. Richter
  • Patent number: 10133383
    Abstract: A touch display panel, a touch display device and a driving method are provided. The touch display panel includes an array substrate, an opposite substrate arranged opposite to the array substrate, a touch electrode arranged at a side of the array substrate facing the opposite substrate, and an antistatic layer arranged inside the touch display panel. The antistatic layer is located at a side of the opposite substrate facing the touch electrode, and the antistatic layer and the touch electrode are capable of forming a capacitive force sensor in the case that the antistatic layer is applied with a force scanning signal.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: November 20, 2018
    Assignees: BOE TECHNOLOGY GROUP CO., LTD., BEIJING BOE OPTOELECTRONICS TECHNOLOGY CO., LTD.
    Inventors: Haisheng Wang, Xue Dong, Hailin Xue, Xiaochuan Chen, Xiaoliang Ding, Yingming Liu, Weijie Zhao, Shengji Yang, Wei Liu, Changfeng Li, Hongjuan Liu, Pengpeng Wang
  • Patent number: 10076247
    Abstract: A sensor system for measuring an elastic modulus and a shear modulus and a method for evaluating a tissue. The invention pertains to a method for determining the presence of and/or characterizing abnormal growths, using a piezoelectric finger sensor (PEFS) system. The PEFS system may be particularly useful for screening for tumors and various forms of cancer. Additionally, the PEFS system may be useful for various dermatological applications.
    Type: Grant
    Filed: August 21, 2014
    Date of Patent: September 18, 2018
    Inventors: Wan Y. Shih, Wei-Heng Shih, Hakki Yegingil, Ari D. Brooks
  • Patent number: 10043605
    Abstract: A sensor including a sensing element comprising conductive features formed on a substrate; wherein the conductive features have been formed from a palladium complex ink composition that has been deposited onto the substrate to form the deposited features and wherein the deposited features have been heated to form the conductive features on the substrate. A method including disposing a palladium complex ink composition onto a substrate to form deposited features; and heating the deposited features to form conductive features on the substrate. A strain gauge sensor including a sensing element comprising conductive features formed on a substrate; wherein the conductive features conform to a two dimensional substrate surface; or wherein the conductive features conform to a three dimensional substrate surface.
    Type: Grant
    Filed: April 21, 2015
    Date of Patent: August 7, 2018
    Assignees: Xerox Corporation, Palo Alto Research Center Incorporated
    Inventors: Tse Nga Ng, Sivkheng Kor, Yiliang Wu
  • Patent number: 9975607
    Abstract: A marine deflector handling system includes a seismic survey vessel with a deflector towing sheave with a towing line to a seismic deflector bridle block. The bridle block includes, as counted from its outer end to its inner end: two triple head arms with each its triple head in their outer ends for fore and aft sets of bridle lines to a deflector, wherein said triple head arms in their inner ends are coupled together in a hinge bearing block which further holds an outer end of a grip adapter stem, wherein said grip adapter stem in its opposite, inner end is provided with a grip adapter axle block with a transverse through extending and protruding grip adapter axle arranged for being gripped by a crane jaw, wherein said grip adapter axle further holds an outer end of a sheave block stem with an inner end provided with a sheave block for said towing line.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: May 22, 2018
    Assignee: ULMATEC BARO AS
    Inventors: Karl Fredrik Sandvik, Finn Hjeldnes
  • Patent number: 9952724
    Abstract: A flexible display device with high viewability is provided. The display device includes a first substrate, a second substrate, a first element layer, and a second element layer. The first element layer is positioned between the first substrate and the second substrate. The second element layer is positioned between the first substrate and the second substrate. The first element layer and the second element layer overlap with each other in a region. The first substrate and the second substrate have flexibility. The first element layer includes a display element and a first circuit. The display element is electrically connected to the first circuit. The second element layer includes a sensor element. The sensor element has a function of sensing distortion.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: April 24, 2018
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Kengo Akimoto, Hironobu Takahashi, Yuki Okamoto, Isamu Shigemori
  • Patent number: 9915572
    Abstract: A force sensing compliant enclosure for an electronic device may include at least one deformable housing wall. At least one strain concentration portion may be located on the deformable housing wall where strain caused by application of a force that deforms the deformable housing wall is greater than at other portions of the deformable housing wall. The strain concentrating portion may have a second thickness that is thinner than other portions of the deformable housing wall. One or more sensors may be positioned in the strain concentration portion and may sense strain caused by the application of the force that deforms the deformable housing wall.
    Type: Grant
    Filed: September 29, 2013
    Date of Patent: March 13, 2018
    Assignee: Apple Inc.
    Inventor: Romain A. Teil
  • Patent number: 9804042
    Abstract: A load sensor is provided with a seat mounting hole between both end parts of a rectangular plate-like main body portion of a load receiving member. A plurality of strain detecting elements the resistance value of each of which changes depending on the amount of strain of the main body portion are disposed around the seat mounting hole. In plan view of the load receiving member, the center point of the seat mounting hole is offset from the center point of the arrangement of the plurality of strain detecting elements toward a part of the load receiving member that has relatively high rigidity.
    Type: Grant
    Filed: February 10, 2016
    Date of Patent: October 31, 2017
    Assignee: ALPS ELECTRIC CO., LTD.
    Inventors: Mitsuru Saito, Mikio Sekine
  • Patent number: 9713429
    Abstract: A pressure sensor module configured for implant at a desired site at which a pressure is to be measured. The pressure sensor module includes a pressure sensitive membrane which is in direct contact with the environment at which a pressure is to be measured. The pressure sensor module forms a part of a pressure measuring system which uses a telemetry link between the pressure sensor module and an external controller for data transmission and transfer. The pressure measuring system provides a dual stage power and data transfer capability for use with an implantable system. An exemplary use is in a three pressure sensor system including a flow control valve in a shunt to treat hydrocephalus. An embodiment of the invention includes a pressure sensor and associated electromagnetic coils embedded in the tip portion of the shunt for measuring the pressure of fluid externally of the shunt at the tip portion.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: July 25, 2017
    Assignee: Alfred E. Mann Foundation for Scientific Research
    Inventors: Siegmar Schmidt, Charles L. Byers, Guangqiang Jiang, Brian R. Dearden, John C. Gord, Daniel Rodriguez
  • Patent number: 9649215
    Abstract: The invention relates to a connecting clement (5) between two orthopedic components, in particular prosthesis or orthosis components, which are rigidly coupled to one another and comprise a top part (2) and a bottom part (8). The connecting element (5) has a laminar structure, and at least one sensor (20) is arranged in the connecting element (5) in order to determine an effective moment or an effective force.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: May 16, 2017
    Assignee: OTTO BOCK HEALTHCARE GMBH
    Inventors: Jeff Friesen, Roland Auberger
  • Patent number: 9645023
    Abstract: The present invention relates to the field of pressure sensor technologies, and discloses a discrete pressure sensor and an electronic device. The pressure sensor includes a pressure sensing chip and a force centralization sensing board component that is bonded onto the pressure sensing chip. The force centralization sensing board component has a hollowed area, the hollowed area has a force centralization position for centralizing force applied on the force centralization sensing board component, and the force centralization position is disposed against the pressure sensing chip. After pressure is applied in the hollowed area of the force centralization sensing board component, force is centralized to the force centralization position, conveyed to the pressure sensing chip in a centralized manner, and converted into control information to control an external electronic device through a circuit or the like of the electronic device.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: May 9, 2017
    Assignee: SHENZHEN NEW DEGREE TECHNOLOGY CO., LTD.
    Inventor: Hao Li
  • Patent number: 9575504
    Abstract: Disclosed is a high degree of freedom control apparatus that includes a base attached to a strain gauge assembly movable in three orthogonal directions to provide signals indicative of a position of the strain gauge assembly relative to the base. An actuator assembly is supported on the base and movable by an operator's arm, hand, digit, or wrist relative to the base structure. The actuator assembly provides signals indicative of the position of the operator's arm, hand, digit or wrist in at least seven degrees of freedom relative to the base structure. The actuator assembly includes a wrist angle stage and a digit angle stage. The strain gauge assembly includes a spring plate and a load cell that is configured to provide a signal indicative of deflection of the load cell relative to the base.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: February 21, 2017
    Assignee: HDT Expeditionary Systems, Inc.
    Inventors: Chad Alan Dize, Daniel R. Wahl, Thomas W. Van Doren
  • Patent number: 9528891
    Abstract: A slip ring has a rotating portion configured to take in signals from rotating electric transmission elements, and communicate those signals into a static portion. The rotating portion has a plurality of resistors which rotate. The resistors have an outer peripheral surface, and a containment ring surrounding the outer peripheral surface of the plurality of resistors. A method of testing a rotating component is also disclosed.
    Type: Grant
    Filed: November 25, 2014
    Date of Patent: December 27, 2016
    Assignee: Hamilton Sundstrand Corporation
    Inventors: Brian J. Hanson, Alan D. Hanson
  • Patent number: 9492901
    Abstract: A fastener comprises a head, and a shank having an outer surface and an axially-extending channel in the outer surface. Optically transmissive, strain-sensitive fills the channel.
    Type: Grant
    Filed: January 16, 2014
    Date of Patent: November 15, 2016
    Assignee: The Boeing Company
    Inventors: Leora Peltz, Robert E. Grip, John J. Brown
  • Patent number: 9488212
    Abstract: A dust proof structure for a stress-sensible screw is provided. The dust proof structure includes a sensing screw, a head, a dust proof boot and a displayer. The sensing screw includes a base and at least one exposed lead, and the exposed lead is located in the base and transmits a stress signal. The head includes a lead base, the head is fitted with the base, and the exposed lead is detachably connected to the lead base. The dust proof boot is disposed on the head, and sleeves a connecting portion between the lead base and the exposed lead. The displayer is electrically connected w the had for displaying the stress signal.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: November 8, 2016
    Assignee: KABO TOOL COMPANY
    Inventor: Chih-Ching Hsieh
  • Patent number: 9464952
    Abstract: The integrated electronic device is for detecting a local parameter related to a force observed in a given direction, within a solid structure. The device includes at least one sensor configured to detect the above-mentioned local parameter at least in the given direction through piezo-resistive effect. At least one damping element, integrated in the device, is arranged within a frame-shaped region that is disposed around the at least one sensor and belongs to a substantially planar region comprising a plane passing through the sensor and perpendicular to the given direction. Such at least one damping element is configured to damp forces acting in the planar region and substantially perpendicular to the given direction.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: October 11, 2016
    Assignee: STMICROELECTRONICS S.R.L.
    Inventors: Alberto Pagani, Federico Giovanni Ziglioli, Bruno Murari
  • Patent number: 9052332
    Abstract: A pizeoresistive type Z-axis accelerometer is provided, including a substrate; a plurality of anchors formed over the substrate; a plurality of cantilever beams, wherein the cantilever beams include a piezoresistive material; and a proof mass, wherein the proof mass is suspended over the substrate by respectively connecting the proof mass with the anchors, and the accelerometer senses a movement of the proof mass by the piezoresistive material.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: June 9, 2015
    Assignee: RichWave Technology Corp.
    Inventors: Chih-Wei Huang, Chieh-Pin Chang, Ja-Hao Chen, Chuan-Jane Chao, Ying-Zong Juang, Shyh-Chyi Wong, Yeong-Her Wang
  • Patent number: 8988184
    Abstract: A piezoresistive sensor device and a method for making a piezoresistive device are disclosed. The sensor device comprises a silicon wafer having piezoresistive elements and contacts in electrical communication with the elements. The sensor device further comprises a contact glass coupled to the silicon wafer and having apertures aligned with the contacts. The sensor device also comprises a non-conductive frit for mounting the contact glass to a header glass, and a conductive non-lead glass frit disposed in the apertures and in electrical communication with the contacts. The method for making a piezoresistive sensor device, comprises bonding a contact glass to a silicon wafer such that apertures in the glass line up with contacts on the wafer, and filling the apertures with a non-lead glass frit such that the frit is in electrical communication with the contacts.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: March 24, 2015
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Nora Kurtz
  • Patent number: 8723635
    Abstract: A pressure transducer comprising a corrosion resistant metal diaphragm, having an active region, and capable of deflecting when a force is applied to the diaphragm; and a piezoresistive silicon-on-insulator sensor array disposed on a single substrate, the substrate secured to the diaphragm, the sensor array having a first outer sensor near an edge of the diaphragm at a first location and on the active region, a second outer sensor near an edge of the diaphragm at a second location and on the active region, and at least one center sensor substantially overlying a center of the diaphragm, the sensors connected in a bridge array to provide an output voltage proportional to the force applied to the diaphragm. The sensors are dielectrically isolated from the substrate.
    Type: Grant
    Filed: July 29, 2013
    Date of Patent: May 13, 2014
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Nora Kurtz
  • Publication number: 20140109695
    Abstract: Apparatuses and methods, consistent with embodiments herein, are directed to an apparatus having a stretchable substrate and a plurality of nanostructures. While the plurality of nanostructures are adhered to the stretchable substrate, the stretchable substrate and the nanostructures are stretched and/or operate in a stretched mode in which the nanostructures are characterized by a resistance corresponding to a strain imparted due to the stretching. When the substrate is relaxed or the stretching otherwise lessened, the nanostructures continue to be characterized as a function of the strain and the corresponding resistance, with buckled segments of the nanostructures being adhered along a surface of the substrate.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 24, 2014
    Inventors: Darren Lipomi, Michael Vosgueritchian, Chee-Keong Tee, Sondra Hellstrom, Zhenan Bao
  • Patent number: 8547197
    Abstract: A bend-detecting (bending) sensor is provided, including a flexible substrate, at least a pair of electrode patterns spaced apart from each other provided on the flexible substrate, and a paste layer containing conductive particles. The paste layer is coated onto the flexible substrate where the electrode patterns are formed, such that when the flexible substrate is bent, the density of the conductive particles between the electrode patterns changes and an electric resistance between the electrode patterns also changes, thereby sensing deformation of the flexible substrate, and eventually, a target to which the flexible display element or the flexible substrate is attached. When the bending sensor is applied to the flexible display device, the electrode patterns and the paste layer may be formed on the flexible substrate which is to form the flexible display element, thus forming a bending sensing structure with a thickness of the flexible display element or less.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: October 1, 2013
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Kang-Ho Byun, Byung-Jik Kim
  • Patent number: 8497758
    Abstract: A pressure transducer comprising a corrosion resistant metal diaphragm, having an active region, and capable of deflecting when a force is applied to the diaphragm; and a piezoresistive silicon-on-insulator sensor array disposed on a single substrate, the substrate secured to the diaphragm, the sensor array having a first outer sensor near an edge of the diaphragm at a first location and on the active region, a second outer sensor near an edge of the diaphragm at a second location and on the active region, and at least one center sensor substantially overlying a center of the diaphragm, the sensors connected in a bridge array to provide an output voltage proportional to the force applied to the diaphragm. The sensors are dielectrically isolated from the substrate.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: July 30, 2013
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Nora Kurtz
  • Patent number: 8497757
    Abstract: A piezoresistive sensor device and a method for making a piezoresistive device are disclosed. The sensor device comprises a silicon wafer having piezoresistive elements and contacts in electrical communication with the elements. The sensor device further comprises a contact glass coupled to the silicon wafer and having apertures aligned with the contacts. The sensor device also comprises a non-conductive frit for mounting the contact glass to a header glass, and a conductive non-lead glass frit disposed in the apertures and in electrical communication with the contacts. The method for making a piezoresistive sensor device, comprises bonding a contact glass to a silicon wafer such that apertures in the glass line up with contacts on the wafer, and filling the apertures with a non-lead glass frit such that the frit is in electrical communication with the contacts.
    Type: Grant
    Filed: January 13, 2010
    Date of Patent: July 30, 2013
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander Ned
  • Patent number: 8482372
    Abstract: A piezoresistive sensor device and method for making the same are disclosed. The device comprises a silicon wafer having piezoresistive elements and contacts in electrical communication with the elements. The device further comprises a contact glass coupled to the silicon wafer and having apertures aligned with the contacts. The device also comprises a non-conductive frit for mounting the contact glass to a header glass, and a conductive non-lead glass frit disposed in the apertures and in electrical communication with the contacts. The method for making the device comprises bonding a contact glass to a silicon wafer such that apertures in the glass line up with contacts on the wafer, and filling the apertures with a non-lead glass frit such that the frit is in electrical communication with the contacts. The use of a lead free glass frit prevents catastrophic failure of the device in ultra high temperature applications.
    Type: Grant
    Filed: April 23, 2012
    Date of Patent: July 9, 2013
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Alexander A. Ned
  • Patent number: 8436820
    Abstract: There are provided a touchpad using resistive electro-conductive fibers and an input device having the same, which can be used for controlling a personal terminal such as a computer by receiving a user's input using a signal representing a motion of the user detected by the resistive electro-conductive fiber in contact with the user's body part such as a finger, instead of using a separate input device such as a mouse. The touchpad includes a plurality of motion detectors and a signal analyzer. The motion detectors each include a resistive electro-conductive fiber having a resistance value varied according to a change in length caused by contact with a human body part, and a signal generator outputting a signal corresponding to the varied resistance value. The signal analyzer analyzes the signal from each of the motion detectors, and generates a motion signal representing a motion of the human body part in contact with the touchpad.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: May 7, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Ji Wook Jeong, Seung Hwan Kim, Soun Hee Park
  • Patent number: 8421581
    Abstract: A system for testing a push-button switch is provided. The system for testing a push-button switch includes a switch test device. The switch test device has a flexible tab attached to a pushing member at an end of the flexible tab. A sensor is attached to the flexible tab. The sensor generates a signal that changes relative to a deformation of the flexible tab. A data collection system is connected to the switch test device and receives signals from the sensor.
    Type: Grant
    Filed: December 29, 2010
    Date of Patent: April 16, 2013
    Assignee: Harman International Industries, Incorporated
    Inventor: Adrian Baima
  • Patent number: 8387458
    Abstract: The invention provides a sensor comprising a frame, a plurality of beams extending inwardly from said frame, a weight portion supported by the beams, a piezoelectric-resistor formed on each beam and an insulating layer that covers the piezoelectric-resistor. The piezoelectric-resistor has at least one bend, and a metal wiring is located on the insulting layer positioned at the bend. The metal wiring is connected to the bend via at least two contact holes formed in the insulating layer. Contact holes are formed in the insulating layer positioned at both ends of the piezoelectric-resistor, and a bridge circuit wiring is connected to the piezoelectric-resistor via the contact holes.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: March 5, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Kazuhiko Aida, Katsumi Hashimoto, Toshiaki Mori
  • Publication number: 20120256720
    Abstract: A bend-detecting (bending) sensor is provided, including a flexible substrate, at least a pair of electrode patterns spaced apart from each other provided on the flexible substrate, and a paste layer containing conductive particles. The paste layer is coated onto the flexible substrate where the electrode patterns are formed, such that when the flexible substrate is bent, the density of the conductive particles between the electrode patterns changes and an electric resistance between the electrode patterns also changes, thereby sensing deformation of the flexible substrate, and eventually, a target to which the flexible display element or the flexible substrate is attached. When the bending sensor is applied to the flexible display device, the electrode patterns and the paste layer may be formed on the flexible substrate which is to form the flexible display element, thus forming a bending sensing structure with a thickness of the flexible display element or less.
    Type: Application
    Filed: June 30, 2011
    Publication date: October 11, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Kang-Ho BYUN, Byung-Jik KIM
  • Patent number: 8237537
    Abstract: A pressure transducer comprising a corrosion resistant metal diaphragm, having an active region, and capable of deflecting when a force is applied to the diaphragm; and a piezoresistive silicon-on-insulator sensor array disposed on a single substrate, the substrate secured to the diaphragm, the sensor array having a first outer sensor near an edge of the diaphragm at a first location and on the active region, a second outer sensor near an edge of the diaphragm at a second location and on the active region, and at least one center sensor substantially overlying a center of the diaphragm, the sensors connected in a bridge array to provide an output voltage proportional to the force applied to the diaphragm. The sensors are dielectrically isolated from the substrate.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 7, 2012
    Assignee: Kulite Semiconductor Products, Inc.
    Inventors: Anthony D. Kurtz, Nora Kurtz, legal representative
  • Publication number: 20120161921
    Abstract: A tunable impedance load bearing structure includes a support comprising an active material configured for supporting a load, wherein the active material undergoes a change in a property upon exposure to an activating condition, wherein the change in the property is effective to change an impedance characteristic of the support.
    Type: Application
    Filed: March 1, 2012
    Publication date: June 28, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Alan L. Browne, Nancy L. Johnson, Nilesh D. Mankame, Paul W. Alexander, Hanif Muhammad, Kenneth A. Strom, James W. Wells
  • Patent number: 8183975
    Abstract: A miniature pressure transducer is disclosed which is able to operate at high temperatures. The pressure transducer is provided on a substrate comprising an elongate silicon base portion with one or more contact areas formed at one end and a diaphragm formed at the opposite distal end. A plurality of piezoresistive elements are provided on the diaphragm, preferably in a Wheatstone Bridge arrangement, and connected to the contact areas using interconnects. The diaphragm extends across substantially the entire effective width of the elongate base portion providing a compact width while still maintaining a sensitive pressure sensing capability.
    Type: Grant
    Filed: September 22, 2009
    Date of Patent: May 22, 2012
    Assignee: GE Infrastructure Sensing, Inc.
    Inventors: Russell Craddock, James Anthony King
  • Patent number: 8174352
    Abstract: A method for manufacturing or preparing thin-film stacks that exhibit moderate, finite, stress-dependent resistance and which can be incorporated into a transduction mechanism that enables simple, effective signal to be read out from a micro- or nano-mechanical structure. As the structure is driven, the resistance of the intermediate layers is modulated in tandem with the motion, and with suitable dc-bias, the motion is directly converted into detectable voltage. In general, detecting signal from MEMS or NEMS devices is difficult, especially using a method that is able to be integrated with standard electronics. The thin-film manufacturing or preparation technique described herein is therefore a technical advance in the field of MEMS/NEMS that could enable new applications as well as the ability to easily develop CMOS-MEMS integrated fabrication techniques.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: May 8, 2012
    Assignees: Cornell University, The United States of America as Represented by the Secretary of the Navy
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Patent number: 8151649
    Abstract: A physical quantity sensor device (10) having a structure in which a stress-sensitive body (1) of which the electric characteristics vary depending upon the application of stress and an insulator (2) having electric insulation are formed being closely adhered together, wherein the stress-sensitive body (1) comprises a thin glass film containing an electrically conductive element that is solidly dissolved therein as atoms, a method of manufacturing the physical quantity sensor device, a piezo-resistive film comprising a thin glass film containing ruthenium that is solidly dissolved therein as atoms, and a method of manufacturing the piezo-resistive film.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: April 10, 2012
    Assignee: Denso Corporation
    Inventors: Masashi Totokawa, Masao Naito, Akihiro Takeichi
  • Patent number: 8130073
    Abstract: A push-button switch test device having a flexible tab fixedly attached to a pushing member. The flexible tab is made of a flexible material and includes a deformation sensitive resistor mounted on a surface. The push-button switch test device may be used to test a push-button by imposing a known force on the flexible tab while receiving a signal level across the deformation sensitive resistor. As the known force pushes on the flexible tab, the signal level indicates when the push-button has engaged. The force may then be reversed to permit sensing of the disengagement of the switch. Configurations of a plurality of push-button switch test devices may be arranged in a test frame that mirrors a configuration of push-button switches.
    Type: Grant
    Filed: November 15, 2010
    Date of Patent: March 6, 2012
    Assignee: Harman International Industries, Incorporated
    Inventor: Adrian Baima
  • Patent number: 7961074
    Abstract: The load cell includes a strain generating body having a strain generated portion, and a strain detection element provided on a surface of the strain generating body in a portion corresponding to the strain generated portion and having an inversion portion and a straight portion. A creep characteristic is adjusted by a thickness of the strain generated portion in a portion corresponding to the inversion portion.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: June 14, 2011
    Assignee: Ishida Co., Ltd.
    Inventors: Shoko Tajiri, Shinji Takeichi, Hiroki Fujioka, Kazuteru Oda
  • Publication number: 20110128113
    Abstract: A strain measuring device includes a bridge circuit comprising a p-type impurity diffused resistor as a strain detecting portion and a bridge circuit comprising an n-type impurity diffused resistor as a strain detecting portion in a semiconductor single crystalline substrate, Sheet resistance of the p-type impurity diffused resistor is 1.67 to 5 times higher than that of the n-type impurity diffused resistor. Furthermore, the impurity diffused resistor is configured to be a meander shape including strip lines and connecting portions.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 2, 2011
    Inventors: Hiroyuki OHTA, Hiromi Shimazu, Yohei Tanno
  • Publication number: 20110121937
    Abstract: A method for manufacturing or preparing thin-film stacks that exhibit moderate, finite, stress-dependent resistance and which can be incorporated into a transduction mechanism that enables simple, effective signal to be read out from a micro- or nano-mechanical structure. As the structure is driven, the resistance of the intermediate layers is modulated in tandem with the motion, and with suitable dc-bias, the motion is directly converted into detectable voltage. In general, detecting signal from MEMS or NEMS devices is difficult, especially using a method that is able to be integrated with standard electronics. The thin-film manufacturing or preparation technique described herein is therefore a technical advance in the field of MEMS/NEMS that could enable new applications as well as the ability to easily develop CMOS-MEMS integrated fabrication techniques.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 26, 2011
    Applicant: CORNELL UNIVERSITY
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Publication number: 20110095772
    Abstract: A damage sensor, for example a crack gauge, a method of providing the same, and a method of sensing damage using the same, are described. The damage sensor comprises at least one direct write resistive element applied to an area of a substrate by a direct write process. Conductive tracks may be connected along two separated portions of the perimeter of the area of the direct write resistive element. The damage sensor may comprise plural direct write resistive elements, for example rectangular-shaped elements, each extending between and connected to two conducting tracks. In a further damage sensor, plural annular resistive elements are positioned in an annular arrangement with respect to each other. In all the damage sensors, the resistive elements may be applied around a hole in a substrate, or extending over a bonded edge between two substrates.
    Type: Application
    Filed: May 21, 2009
    Publication date: April 28, 2011
    Inventors: Jagjit Sidhu, Peter David Foote
  • Patent number: 7911316
    Abstract: A sensor array for a pressure transducer having a diaphragm with an active region, and capable of deflecting when a force is applied to the diaphragm. The sensor array disposed on a single substrate, the substrate secured to the diaphragm. The sensor array having a first outer sensor near an edge of the diaphragm at a first location and on the active region, a second outer sensor near an edge of the diaphragm at a second location and on the active region, and at least one center sensor substantially overlying a center of the diaphragm. The sensors connected in a bridge array to provide an output voltage proportional to the force applied to the diaphragm. The sensors dielectrically isolated from the substrate.
    Type: Grant
    Filed: January 12, 2010
    Date of Patent: March 22, 2011
    Assignee: Kulite Semiconductor Products, Inc.
    Inventor: Anthony D. Kurtz
  • Patent number: 7911315
    Abstract: A pressure sensor assembly configured for use with a catheter. In one illustrative embodiment, the pressure sensor assembly may include a multi-layer co-fired ceramic (MLCC) package. The MLCC package may include two or more ceramic layers that are co-fired together, with a cavity defined by at least some of the ceramic layers. At least one internal bond pad is provided within the cavity, and at least one external connection point is provided on the MLCC package exterior. A sensor, such as a pressure sensor, may be positioned and attached within the cavity. The sensor may be electrically connected to at least one of the internal bond pads. In some cases, a sealant may be used to encapsulate the sensor within the cavity. Once fabricated, the MLCC sensor assembly may be provided in a sensor lumen of a catheter.
    Type: Grant
    Filed: July 28, 2006
    Date of Patent: March 22, 2011
    Assignee: Honeywell International Inc.
    Inventor: Alistair D. Bradley
  • Patent number: 7893810
    Abstract: A strain measuring device according to the present invention includes a bridged circuit comprising a p-type impurity diffused resistor as a strain detective portion and a bridged circuit comprising an n-type impurity diffused resistor as a strain detective portion in a semiconductor single crystalline substrate, and sheet resistance of the p-type impurity diffused resistor is 1.67 to 5 times higher than that of the n-type impurity diffused resistor. Furthermore, it is preferable that the impurity diffused resistor be configured to be a meander shape comprising strip lines and connecting portions. Moreover, it is preferable that the number of strip lines in the p-type impurity diffused resistor be smaller than that in the n-type impurity diffused resistor.
    Type: Grant
    Filed: August 24, 2007
    Date of Patent: February 22, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hiroyuki Ohta, Hiromi Shimazu, Yohei Tanno
  • Patent number: 7852193
    Abstract: A push-button switch test device having a flexible tab fixedly attached to a pushing member. The flexible tab is made of a flexible material and includes a deformation sensitive resistor mounted on a surface. The push-button switch test device may be used to test a push-button by imposing a known force on the flexible tab while receiving a signal level across the deformation sensitive resistor. As the known force pushes on the flexible tab, the signal level indicates when the push-button has engaged. The force may then be reversed to permit sensing of the disengagement of the switch. Configurations of a plurality of push-button switch test devices may be arranged in a test frame that mirrors a configuration of push-button switches.
    Type: Grant
    Filed: March 13, 2007
    Date of Patent: December 14, 2010
    Assignee: Harman International Industries, Incorporated
    Inventor: Adrian Baima