With Pulse Modulation Patents (Class 342/134)
  • Patent number: 7477182
    Abstract: Provided is a pulse radar system capable of measuring the distance to an obstacle with high accuracy irrespective of the distance to an obstacle by securing distance resolution with respect to a reflective wave from an obstacle at a short distance, and preventing a decline in S/N ratio with respect to a reflective wave from an obstacle at a long distance. A pulse radar system includes a transmitting circuit, a transmitting antenna, a receiving antenna, a receiving circuit, and a gain control circuit. The gain control circuit generates a gain control signal corresponding to the amplitude of the reception pulse obtained in response to a gain control transmission pulse wave transmitted from the transmitting circuit, and controls the gain of a reception pulse wave or a reception pulse obtained in response to a measurement transmission pulse wave transmitted from the transmitting circuit after the gain control transmission pulse wave.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: January 13, 2009
    Assignee: TDK Corporation
    Inventor: Hiroshi Ikeda
  • Patent number: 7474257
    Abstract: A radar receiver system includes a receiver, a processor, and a detector. The processor is programmed with a Multistatic Adaptive Pulse Compression (MAPC) algorithm for estimating adaptively a pulse compression filter, for each range cell of a plurality of range cells, and for each of a plurality of radar return signals, to remove interference between the radar return signals. MAPC may also include reiterative minimum mean-square error estimation for applying to each of the range cells in order to adaptively estimate a unique pulse compression filter for each cell. MAPC adaptively mitigates the masking problem that results from the autocorrelation of a waveform which produces range sidelobes scaled by the target amplitudes as well as the cross-correlation between waveforms. MAPC can also be applied when only 1 or some subset of the available illuminated radar range profiles are desired, with undesired information then discarded.
    Type: Grant
    Filed: November 7, 2005
    Date of Patent: January 6, 2009
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Shannon D Blunt, Karl R Gerlach
  • Patent number: 7474962
    Abstract: A method for guiding the approach and landing of an aircraft is provided. The method involves receiving navigation information from the aircraft, receiving navigation information from an aircraft carrier, integrating the navigation information from the aircraft with the navigation information from the aircraft carrier to determine a relative velocity and a relative position between the aircraft and the aircraft carrier, and propagating the relative velocity and the relative position forward in time for navigation purposes.
    Type: Grant
    Filed: July 13, 2005
    Date of Patent: January 6, 2009
    Assignee: Honeywell International Inc.
    Inventors: James Waid, Kevin Dutton, Adam Boseley, Kenneth S. Morgan, Phil Hess, Michael Vaujin
  • Patent number: 7466261
    Abstract: A RADAR system including a set of RADAR apparatuses is disclosed. Each apparatus includes a processor, a pulse unit in signal communication with the processor, a waveform signal generator in signal communication with the pulse unit, and a set of radar antennas in signal communication with the waveform signal generator. The waveform signal generator is capable of generating a waveform signal in response to pulses provided by the pulse unit. The set of antennas is capable of transmitting a burst of microwave energy in response to each waveform signal and to receive a plurality of reflected bursts associated with the transmitted bursts. An acquisition unit is configured to develop and amplify a finite window integral associated with each reflected burst, the acquisition unit in signal communication with the set of antennas and a pre-processor configured to digitize and store information relating to each finite window integral for subsequent processing.
    Type: Grant
    Filed: July 26, 2006
    Date of Patent: December 16, 2008
    Assignee: General Electric Company
    Inventors: Ralph Thomas Hoctor, Jeffrey Michael Ashe, Vincent Paul Staudinger, Kenneth Brakeley Welles
  • Patent number: 7463181
    Abstract: In a method for suppressing interferences while detecting objects in a target area, a transmitter transmits a sequence of pulses into the target area, and a receiver detects the resulting reflection signal of the pulses reflected from the objects, within successive time windows that are referenced to the moment of transmitting an individual pulse and thus represent distance gates. The time spacing between the successive individual pulses is variable and randomized according to the pseudo-noise principle within predetermined limits, and the time windows are adapted accordingly. The received reflection signal may be sampled, digitized, digitally pre-processed and digitally filtered in the individual distance gates. A non-linear digital filter, preferably a sliding median filter, is used for the filtering to suppress transient disturbances. The median is determined from an odd number of consecutive sampled values of a reflection signal detected within a distance gate.
    Type: Grant
    Filed: December 20, 2004
    Date of Patent: December 9, 2008
    Assignee: A.D.C. Automotive Distance Control Systems GmbH
    Inventor: Markus Wintermantel
  • Patent number: 7460057
    Abstract: A level measuring instrument has a variable transmitting power for measuring a filling level in a tank. The level measuring instrument includes a generator unit selectively generating different transmitting powers. The generator unit is controlled so that the transmitting power is respectively adapted to the corresponding environmental conditions. For this purpose, the generator unit has for instance two different oscillators, which are driven selectively.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: December 2, 2008
    Assignee: Vega Grieshaber KG
    Inventors: Josef Fehrenbach, Daniel Schultheiss, Christoph Mueller, Bernhard Corbe
  • Patent number: 7453390
    Abstract: A detection device for detecting a body entering a predetermined range has a transmission means for periodically radiating a pulse-like transmission signal by way of an electromagnetic wave to which a band restriction has been applied, a first reception means and a second reception means, and a judgment means. Each of the reception means performs receiving, as a reception signal, the electromagnetic wave reflected by the body, periodic sampling of the reception signal after a predetermined delay time has elapsed from transmission, and judging, based on a result of the periodic sampling, whether the body exists. The judgment means judges, based on judgment results of each of the first reception means and the second reception means, whether the body has entered into the predetermined range, and outputs a judgment result.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 18, 2008
    Assignee: OMRON Corporation
    Inventors: Tadao Nishiguchi, Naoyuki Ishihara, Yasuhiro Satoh
  • Patent number: 7446695
    Abstract: A precision pulse detection system for time-of-flight sensors detects a zero axis crossing of a pulse after it crosses above and then falls below a threshold. Transmit and receive pulses flow through a common expanded-time receiver path to precision transmit and receive pulse detectors in a differential configuration. The detectors trigger on zero axis crossings that occur immediately after pulse lobes exceed and then drop below a threshold. Range errors caused by receiver variations cancel since transmit and receive pulses are affected equally. The system exhibits range measurement accuracies on the order of 1-picosecond without calibration even when used with transmitted pulse widths on the order of 500 picoseconds. The system can provide sub-millimeter accurate TDR, laser and radar sensors for measuring tank fill levels or for precision radiolocation systems including digital handwriting capture.
    Type: Grant
    Filed: August 22, 2006
    Date of Patent: November 4, 2008
    Inventor: Thomas Edward McEwan
  • Patent number: 7443336
    Abstract: Provided is an in-vehicle pulse radar device capable of calculating a distance to a target object based on a delay time between a transmission pulse wave and a received signal. The in-vehicle pulse radar device includes: a reception control unit for controlling passing and blocking of the received signal in synchronization with the transmission pulse wave; a shaping unit for shaping the trailing edge of a pulse wave of the received signal to be delayed; and a sampling unit for sampling the received signal when a predetermined period of time elapses after the reception control unit starts to pass the received signal therethrough.
    Type: Grant
    Filed: April 10, 2006
    Date of Patent: October 28, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shinsaku Noda
  • Patent number: 7439906
    Abstract: A radar receiver system includes a receiver, a processor including a Doppler Compensated Adaptive Pulse Compressor (DCAPC) algorithm, possible other intermediate processing and a target detector. The DCAPC algorithm processes samples of a radar return signal, applies Minimum Mean Square Error (MMSE), or alternatively matched filtering, to the radar return signal to obtain initial radar impulse response estimates, computes power estimates, estimates a range cell Doppler shift for each range cell, computes range-dependent filters, applies the MMSE filters, and then repeats the cycle for subsequent reiterative stages until a desired length?L range window is reached, thereby resolving the scatterer from noise and other scatterers.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: October 21, 2008
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Shannon D Blunt, Karl R Gerlach, Kevin J Smith
  • Publication number: 20080231498
    Abstract: The invention relates to a symmetrical multi-path method for determining the spatial distance between two transmitter-receivers. Both transmitter-receivers set off at least one signal round in each case. A signal round comprises the steps: a) transmitting at least one request data frame of a first transmitter-receiver to a second transmitter-receiver at a request transmitting time (TTA1, TTB2), b) receiving the request data frame at the second transmitter-receiver at a request receiving time (TRB1, TRA2), c) transmitting a reply data frame from the second transmitter-receiver to the first transmitter-receiver at a reply transmitting time (TTB1, TTA2), which has a respective reply time interval (TreplyB1, TreplyA2) from the request receiving time (TRB1, TRA2) and detecting the reply time interval, d) receiving the reply data frame at the first transmitter-receiver setting off the signal round and detecting an allocated reply receiving time (TRA1, TRB2).
    Type: Application
    Filed: November 15, 2005
    Publication date: September 25, 2008
    Inventors: Lars Menzer, Zbigniew Ianelli, Rainer Hach
  • Patent number: 7420504
    Abstract: A method of operating a multibeam radar carried on a platform flying a mission over a prescribed flight path to obtain images of a plurality of target areas, the beams of said radar being the result of respective transmit pulses and beam returns being received by respective receive windows. A range of pulse repetition frequencies and pulse repetition frequency change rates are used in an iterative process to determine non-collision alignments of any combination of transmit pulses and receive windows. When a non-collision alignment is determined the particular arrangement producing that non-collision alignment is used in a simulated flight of the platform to determine dwell time before a collision occurs. An arrangement that produces sufficient dwell time to accomplish a mission is then used in an actual flight of the platform.
    Type: Grant
    Filed: January 6, 2006
    Date of Patent: September 2, 2008
    Assignee: Northrop Grumman Corporation
    Inventors: Daniel N. Held, Elbert L. Cole, Jr., Martin J. Decker, Charles Y. Chen
  • Patent number: 7391362
    Abstract: A FM-CW radar system comprises a frequency modulated continuous wave digital generator that produces both in-phase (I) and quadrature-phase (Q) outputs to orthogonally oriented transmitter antennas. A linearly polarized beam is output from a switched antenna array that allows a variety of I-and-Q pairs of bowtie antennas to be alternately connected to the transmitter and receiver. The receiver inputs I-and-Q signals from another bowtie antenna in the array and mixes these with samples from the transmitter. Such synchronous detection produces I-and-Q beat frequency products that are sampled by dual analog-to-digital converters (ADC's). The digital samples receive four kinds of compensation, including frequency-and-phase, wiring delay, and fast Fourier transform (FFT). The compensated samples are then digitally converted by an FFT-unit into time-domain signals. Such can then be processed conventionally for range information to the target that has returned the FM-CW echo signal.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: June 24, 2008
    Assignee: Land Ray Technology, Inc.
    Inventor: Frederick L. Beckner
  • Patent number: 7385513
    Abstract: A device for monitoring distances having an interrogator and a transponder in wireless communication with the interrogator, the transponder having a signaling device that is activated based on the distance between the interrogator and transponders. The interrogator sends an encoded signal to the transponder and determines the distance to the transponder based on the delay of the transponder's response. The interrogator instructs the transponder to activate a signaling device when the distance exceeds a predetermined setting. The present invention is directed towards applications that require one-foot precision and accuracy.
    Type: Grant
    Filed: January 27, 2005
    Date of Patent: June 10, 2008
    Inventors: A. Wallace Everest, Mark B. Godfrey, Mark A. Voves
  • Patent number: 7382310
    Abstract: Methods are disclosed for independently setting the range resolution, Doppler resolution, and pulse compression processing gain of a Doppler radar system. Higher Doppler resolution is achieved by segmenting and spreading apart a pseudo-random code (PRC) to increase the processing dwell time on a target. Simultaneous high and low range resolution is obtained by interleaving a second segmented low resolution PRC into the time gaps between a first segmented high resolution PRC.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: June 3, 2008
    Inventor: Gregory Hubert Piesinger
  • Patent number: 7379016
    Abstract: A pulse detection system for expanded time radar, laser and TDR sensors detects specific cycles within bursts of cycles. A sensor transmits and receives short bursts of RF cycles. A transmit pulse detector triggers on a selected cycle of the detected transmit burst and starts a range counter. A receive detector triggers on a selected cycle within a received echo burst to stop the range counter, thereby indicating range. Cycle selection is enabled by an analysis window of time. The detection system can provide accuracies on the order of one picosecond and is well-suited to accurate ranging along an electromagnetic guide wire.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: May 27, 2008
    Assignee: McEwan Technologies, LLC
    Inventor: Thomas Edward McEwan
  • Patent number: 7379017
    Abstract: A pulsed radar system uses phase noise compensation to reduce phase noise due to drift of the reference oscillator to enable detection of micro movements and particularly human motion such as walking, breathing or heartbeat. The noise level due to A/D sampling must be sufficiently low for the phase noise compensation to be effective. As this is currently beyond state-of-the-art for high bandwidth A/D converters used in traditional receiver design, the receiver is suitably reconfigured to use analog range gates and narrowband A/D sampling having sufficiently low noise level. As technology continues to improve, the phase compensation techniques may be directly applicable to the high bandwidth A/D samples in traditional receiver designs.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: May 27, 2008
    Assignee: Raytheon Company
    Inventors: Wesley H. Dwelly, Vinh N. Adams
  • Publication number: 20080117094
    Abstract: The present invention is directed towards method and computer program product for obtaining additional information in relation to a target in the vicinity of a mobile electronic device as well as such a mobile electronic device. The device includes a radar unit for operation in a certain frequency range including a pulse generating unit, a transmitting and receiving antenna, an echo detecting unit, a timing unit for timing the generation and transmission of pulses and providing an echo detection window for the echo detecting unit to detect echoes of said pulses when being reflected by a target, and a signal processing unit configured to process received echo pulses.
    Type: Application
    Filed: November 17, 2006
    Publication date: May 22, 2008
    Applicant: SONY ERICSSON MOBILE COMMUNICATIONS AB
    Inventors: Mats Lindoff, Magnus Blomkvist
  • Publication number: 20080117096
    Abstract: A device for distance measurement with the aid of electromagnetic waves includes a transmitting device for transmitting, in a measuring mode, electromagnetic waves as a transmitted signal to a measured object, a receiving device for receiving, in the measuring mode, the electromagnetic waves back-scattered by the measured object as a received signal, and an analyzer device for determining, in an analysis mode, the propagation time, and for outputting a measured distance, the analyzer device having a compensation unit for compensating distance measurements carried out during the analysis mode.
    Type: Application
    Filed: September 16, 2005
    Publication date: May 22, 2008
    Inventors: Matthias Eckel, Juergen Hoetzel
  • Publication number: 20080106461
    Abstract: There is provided a device and method for detecting an overlap of pulse signals, capable of easily detecting a point where reference and delayed pulse signals overlap each other, and an apparatus for estimating a distance using the same. The device for detecting an overlap of pulse signals, the device detecting a point where first and second pulse signals having different frequencies begin to overlap each other, the device including: a duty adjustor generating a third pulse signal by increasing a duty of the second pulse signal; a pulse signal calculator multiplying the first and second pulse signals by the third pulse signal, respectively and adding respective results together to output a signal; and an overlap determiner determining a middle of a pulse with a greatest width in the signal outputted from the pulse signal calculator as a point where the first and second pulse signals overlap each other.
    Type: Application
    Filed: October 26, 2007
    Publication date: May 8, 2008
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Sang Yub LEE, Chang Soo YANG, Min Kyung KWON, Seung Heon HAN
  • Patent number: 7365603
    Abstract: An FET amplifier includes an FET for amplifying a high-frequency signal to be input to the gate on the basis of a gate bias voltage from a gate bias control circuit. In the FET amplifier, a high-frequency signal input circuit and the output portion of an inverting amplifier are made conductive to the gate of the FET. A voltage stabilizing circuit generating a positive DC constant-voltage signal is made conductive to the non-inverting input portion of the inverting amplifier, and a gate bias control signal input circuit is made conductive to the inverting input portion through an inverter circuit. When the output voltage from the inverter circuit is 0 V, the inverting amplifier outputs a positive gate bias voltage (in the High state) and, when the output voltage from the inverter circuit is a fixed positive voltage, the inverting amplifier outputs a negative gate bias voltage (in the Low state) lower than the pinch-off voltage of the FET.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: April 29, 2008
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Sadao Yamashita
  • Patent number: 7362261
    Abstract: A linear frequency-modulated pulse radar system is provided in which the echo signal is mixed with a de-ramp signal, in order to reduce the bandwidth. The transmission signal of the pulse radar and the de-ramp signal are generated with the same reference oscillator, whereby the transmission signal and the de-ramp signal are generated as the upper and lower side band of an upward mixing process.
    Type: Grant
    Filed: March 22, 2005
    Date of Patent: April 22, 2008
    Assignee: EADS Deutschland GmbH
    Inventor: Joachim Flacke
  • Patent number: 7352320
    Abstract: An FM-CW radar includes a transmitting section, a mixing section, an A/D conversion section, a storage unit, and a signal processing section. The transmitting section transmits a continuous wave frequency-modulated with a triangular wave. The mixing section mixes the continuous wave transmitted and a reflected wave from a target, to generate a beat wave. The A/D conversion section A/D converts the beat wave into digital data. The storage unit includes a first storage section and a second storage section. The signal processing section reads data from the first storage section to process the read data. The A/D conversion section writes the digital data into the second storage section. The control section switches the first storage section and the second storage section alternately in synchronous with switching between up and down of the triangular wave.
    Type: Grant
    Filed: May 27, 2005
    Date of Patent: April 1, 2008
    Assignee: Fujitsu Ten LImited
    Inventors: Daisuke Enomoto, Yukio Ishikawa
  • Publication number: 20080068255
    Abstract: A ranging apparatus includes a reference pulse generator generating a reference pulse having a first frequency at a first point in time of transmitting a ranging signal from a first device; a delay pulse generator generating a delay pulse signal having a second frequency at a second point in time of receiving the a response signal transmitted from the second device in response to the ranging signal; an overlap detector detecting a third point in time that the reference and delay pulses overlap each other; a counter counting one of the reference and delay pulses until the third point; and a distance calculator calculating an amount of time from the first point to the second point by applying the first and second frequencies, and a count value of the counter and calculating the distance between the first device and the second device by using the amount of time.
    Type: Application
    Filed: September 5, 2007
    Publication date: March 20, 2008
    Applicant: SAMSUNG ELECTRO-MECHANICS CO., LTD.
    Inventors: Wan Cheol YANG, Chang Soo Yang, Sang Yub Lee
  • Patent number: 7345624
    Abstract: To achieve a purpose of the present invention, a pulse wave radar device related to the present invention modulates a first transmitting pulse and a second transmitting pulse which are separated from each other by a predetermined lapse of time and transmits a transmitting pulse wave and, if a lapse of time from transmission of the transmitting pulse wave corresponding to the first transmitting pulse to outputting of a pulse by the receiving circuit is equal to a lapse of time from transmission of the transmitting pulse wave corresponding to the second transmitting pulse to outputting of a pulse by the receiving circuit, decides that the pulses are a receiving pulse reflected from a target.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: March 18, 2008
    Assignee: TDK Corporation
    Inventors: Tomohiro Honya, Hiroshi Ikeda
  • Publication number: 20070273577
    Abstract: A transmission signal generating unit has a window function calculator that generates a window function that makes all frequencies without a center frequency of an input signal and its adjacent frequencies zero and makes the signal to noise ratio of the center frequency maximum; and a transmission signal generator that generates a transmission signal whose amplitude is modulated in a shape of an envelope curve based on the window function generated by the window function calculator.
    Type: Application
    Filed: May 22, 2007
    Publication date: November 29, 2007
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventor: Mitsuyoshi SHINONAGA
  • Patent number: 7280069
    Abstract: A radar apparatus includes a modulation signal generating unit that generates a modulation signal based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal, a carrier wave generating unit that generates a carrier wave, a modulation unit that generates and outputs a high frequency signal by modulating the carrier wave using the modulation signal, a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna, a detection signal generating unit that generates a detection signal, for measuring a distance to the measured object, based on the trigger signal and the extracted modulation signal, and a pulse width calculating unit that calculates a pulse width of the detection signal.
    Type: Grant
    Filed: December 21, 2004
    Date of Patent: October 9, 2007
    Assignee: TDK Corporation
    Inventors: Tomohiro Honya, Katsuhiko Tomita, Hiroshi Ikeda
  • Patent number: 7265711
    Abstract: A high-frequency oscillator that can tune oscillation characteristics is provided. A high-frequency oscillator includes a Gunn diode serving as a high-frequency oscillation element that generates high-frequency signals, a resonator connected to the Gunn diode, a varactor diode serving as a variable-capacitance element that is disposed on the resonator and changes a resonance frequency, and a bias supply circuit that is connected to the varactor diode and supplies a bias voltage applied in order to change a capacitance. The bias supply circuit includes a trimmable chip resistor serving as a pre-set variable resistor that regulates a bias voltage applied to the varactor diode. By regulating the resistance value of the trimmable chip resistor, it is possible to control the capacitance value of the varactor diode and tune oscillation characteristics to a desired state.
    Type: Grant
    Filed: June 28, 2005
    Date of Patent: September 4, 2007
    Assignee: Kyocera Corporation
    Inventors: Kazuki Hayata, Yuji Kishida
  • Patent number: 7250900
    Abstract: A radar system and method for detecting targets using pulse-compressed signals is disclosed. In one application, the systems and methods can be used to detect one or more relatively small targets whose pulse-compressed signals are masked by the time-sidelobes of a larger target's return signal. The method includes an iterative, detect-and-subtract signal algorithm that processes the post-compressed signal to detect multiple targets. Specifically the processing algorithm operates on the post-compressed signal to identify a point spread function (PSF) that corresponds to the relatively large target. Once identified, the PSF corresponding to the largest target in the post-compressed signal is subtracted from the post-compressed signal to generate a residual signal. This residual signal, in turn, includes the PSFs for the other targets. This process of identifying and subtracting the PSF of the largest target in the residual signal is then repeated until all targets are detected.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: July 31, 2007
    Assignee: Information Systems Laboratories, Inc.
    Inventor: Katsumi Ohnishi
  • Patent number: 7248207
    Abstract: Systems and methods for detecting targets using pulse-compressed radar signals are disclosed. In one application, relatively small targets that are masked by the time-sidelobes of a larger target's return signal can be detected. The methods include a signal expansion type algorithm that is used to process the pulse-compressed return signal. Specifically, a generalized Fourier expansion expression having a summation of PSF terms is used to expand the pulse-compressed signal. Each term represents a respective target and includes a point spread function and a complex coefficient. The signal expansion procedure can be used to determine a set of optimum complex coefficients, with one coefficient for each range bin. Doppler frequency can be used together with range to optimize the complex coefficients. Next, targets are detected by analyzing each range bin to determine whether the corresponding complex coefficient has an absolute magnitude greater than a pre-determined threshold.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: July 24, 2007
    Assignee: Information Systems Laboratories, Inc.
    Inventor: Katsumi Ohnishi
  • Patent number: 7245252
    Abstract: In a method for determining the distance between two transmitting and receiving stations, a transmission signal is generated in each station and is transmitted as a series of microwave pulses having a predefined pulse repetition frequency to the other respective station. The coincidence of pulses of the transmission signal sent by the respective station and the signal received by the station is detected in each station as a coincidence event, and the number of pulses transmitted and received by the respective station at the time of the coincidence event is determined. The distance between the stations is then calculated on the basis of the number of the determined pulses.
    Type: Grant
    Filed: September 8, 2003
    Date of Patent: July 17, 2007
    Assignee: Conti Temic microelectronic GmbH
    Inventors: Udo Knepper, Stefan Rau, Thomas Oexle, Rolf Schuler, Wolfgang Schulter
  • Patent number: 7239268
    Abstract: The number of power amplifiers required to amplify a plurality of transmission signals is reduced by using non-linear transmission lines (NTL) circuits. In general, a “combining” NTL circuit is used to combine the plurality of transmission signals to form a soliton pulse. The soliton pulse is then amplified such that each of its component transmission signals are amplified. A “dividing” NTL circuit is then used to divide the amplified soliton pulse into its component amplified transmission signals. The amplified transmission signals can therefore be transmitted over a communications channel without requiring a separate power amplifier for each.
    Type: Grant
    Filed: September 5, 2002
    Date of Patent: July 3, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Stuart D. Albert, John F. Prorok, Joan Skudera, legal representative, William J. Skudera, Jr., deceased
  • Patent number: 7236120
    Abstract: A non-destructive detection method and system enables detecting a moisture patch located inside a building wall or the like. A transmitter generates a series of ultra-wideband pulses while an ultra-wideband antenna unit, preferably in the form of an antenna array including a plurality of switchable antenna pairs, directs the pulses toward the building structure so that the pulses are reflected therefrom, and receives the reflected pulses. A receiver processes the reflected pulses received by the antenna unit and produces a corresponding output. A controller controls the operation of the transmitter, receiver and antenna unit, and analyzes the output of the receiver for the presence of moisture inside of the building wall.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 26, 2007
    Assignee: United States of America as represented by the Secretary of Commerce, the National Institute of Standards and Technology
    Inventors: William Healy, Eric Van Doorn
  • Patent number: 7233279
    Abstract: In order to provide the method and the device for distance measurement by pulse radar that securely eliminates the false echo from the distance over the detectable limit determined by the pulse generation cycle, the pulse radar comprises the pulse signal sending unit that generates the pulse signals with different cycles at OSC 9a˜9c, switches to the predetermined intervals by OSC switch 10, and sends the pulse signal to targets, the reflected signal receiving unit that receives the reflected signals and stores the data in the RAM 25, the reflected signal data acquisition unit that obtains the data of each reflected signal, and the reflected signal identification unit that compares the intensity of the reflected signals obtained at the same lag time point during a certain time period after sending the pulse signal for reference and identifies the reflected signals of the sent pulse signal for reference.
    Type: Grant
    Filed: December 23, 2004
    Date of Patent: June 19, 2007
    Assignees: Fujitsu Limited, Fujitsu Ten Limited
    Inventors: Masayoshi Moriya, Satoshi Ishii, Tetsuo Seki, Kazuaki Hamada, Kenji Oka, Akihiro Ohta
  • Patent number: 7209074
    Abstract: A radar-based distance measurement apparatus comprises a microwave circuit comprising a frequency generator which produces a microwave frequency signal, the frequency of which is modulated by an amount determined by a modulation signal applied to the frequency generator, a temperature sensor which measures the temperature of at least a part of the microwave circuit, compensating means for processing the output of the temperature sensor to produce a compensated temperature signal using information derived from the drive signal and an echo signal detected by a microwave detector; and a frequency regulating means which is adapted to receive the compensated temperature signal and to regulate the frequency of the signal generated by the frequency generator, thereby at least partially correcting for the effect of changes in temperature of the frequency generator.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: April 24, 2007
    Assignee: TRW Limited
    Inventor: Brian Keith Taylor
  • Patent number: 7199752
    Abstract: A method for reducing the interference between a source transmitting pulses and equipments having nominal bandwidths which are outside the nominal bandwidth of the transmitted pulses, but which respond to sideband energy of the pulses. Phase perturbations are applied to the edges of the pulses produced by the source, to thereby tend to null the sideband energy lying in the nominal bandwidth of the equipments occupying the adjacent nominal bandwidths.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: April 3, 2007
    Assignee: Lockheed Martin Corporation
    Inventor: Richard Wasiewicz
  • Patent number: 7199751
    Abstract: A radar equipment of the present invention amplifies a reception signal with feedback based on the delay amount obtained from the correlation detection result. Accordingly, it becomes possible to maintain the reception signal (demodulated signal) level to a proper level depending on the distance to the target, and accurate measurement can be achieved with high precision. Namely, the reception signal is amplified depending on the distance to the target, and the reception signal level is made within a tolerable input level range of a logic circuit for performing correlation calculation. In particular, during tracking the target, even when a reflected signal is received with abrupt level variation caused by noise or a reflected signal from an object other than the target, incorrect detection of the target can be avoided by disabling the correlation calculation.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: April 3, 2007
    Assignee: Fujitsu Limited
    Inventors: Satoshi Mikami, Kaoru Yokoo, Takayuki Sasaki, Takahiro Suzuki
  • Patent number: 7199747
    Abstract: A method and apparatus for generating short electronic pulses using a modified differential trigger that is partly an analogue sinusoidal voltage and partly a selectable, DC voltage. The differential trigger is applied to a differential base band pulse generator having a NAND gate and AND gate. The trigger is applied to both NAND inputs and to one AND input. The NAND output is applied the other AND input. Such a circuit is an OFF state for all input states. However, as the input switches state, the NAND gate delay causes the AND gate to be ON briefly, generating a short pulse. The timing of this pulse can be controlled by varying the constant DC voltage. By using fast switching SiGe CML gates, short pulses with a controllable time off-set can be generated that are suitable for use in automotive radar applications, using only sub-GHz clocks.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: April 3, 2007
    Assignee: M/A-Com, Inc.
    Inventors: Alan Peter Jenkins, Robert Ian Gresham
  • Patent number: 7190306
    Abstract: The invention relates to a method for detecting the passage by a vehicle of a determined point for monitoring on a road, wherein from a remotely situated location a radar beam is transmitted continuously to the point for monitoring, reflections from the transmitted radar beam are received at the remotely situated location, and it is determined from the received reflections that the vehicle is passing the point for monitoring. The radar beam can herein be transmitted at an acute angle to the travel direction of the passing vehicle. The detection can be used to activate a red-light camera, to measure the speed of the vehicle or measure the traffic intensity, without sensors, for instance induction loops, having to be arranged in the road for this purpose.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: March 13, 2007
    Assignee: Gatsometer B.V.
    Inventor: Theodorus Maria Janssen
  • Patent number: 7167125
    Abstract: A pulse radar system has a high-frequency source, which supplies a continuous high-frequency signal and is connected on the one side with a transmission-side pulse modulator and on the other side with two separately controllable pulse modulators in at least one receive path. Mixers are situated downstream from pulse modulators, respectively. The mixers evaluate a radar pulse reflected by an object together with the signal of the high-frequency source. The pulse radar system allows different modes of operation that may be changed in a simple manner.
    Type: Grant
    Filed: June 21, 2002
    Date of Patent: January 23, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Frank Gottwald, Michael Schlick, Tore Toennesen, Jens Haensel
  • Patent number: 7164382
    Abstract: An on-vehicle radar system capable of detecting a range error from range data based on an echo from a target (6). Range error is detected when amplitudes of beat frequency components in two adjacent range gates are substantially equal. The system includes a transmitting unit (1, 2, 4, 5) for radiating a modulated wave having frequency increasing and decreasing repetitively after pulse modulation, a receiving unit (8, 9, 10, 11, 12) for receiving the echo, and an arithmetic unit (13) for detecting a range error ascribable to aberration of modulation band width due to frequency increase and decrease of transmission wave (W1) by comparing a range corresponding to the range gate with that determined from a frequency difference between transmission wave and echo. The arithmetic unit (13) detects the range error on the basis of frequency difference components having substantially same amplitudes in adjacent range gates.
    Type: Grant
    Filed: March 30, 2006
    Date of Patent: January 16, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Koichi Kai
  • Patent number: 7161526
    Abstract: The present invention relates to an ultrawideband radar. It also relates to a modulator, in particular for switching microwaves over a very short duration. The radar includes a modulator modulating a carrier microwave, this modulator including a microwave mixer means for generating a modulation signal. The microwave enters on one input of the mixer and the modulation signal on the other input of the mixer, the output signal from the mixer being provided to the transmission means of the radar. Advantageously, the modulation signal may be pulsed and of very short duration. A local oscillator, operating as a free oscillator, provides the microwave to be modulated. The invention applies in particular in respect of aiding the parking of motor vehicles. More generally, it applies in respect of all applications which require low-cost high distance resolution radar detection.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: January 9, 2007
    Assignee: Thales
    Inventors: Pascal Cornic, Philippe Laviec, Bernard Liabeuf, Francisco Melero
  • Patent number: 7158077
    Abstract: A radar device is described having an arrangement to generate a carrier signal having a carrier frequency fT, an arrangement to generate pulses having a pulse repetition rate fPW, an arrangement to split the carrier signal between a transmission branch and a reception branch, an arrangement to delay the pulses, an arrangement to mix the carrier signal in the reception branch with a reception signal, and an arrangement to integrate the mixed signal. An arrangement to modulate the carrier signal in the transmission branch with the delayed pulses and an arrangement to alter the delay in the pulses according to a predetermined code are also provided. A method of suppressing interference with the functioning of a radar device is also described.
    Type: Grant
    Filed: December 22, 2001
    Date of Patent: January 2, 2007
    Assignee: Robert Bosch GmbH
    Inventor: Thomas Brosche
  • Patent number: 7151481
    Abstract: A method for detecting targets and determining their distance by means of an HPRF radar system including a transmitter for transmitting bursts having a preselectable number Z of transmission pulses and a preselectable pulse repetition frequency PRF and a receiver for receiving the echo signals. Successive bursts are transmitted with a preselectable time lag, where the time lag corresponds to a preselectable number E of transmission pulses. A data record of Z+E detected signals is generated, where each detected signal consists of superimposed echo signals from different unique distance ranges, each distance range having a number A of distance lines, each line having Z+E distance cells. A target is detected by calculating a Z+E-point fast Fourier transform for each distance line, and determining when the signal amplitude is greater than a preselectable threshold value.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: December 19, 2006
    Assignee: EADS Deutschland GmbH
    Inventors: Andreas Strecker, Andreas Wieszt, Nergess Al-Youssof, Thomas Mahr
  • Patent number: 7151484
    Abstract: A pulse compression processor 20 compressing a modulated pulse signal correlately received by a receiver, includes a coefficient calculator 30 calculating a set of filtering coefficients for converting sampled output signal values outside a vicinity of main-lobe of a compressed pulse signal into zero as well as for minimizing S/N loss in a peak value of the main-lobe, and a pulse compression filter 40 compressing the modulated pulse signal based on the set of the filtering coefficients calculated by the coefficient calculator.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: December 19, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuyoshi Shinonaga, Shinkichi Nishimoto
  • Patent number: 7151483
    Abstract: A system and corresponding method for the concurrent operation of multiple radar systems on a common frequency and in the same geographical area includes a waveform generator that specifies certain operating parameters for the transmitted radar pulses. In a first instance, the carrier frequency can include an offset for each radar system. In a second instance, complementary codes can be used for the radar pulses such that each radar system operates with a unique code for substantially reducing the cross-talk between the radar systems. In another instance, both carrier frequency offset and complementary coded waveforms can be used to increase the number of radar systems that operate concurrently. Carrier frequency offset can also be used to combat range-wrap by using different carrier frequencies for adjacent radar pulses.
    Type: Grant
    Filed: February 4, 2005
    Date of Patent: December 19, 2006
    Assignee: Raytheon Company
    Inventors: Reza M. Dizaji, Richard R. McKerracher, Anthony M. Ponsford
  • Patent number: 7148839
    Abstract: A bistatic radar has a radar transmitter at a first location on a moving platform having a motion and a radar receiver at a second location, remote from the first location. The transmitter illuminates a target along an indirect path with an encoded radar signal. The target reflects the encoded radar signal to the radar receiver. The transmitter concurrently provides the encoded radar signal to the radar receiver along a direct path. The encoded radar signal is radiated at a start time from a central reference point, and contains the first location, the pulse start time, the central reference point and the motion of the moving platform. Bit synchronization codes are also included. The radar receiver receives the encoded radar signal from the radar transmitter along the direct path during a first time interval, and the same encoded radar signal reflected from the target along the indirect path during a second time interval.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: December 12, 2006
    Assignee: Raytheon Company
    Inventor: Pileih Chen
  • Patent number: 7148841
    Abstract: A radar device includes a code generator, a transmission section, a reception section, a delay section, a despreading process section, a correlation value detection section, a target detection section, an estimation section, an acquisition section, and a correction section. The estimation section estimates a reception intensity of a reflection wave from a target located at a first distance on a basis of a detected correlation value. The acquisition section acquires a cross-correlation value between the first distance and a second distance, on a basis of the estimated reception intensity of the reflection wave from the target located at the first distance, a delayed despreading code used to detect a correlation value for the first distance and a delayed despreading code used to detect a correlation value for the second distance. The correction section corrects the correlation value for the second distance on a basis of the cross-correlation value.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: December 12, 2006
    Assignees: Fujitsu Ten Limited, Fujitsu Limited
    Inventors: Kimihisa Yoneda, Masaki Hiromori
  • Patent number: 7145500
    Abstract: A pulse wave radar device controls an amplification degree of a receiving circuit, downward at a time of measuring an object at a short distance immediately after transmission of a transmitting pulse wave and upward, at a time of measuring the object at a long distance, by increasing the amplification degree of the receiving circuit progressively with the lapse of time after the transmission of the transmitting pulse wave.
    Type: Grant
    Filed: August 30, 2005
    Date of Patent: December 5, 2006
    Assignee: TDK Corporation
    Inventors: Hiroshi Ikeda, Hideaki Shimoda, Takeshi Yokoyama
  • Patent number: 7138939
    Abstract: A radar has a transmission section, a reception section that receives a reflected wave of the transmission wave, a transmission switch section, a delay section that delays a predetermined timing, a reception switching section, a difference processing section, and a calculation section. The transmission section switches between a first frequency and a second frequency to transmit a transmission wave having one of the frequencies. The transmission switch section switches between turning-on and turning-off of an operation of the transmission section at the predetermined timing. The reception switching section switches between turning-on and turning-off of an operation of the reception section according to the timing delayed. The difference processing section outputs a difference between the transmission wave and the reflected wave. The calculation section calculates a distance on a basis of a delay amount, when a detection waveform has a difference frequency between the first frequency and the second frequency.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: November 21, 2006
    Assignee: Fujitsu Ten Limited
    Inventor: Kanako Honda