Digital Processing Patents (Class 342/195)
  • Patent number: 7132975
    Abstract: An ultra wideband radar system for detecting moving objects comprising an antenna, which may be scanned in at least one dimension, and a signal processor wherein the signal processor includes a scan combiner that combines scan information in accordance with a candidate trajectory for the moving object. Scans may be combined by integration or filtering. A fast calculation method is described wherein the scans are combined into subsets and subsets are shifted in accordance with the candidate trajectory before further combination. A method is described wherein a region is scanned with an ultra wideband radar, the scan information is combined in accordance with an expected trajectory to enhance the object signal to noise. Further features are described wherein the scan information is combined according to a family of trajectories. A trajectory yielding a potential object detection initiates a further scan combination step wherein the family of trajectories is further resolved.
    Type: Grant
    Filed: May 28, 2004
    Date of Patent: November 7, 2006
    Assignee: Time Domain Corporation
    Inventors: Larry W. Fullerton, James Richards
  • Patent number: 7132974
    Abstract: Methods, systems, and computer program products for storing turbulence radar return data into a three-dimensional buffer. The method involves modeling the radar signal scattering properties of space surrounding the radar/aircraft. Presented turbulent wind variance measurements are compared to predictions of the measurement using the modeled scattering properties, thereby producing more accurate turbulence information for storage into the three-dimensional buffer.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: November 7, 2006
    Assignee: Honeywell International Inc.
    Inventor: Paul E. Christianson
  • Patent number: 7129884
    Abstract: A radar detection technique in a WLAN device can include a short pulse detection technique and a long pulse detection technique that can be performed using multiple receive chains. Short pulse detection is particularly effective when the incoming signal includes one or a limited number of main pulses and some residual pulses. In contrast, long pulse detection is particularly effective when the incoming signal is longer, thereby allowing various characteristics of the incoming signal to be accurately measured.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: October 31, 2006
    Assignee: Atheros Communications, Inc.
    Inventors: Ardavan Maleki Tehrani, Xiaoru Zhang, Paul J. Husted, Jeffrey M. Gilbert
  • Patent number: 7129885
    Abstract: A method of adapting weather radar thresholds is disclosed. The method comprises generating a location from a location sensor, retrieving information representative of a weather type from a database, based on the location, and adjusting, automatically, the threshold for a radar display based on the information.
    Type: Grant
    Filed: July 31, 2003
    Date of Patent: October 31, 2006
    Assignee: Rockwell Collins
    Inventors: Daniel L. Woodell, Roy E. Robertson
  • Patent number: 7121502
    Abstract: A guidance system for guiding each of several projectiles toward a moving target has a platform having a radar system for illuminating the target with a radar signal. Each projectile has a receiver for receiving the radar signal reflected from the target, a transponder for replying to Global Positioning System (GPS) like timing signals from several timing signal sources, and a data link transceiver for establishing a bidirectional data link to the platform. The data link carries the measured frequency shift of the radar signal reflected from the target as measured by the projectile. A computer on the platform computes a relative position of each projectile with respect to the target from tracking the moving target using the radar system and the reply signal from the transponder on each projectile. The data link sends guidance commands from the platform to each projectile to guide the projectile to the target.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: October 17, 2006
    Assignee: Raytheon Company
    Inventors: Kapriel V. Krikorian, Robert A. Rosen
  • Patent number: 7119732
    Abstract: Provided is a bistatic and multistatic system for detecting and identifying a target in close proximity to an orbiting satellite. An electromagnetic fence is established to surround the satellite, using a ground-based communication uplink from a gateway antenna. A contact or breach of the electromagnetic fence by the target is detected by the satellite, or at other sensor locations, and an exact position, range and ISAR image of the target is calculated using scattered RF energy from the fence. Identification data is transmitted to satellite system monitors, whereby the data is used to decide on a corrective course of action.
    Type: Grant
    Filed: December 1, 2005
    Date of Patent: October 10, 2006
    Assignee: Raytheon Company
    Inventors: Juan F. Lam, Theofanis Mavromatis
  • Patent number: 7116267
    Abstract: The invention concerns a method for generating calibration signals for calibrating spatially remote signal branches of antenna systems. In accordance with the invention, a base signal is generated by mean of a timer and is fed to a distributor unit for distribution of the base signal to amplifier circuits on the signal distribution lines respectively allocated to them. At the output of the amplifier circuits, a calibration signal is generated respectively via amplification of the base signal within a specifiable upper amplitude limit and a specifiable lower amplitude limit, which is fed to the respective feed-in point of the signal branch to be calibrated that is allocated to an amplifier circuit.
    Type: Grant
    Filed: January 14, 2004
    Date of Patent: October 3, 2006
    Assignee: EADS Deutschland GmbH
    Inventors: Manfred Schuster, Franz Herrmann
  • Patent number: 7116265
    Abstract: A method for classification of a target object having a periphery comprises the steps of: selecting a plurality of random first chords D1 across the periphery of the target object; measuring each of the first chords D1 to obtain a plurality of first dimensions; computing for each of the first chords D1 a second chord D2 across the periphery thus forming a plurality of D1, D2 pairs of chords; measuring the second chords D2 for all pairs to obtain second dimensions; computing for each of the pairs of first chords D1 and second chords D2 the ratio D1/D2 of the first dimension to the second dimension to obtain a plurality of first values; computing the logarithm of the first values to obtain a plurality of logarithmic values; computing difference values by subtracting the second dimension from the first dimension for each of the pairs; recording the first values, logarithmic values and difference values in histograms; extracting a vertex lists from the histograms; combining one or more of the vertex lists to o
    Type: Grant
    Filed: February 10, 2005
    Date of Patent: October 3, 2006
    Assignee: Raytheon Company
    Inventors: David B. Shu, Cynthia E. Daniell
  • Patent number: 7113130
    Abstract: Systems and methods for determining location by implication are described. A responsive environment includes a location determination method that operates in an area that is only partially instrumented with location-sensing devices. Some of the with location-sensing devices sense location ambiguously. For example, a location-sensing device may be deployed at a boundary between two target objects or areas of interest. The location of the target object, as reported by such devices, is considered ambiguous. While the object or person is known to be in a space, it is not clear which specific space. The location of ambiguously located objects can be disambiguated based on changes in the location of other objects. For example, if a document is placed on a shelf in an office, such action strongly implies that someone is in the office. Therefore, if a person is known to potentially be in the office or the outside hallway, the person's location is changed to be in the office.
    Type: Grant
    Filed: June 30, 2004
    Date of Patent: September 26, 2006
    Assignee: Pitney Bowes Inc.
    Inventors: Deborra J. Zukowski, James R. Norris, Jr., John W. Rojas
  • Patent number: 7109916
    Abstract: In a device for bistatic radar applications, at least two spaced-apart radar sensors having separate carrier-frequency oscillators are provided, which do not require phase synchronization. The pulse modulation is carried out time-synchronously for all transmitter and receiver pairs. The cross-echo signals can be analyzed in an analyzing unit, in which a mixing of the transmitted and received signals takes place.
    Type: Grant
    Filed: January 10, 2003
    Date of Patent: September 19, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Roland Klinnert, Christian Zott
  • Patent number: 7106244
    Abstract: A system and a method for monitoring a freight container are provided. The method includes the steps of generating a resonant spectrum representative of an initial condition of internal surfaces and contents of the freight container, and saving the resonant spectrum for future comparison purposes. The method further includes generating a second resonant spectrum and comparing the second resonant spectrum with the initial resonant spectrum to determine whether there has been any tampering with the freight container. The method also includes identifying the contents of the freight container and generating loading diagrams of the contents and using polarity configuration characteristics of the internal surfaces of said freight container to determine whether the contents have moved or been shifted during transport.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: September 12, 2006
    Assignee: Phalanx Group, LLC
    Inventor: Hsiongwei Hsu
  • Patent number: 7106250
    Abstract: A method for processing a received, modulated pulse (i.e. waveform) that requires predictive deconvolution to resolve a scatterer from noise and other scatterers includes receiving a return signal; obtaining L+(2M?1)(N?1) samples y of the return signal, where y(l)={tilde over (x)}T(l) s+v(l); applying RMMSE estimation to each successive N samples to obtain initial impulse response estimates [{circumflex over (x)}1{?(M?1)(N?1)}, . . . , {circumflex over (x)}1{?1}, {circumflex over (x)}1 {0}, . . . , {circumflex over (x)}1{L?1}, . . . , {circumflex over (x)}1{L}, {circumflex over (x)}1{?1 +(M?1)(N?1)}]; computing power estimates {circumflex over (?)}1(l)=|{circumflex over (x)}1(l)|? for l=?(M?1)(N?1), . . . , L?1+(M?1)(N?1) and 0<??2; computing MMSE filters according to w(l)=?(l) (C(l)+R)?1s, where ?(l)=E[|x(l)|?] is the power of x(l), for 0<??2, and R=E[v(l) vH(l)] is the noise covariance matrix; applying the MMSE filters to y to obtain [{circumflex over (x)}2{?(M?2)(N?1)}, . . .
    Type: Grant
    Filed: September 23, 2004
    Date of Patent: September 12, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Shannon D. Blunt, Karl R. Gerlach
  • Patent number: 7106249
    Abstract: Disclosed is a phase calibration method for inserting a calibration signal (SC) into main signals (SM1 to SMn) of a plurality of branches in turn, estimating the phase characteristic of an analog circuit to which a respective one of the main signals is input and calibrating the phase of each main signal. The method includes steps of outputting a first combined signal obtained by combining output signals from the analog circuits (62a to 62n) in all branches, outputting a second combined signal obtained by combining the main signals in all branches, extracting the calibration signal by removing the second combined signal from the first combined signal in a calibration signal extracting unit (64), estimating the phase characteristics of the analog circuits, to which the main signals having the inserted calibration signal are input, based upon a change in phase of the calibration signal, and subjecting the main signals to phase adjustment having characteristics that are opposite the phase characteristics.
    Type: Grant
    Filed: August 18, 2004
    Date of Patent: September 12, 2006
    Assignee: Fujitsu Limited
    Inventors: Tokuro Kubo, Kazuo Nagatani, Hajime Hamada, Hiroyoshi Ishikawa, Nobukazu Fudaba
  • Patent number: 7106243
    Abstract: A radar receiver on a moving platform images a moving target and non-moving clutter using a single SAR array. The radar receiver converts the radar returns into digital radar returns and motion compensates the digital radar returns with respect to a reference, then applies further phase compensation to obtain an autofocused synthetic aperture image. A plurality of moving target pixels descriptive of the moving target are detected within the autofocused synthetic aperture image. The plurality of moving target pixels are transformed from the autofocused image to the time domain. The time domain moving target data is focused by iteratively applying a phase compensation to the time domain moving target data.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: September 12, 2006
    Assignee: Raytheon Company
    Inventors: Kapriel V. Krikorian, Robert A. Rosen
  • Patent number: 7106247
    Abstract: The present invention relates to a radar level gauge (1) comprising an antenna (2), a tank sealing (3), an electronics unit (4) and a waveguide feed (5) between the electronics unit (4) and the antenna (2). The waveguide (5) is essentially straight and has a 90°-symmetric cross section and is further arranged to accommodate two essentially orthogonal waveguide modes. The waveguide (5) further has a length (I) below two times the range resolution of said radar level gauge (1). The present invention further relates to a method for improved radar level gauging using a radar level gauge (1) as above.
    Type: Grant
    Filed: October 20, 2003
    Date of Patent: September 12, 2006
    Assignee: SAAB Rosemount Tank Radar AB
    Inventor: Kurt Olov Edvardsson
  • Patent number: 7098841
    Abstract: A unit is described that is configured to control detonation of a munition such that the munition is detonated at a desired altitude. The unit includes a radar transmitter, a radar receiver that includes a radar range gate, and a sequencer. The sequencer is configured to receive a detonation altitude and set the range gate based on the received detonation altitude. The unit is also configured to output a detonation signal when radar return pulses received by the receiver aligned with gate delay pulses from the range gate.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: August 29, 2006
    Assignee: Honeywell International Inc.
    Inventors: James R. Hager, Glen Backes, Timothy J. Reilly
  • Patent number: 7095358
    Abstract: A target is detected under a forest canopy or other elevated clutter where the target is obscured by the elevated clutter. Radar returns reflected from the target on the surface, combined with those from the elevated clutter are digitized. Motion compensation is performed for the radar returns with respect to the target to obtain a focused first synthetic aperture image of the target. Next, the radar returns are motion compensated with respect to the elevated clutter at various heights above the surface to obtain images of the elevated clutter. The elevated clutter within the images at the various heights above the surface is identified and coherently subtracted from the original synthetic aperture images.
    Type: Grant
    Filed: November 23, 2004
    Date of Patent: August 22, 2006
    Assignee: Raytheon Company
    Inventors: Kapriel V. Krikorian, Robert A. Rosen
  • Patent number: 7095357
    Abstract: A method and apparatus comprising four co-planar metallic plates, two for transmission and two for reception, in which each pair of co-planer metallic plates of overall length L are disposed either in direct contact with the earth or are elevated a distance Z above the earth to form a capacitor comprising the metallic plates and the earth if Z=0 or if Z>0, the metallic plates, the air space and the earth. A short voltage or current pulse is applied to this capacitor via a transformer in which the magnetic flux current is adjusted to provide a pulse of the desired frequency composition in the air-earth propagation medium. This results in a frequency controlled pulse of electromagnetic radiation into the targeted subterranean geology at frequencies <500 KHZ.
    Type: Grant
    Filed: May 14, 2003
    Date of Patent: August 22, 2006
    Inventor: Joseph Ralph Johler
  • Patent number: 7095359
    Abstract: An ice thickness/drifting velocity observation of sea ice by using an ice thickness measurement sonar and a current meter moored into the sea and a sea ice observation by a high-resolution airborne SAR are synchronously performed, a correlation between a draft profile of sea ice passing over the sonar and an SAR backscattering coefficient profile is calculated, and an ice draft of desired sea ice is calculated from the relational expression and an SAR backscattering coefficient. As the SAR backscattering coefficient, a backscattering coefficient of L-band HV polarization may be used. A backscattering coefficient of X-band VV polarization is preferably used as the SAR backscattering coefficient to detect thin ice having a thickness of not more than approximately 10 cm.
    Type: Grant
    Filed: October 31, 2003
    Date of Patent: August 22, 2006
    Assignees: National Institute of Informantion and Communications Technology, Incorporated Administrative Agency, Japan Aerospace Exploration Agency, Agency of Industrial Science and Technology
    Inventors: Takeshi Matsuoka, Seiho Uratsuka, Makoto Satake, Tatsuharu Kobayashi, Akitsugu Nadai, Toshihiko Umehara, Hideo Maeno, Hiroyuki Wakabayashi, Yasushi Fukamachi, Fumihiko Nishio
  • Patent number: 7095364
    Abstract: An altitude measuring system and method for aircraft is provided. The altitude measuring system includes altitude sensors for providing data to an altitude processing unit. The altitude processing unit spatially averages each output to determine a mean altitude. Pitch and roll are accounted for by correction. A method of determining aircraft altitude from a plurality of altitude sensors includes receiving altitude sensor data from each sensor and spatially averaging the altitude sensor outputs to determine aircraft altitude. A method of estimating the maximum height of an ocean surface includes receiving a plurality of altitude sensor data and determining a mathematical description of the ocean surface from the sensor data. The maximum probable wave height of the ocean surface is estimated from the mathematical description. From the maximum wave height, a cruise altitude may be determined.
    Type: Grant
    Filed: August 4, 2005
    Date of Patent: August 22, 2006
    Assignee: The Boeing Company
    Inventors: Blaine K. Rawdon, Zachary C. Hoisington
  • Patent number: 7091902
    Abstract: The systems and methods according to this invention disclose that coverage for an ad hoc sensor network is fundamental to the deployment and utilization of such networks. The invention provides a method which characterizes the coverage of an ad hoc sensor network by defining a sensing field over the space within which the physical phenomenon of interest occurs. Its value at any given point reflects the ability of the sensor network to estimate the phenomenon and/or event, of interest at this point. A statistical method is presented to determine such a field based on sensor layouts and sensor models. The system and methods of the invention define well monitored regions and sensor holes, information that can be used to characterize the quality of service that the network provides for different applications. A graphical user interface may be provided to display this information to the user for monitoring in health management of the network.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: August 15, 2006
    Assignee: Xerox Corporation
    Inventors: Juan Liu, Xenofon Koutsoukos
  • Patent number: 7091901
    Abstract: A traffic radar captures the patrol vehicle return signal by saving the patrol return when the radar system is placed in a standby state. If the radar is in standby for more than a predetermined period of time before reentering a transmitting mode, the system searches for a new patrol signal within a speed window around the saved patrol signal speed. If the radar is in standby for less than the predetermined period of time, the system initially searches for a new patrol signal over a range that excludes an interval around the saved patrol signal speed. If the new patrol signal is not found, then in a subsequent search the interval is included in the searched spectrum.
    Type: Grant
    Filed: March 9, 2005
    Date of Patent: August 15, 2006
    Assignee: Kustom Signals, Inc.
    Inventors: Maurice E. Shelton, Steven F. Hocker
  • Patent number: 7081850
    Abstract: A general purpose system and method for transmitting and coherently detecting UWB waveforms is predicated on the formation of conjugate pair of UWB waveforms. The in-phase and conjugate quadrature waveforms are orthogonal to each other and have the same power spectrum so that when squared and added they sum to the modulation envelope of the waveforms. By defining the waveform pair in this manner, a relatively simple and inexpensive transceiver can be used to transmit and receive the waveforms and yet preserve maximum range resolution and recover all possible energy in the returned waveforms. The transceiver transmits the in-phase UWB waveform and the conjugate quadrature UWB waveform with either a known time delay or orthogonal polarization relation. The time delay may be varied to suppress aliased return signals.
    Type: Grant
    Filed: June 3, 2004
    Date of Patent: July 25, 2006
    Assignee: Raytheon Company
    Inventor: James G. Small
  • Patent number: 7081849
    Abstract: The subject process accepts the data from a kinematic tracker and maps them to fuzzy set conditions. Then using a multitude of defined membership functions and fuzzy logic gates, generates sensor mode control rules. It does this for every track and each sensor. The Rule with the best score becomes a sensor cue, which is used to place the sensor into one of three operating modes. If there are ambiguities do to one or more vehicles coming in to close proximity to each other process compares radar profiles of vehicle to those stored in an “on the fly” data base to eliminate the ambiguities.
    Type: Grant
    Filed: October 28, 2004
    Date of Patent: July 25, 2006
    Assignee: Northrop Grumman Corporation
    Inventors: Noel Collins, Kirk D. Moore, Donald R. McMillan
  • Patent number: 7081848
    Abstract: A method for active ranging, such as radar, which sequentially transmits pulses of mutually different waveforms. Receive processing is performed concurrently for all the transmitted waveforms during each interpulse interval, to thereby provide range ambiguity resolution together with continuous return signal integration.
    Type: Grant
    Filed: November 18, 2004
    Date of Patent: July 25, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Gregory F. Adams
  • Patent number: 7079070
    Abstract: Disclosed is an autonomous radar guidance of an otherwise radar-directed projectile (RDP). The preferred embodiment uses an inexpensive radar receiver with an inexpensive slow wave antenna, placed internally in a gun projectile, and on the surface of the projectile, respectively. The receiver detects the angle and range of the target relative to the body coordinates of the projectile. The radar receiver operates as a bistatic radar apparatus with the primary illumination emanating from the fire control radar directing the fire of the gun. When integrated with an on-board trajectory correcting system, such as divert thrusters of miniature proportions, the projectile autonomously refines its otherwise ballistic trajectory to the target. The trajectory refinements produce improved kills per round, with the potential for reducing the ammunition expended and time-loading on the fire control system and its guns.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: July 18, 2006
    Assignee: Alliant Techsystems Inc.
    Inventors: Knut Kongelbeck, Ada Mendelovicz
  • Patent number: 7075479
    Abstract: A method and a device for measuring, by means of radar, in an enclosed space (1) in which a liquid (2) is stored, the level of a liquid surface (6), where the method involves the steps: a radar unit (3) mounted on the roof (4) of the enclosed space transmits a microwave signal downwards into the enclosed space (1) through a waveguide (7) that communicates with the liquid in the enclosed space; the transmitted microwave signal's polarization alters according to a predetermined time sequence in such a way that the signal is propagated alternatively at least in a first and a second plane of polarization; the signal transmitted in the first plane of polarization is reflected by the liquid surface (6) back to the radar unit (3); the signal in the second plane of polarization is reflected by at least one reference transmitter placed at a known distance from the radar unit; a calculating unit calculates the level of the liquid surface based partly on the propagation time for the microwave signal, i.e.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: July 11, 2006
    Assignee: Saab Rosemount Tank Radar AB
    Inventor: Agne Andersson
  • Patent number: 7075476
    Abstract: A network, sensor and method are provided that utilize the capabilities of impulse radio technology to help monitor and/or control the environment within a building. In particular, the network includes a sensor attached to a first impulse radio unit that is capable of transmitting an impulse radio signal containing sensor related information to a second impulse radio unit. The second impulse radio unit is attached to a control station that uses the sensor related information (e.g., environmental related information, safety related information or surveillance related information) to monitor and/or control the environment within a building. In one aspect of the present invention, the control system can better control and monitor the environment within the building because the sensor may be moved around within the building and reference impulse radio units may interact with the first impulse radio unit to enable the determination of the current position of the sensor.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: July 11, 2006
    Assignee: Time Domain Corp.
    Inventor: Jonnathan H. Kim
  • Patent number: 7068212
    Abstract: A series of police Doppler single mode radars and a multimode police Doppler radar, all with direction sensing capability are disclosed. A quadrature front end which mixes received RF with a local oscillator to generate two channels of Doppler signals, one channel being shifted by an integer multiple of 90 degrees in phase relative to the other by shifting either the RF or the local oscillator signal being fed to one mixer but not the other. The two Doppler signals are digitized and the samples are processed by a digital signal processor programmed to find one or more selected target speeds. Single modes disclosed are: stationary strongest target; stationary, fastest target; stationary, strongest and fastest targets; moving, strongest, opposite lane; moving, strongest, same lane; moving, fastest, opposite lane; moving, fastest and strongest, opposite lane; moving, fastest, same lane; moving fastest and strongest, same lane.
    Type: Grant
    Filed: November 10, 2003
    Date of Patent: June 27, 2006
    Assignee: Applied Concepts, Inc.
    Inventors: John L. Aker, Robert S. Gammenthaler
  • Patent number: 7068210
    Abstract: A position-adaptive radar method and device for small UAV platforms capable of detecting “leakage signals” that, for example, propagate between two buildings or “leak through” penetrable surfaces such as walls or layers of the ground. The position-adaptive radar comprises a monostatic radar receiver that measures and processes leakage signals and then “self adapts” in position to establish line-of-sight between a mini-UAV platform and an obscuration channel that propagates the leakage signal. This allows a mini-UAV platform to process signals in real-time while gathering intelligence information and locating objects-of-interest that may be embedded within an obscuration channel.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: June 27, 2006
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Atindra K. Mitra, Krishna Pasala
  • Patent number: 7068214
    Abstract: A transmission wave is transmitted to a target from a transmission section. A receiving section receives a wave reflected from the target as a received wave. A conversion section converts a time difference between the transmission time at which a transmission wave is transmitted and the receiving time at which a received wave is received in to a voltage. The thus-obtained voltage is subjected to analog-to-digital conversion by means of a processing circuit, whereby a distance is computed.
    Type: Grant
    Filed: February 18, 2004
    Date of Patent: June 27, 2006
    Assignee: Fujitsu Ten Limited
    Inventors: Etsuo Kakishita, Kimihisa Yoneda
  • Patent number: 7068209
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. In one embodiment, the scan strategy may be computed to operate in a manner cognizant of on-board active jammers, optimizing the jammer band and intercept band performance. The additional inputs for this task are a jammer band assignment table, and a blanking assignment table. The capability to generate “dry” (no jam) and “wet” (jamming) scan strategies for an emitter set is provided, with separate intercept rules for each.
    Type: Grant
    Filed: September 30, 2003
    Date of Patent: June 27, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 7064704
    Abstract: A radar transmits electromagnetic energy in pulse repetition intervals and receives reflections from objects in range gates including Doppler filters. The radar approves desirable ambiguous echoes and suppresses ambiguous echoes of no interest or that interfere with the radar's display. The radar frequency varies according to a staggered or wobbling pattern. The ambiguous echoes produce one pulse in the range gates within a predetermined number of periods. The Doppler filter works with an impulse function response that includes a small number of samples. The Doppler filter, during the predetermined number of periods, gives rise to independent samples from reflectors within the radar's unambiguous range. When the independent samples exceed the small number of samples, the radar approves the ambiguous echo. Otherwise, it is suppressed. In this way, ambiguous echoes are prevented from interfering with the reception or display of echoes. The suppression of asynchronous interferences can be made easier.
    Type: Grant
    Filed: April 30, 2004
    Date of Patent: June 20, 2006
    Assignee: SAAB AB
    Inventor: Bengt Bergkvist
  • Patent number: 7061423
    Abstract: In a police radar detector, a sweep signal defines at least one first sweep signal and at least one second sweep signal with the at least one second sweep signal being seamlessly inserted into the first sweep signal so that the first sweep signal is interrupted during the second sweep signal and restored after completion of the second sweep signal so that the first sweep signal can be continued. The frequencies swept by the at least one second sweep signal are thus overswept. By assigning the frequencies swept during the at least one first sweep to the radar bands of interest and the frequencies swept during the at least one second sweep to the frequencies used in the POP mode of operation by police radar, the short bursts of energy used in the POP mode can be detected.
    Type: Grant
    Filed: June 22, 2004
    Date of Patent: June 13, 2006
    Assignee: Valentine Research, Inc.
    Inventors: Michael David Valentine, Gary Edward Carrelli, Stephen Ray Scholl
  • Patent number: 7061424
    Abstract: The present invention provides a radar device mounted on a moving object that moves along a continuous plane, having (1) a transceiver part for transmitting a signal having a main lobe in the direction of the movement of the moving object and a side lobe directed towards the continuous plane, that receives a first reflection signal from a target in the direction of the main lobe and a second reflection signal from the continuous plane in the direction of the side lobe, and (2) control processing means for detecting the frequency of a beat signal of the second reflection signal received by the transceiver part and the signal emitted by the transceiver part and for detecting information correlated to the attitude of the radar device with respect to the continuous plane based on that frequency. This enables detection of changes of mounting attitude for the moving object without requiring additional hardware.
    Type: Grant
    Filed: January 18, 2002
    Date of Patent: June 13, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Kuroda, Kazuaki Takano, Fumihiko Okai
  • Patent number: 7057550
    Abstract: A system and method for calibrating a vehicular traffic surveillance Doppler radar are disclosed. In one embodiment, a modulation circuit portion generates double-modulated FM signals. An antenna circuit portion transmits the double-modulated FM signals to a target and receives reflected double-modulated FM signals therefrom. A calibration circuit portion responds to the reflected double-modulated FM signals by sending a calibration signal to the modulation circuit. The calibration signal is indicative of a relationship between a first range measurement derived from phase angle measurements associated with the reflected double-modulated FM signals and a second range measurement derived from speed and time measurements associated with the reflected double-modulated FM signals.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: June 6, 2006
    Assignee: Applied Concepts, Inc.
    Inventor: John L. Aker
  • Patent number: 7053821
    Abstract: Adaptive broadcast radar systems and methods for tracking targets are disclosed. In one embodiment, a method for formatting received data within an adaptive broadcast radar system having a transmitter comprising sub-apertures and a receiver comprising sub-apertures is disclosed. The data is received at the receiver. The method includes providing an estimate for a delay of scattered signal components within the received data. The method also includes generating an index for the estimate. The index may include a transmitter element number and a receiver element number. The method also includes generating a data quad for the index. The method also includes estimating a measurement covariance and a weight vector for the data quad. The data quad is reformatted with the measurement covariance and the weight vector.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: May 30, 2006
    Assignee: Lockheed Martin Corporation
    Inventor: Robert D. Budic
  • Patent number: 7053820
    Abstract: Generating an image matrix includes accessing a round-trip time matrix for a space having points. The round-trip time matrix describes an estimated round-trip time for a signal to travel from a transmit antenna, to a point, and to a receive antenna. Signals reflected from an object of the space are received at the receive antennas. The following are repeated for at least a subset of the points to generate an image matrix: select a point of the subset of points; for each receive antenna, establish a waveform of a signal received by a receive antenna and identify a waveform value of the established waveform that corresponds to the selected point according to the round-trip time matrix; and combine the waveform values for the selected point to yield an image value for the selected point. The image matrix is generated from the image values.
    Type: Grant
    Filed: May 5, 2004
    Date of Patent: May 30, 2006
    Assignee: Raytheon Company
    Inventors: Vernon R. Goodman, David M. Shifrin, Timothy R. Holzheimer
  • Patent number: 7053817
    Abstract: A target determination apparatus includes a reception unit, a judgment unit, and a determination unit. The reception unit receives a reflection wave from a target. The judgment unit judges as to whether or not a fluctuation state of reception intensity of the reflection wave with time corresponds to a distinction state occurring when the target is a predetermined type, on the basis of information concerning the reception intensity of the reflection wave. The determination unit determines type of the target on the basis of judgment result of the judgment unit.
    Type: Grant
    Filed: May 27, 2004
    Date of Patent: May 30, 2006
    Assignees: Fujitsu Ten Limited, Fujitsu Limited
    Inventors: Masao Nakano, Etsuo Kakishita
  • Patent number: 7053814
    Abstract: An apparatus for preparing a RF radar transmit waveform and for decoding RF return waveforms comprising: a RF-lightwave encoder and a decoding preprocessor to phase-encode the RF radar transmit waveform and partially decode the return signal, the encoder including switched optical delay lines for producing desired RF phase shifts, and the decoding preprocessor including a tapped optical delay line and optical delay lines that counteract the delays imposed by the delay lines of the encoder, wherein the RF-lightwave encoder and the decoders allow shorter compressed pulses and larger pulse-compression ratios to be achieved than can be obtained using conventional electronic approaches. Wideband transmit waveforms can be generated due to the use of the switched optical delay lines and, unlike prior art approaches, is not restricted to single-frequency waveforms. The taps can be weighted to accomplish objectives such as reduction of side lobes in the compressed pulse.
    Type: Grant
    Filed: January 15, 2004
    Date of Patent: May 30, 2006
    Assignee: HRL Laboratories, LLC
    Inventor: Daniel Yap
  • Patent number: 7053819
    Abstract: To achieve a purpose of the present invention, a pulse wave radar device related to the present invention modulates a first transmitting pulse and a second transmitting pulse which are separated from each other by a predetermined lapse of time and transmits a transmitting pulse wave and, if a lapse of time from transmission of the transmitting pulse wave corresponding to the first transmitting pulse to outputting of a pulse by the receiving circuit is equal to a lapse of time from transmission of the transmitting pulse wave corresponding to the second transmitting pulse to outputting of a pulse by the receiving circuit, decides that the pulses are a receiving pulse reflected from a target.
    Type: Grant
    Filed: October 7, 2005
    Date of Patent: May 30, 2006
    Assignee: TDK Corporation
    Inventors: Tomohiro Honya, Hiroshi Ikeda
  • Patent number: 7049999
    Abstract: A modulation circuit for a traffic surveillance Doppler radar system is disclosed. In one embodiment, the modulation circuit is utilized in a vehicular traffic surveillance Doppler radar system that processes a reflected double-modulated FM signal to determine a target range based upon a phase angle signal differential associated with the target. The modulation circuit may include a digital-to-analog (D/A) converter/voltage regulator/oscillator arrangement or a D/A converter/varactor device/oscillator arrangement. The modulation circuit generates a double-modulated FM signal based upon a frequency versus voltage characteristic associated with the oscillator.
    Type: Grant
    Filed: February 16, 2005
    Date of Patent: May 23, 2006
    Assignee: Applied Concepts, Inc.
    Inventor: John L. Aker
  • Patent number: 7050000
    Abstract: An exemplary radar system includes a waveform generator that generates a control waveform. An in-phase and quadrature modulator receives the control waveform from the waveform generator and in turn generates a waveform output that is amplified by a power amplifier before being transmitted from an antenna.
    Type: Grant
    Filed: August 19, 2003
    Date of Patent: May 23, 2006
    Assignee: Northrop Grumman Corporation
    Inventors: Garth Ernest Weals, Yair Alon, Fred William Erickson
  • Patent number: 7046187
    Abstract: An active protection system comprising an ultrawideband radar for threat detection, an optical tracker for precision threat position measurement, and a high powered laser for threat kill or mitigation. The uwb radar may use a sparse array antenna and may also utilize Doppler radar information. The high powered laser may be of the optically pumped solid state type and in one embodiment may share optics with the optical tracker. In one embodiment, the UWB radar is used to focus the high power laser. Alternative interceptor type kill mechanisms are disclosed. In a further embodiment, the kill mechanism may be directed to the source of the threat.
    Type: Grant
    Filed: November 17, 2004
    Date of Patent: May 16, 2006
    Assignee: Time Domain Corporation
    Inventors: Larry W. Fullerton, Mark D. Roberts, James L. Richards
  • Patent number: 7046186
    Abstract: The invention relates to an IFF apparatus for ground applications, which comprises: (a) an encoder for forming an interrogating or response sequence of pulses, and conveying the same to a UWB transmitter; (b) an UWB transmitter for getting said interrogating or response sequence of pulses, forming a corresponding interrogating or response signal of a sequence of UWB pulses, and transmitting the same via a UWB transmitting antenna; (c) a plurality of UWB receiving antennas, disposed away one from the other, for receiving either an interrogating signal or a response signal sent by another IFF apparatus; (d) a decoder for getting from at least one of said UWB receiving antennas received signals, decoding the same, comparing the decoded signal with a bank of pre-stored signals, and determining whether a received signal is an interrogating or response signal; and (e) a processing unit for, upon receipt of a signal of response to an interrogation signal sent by the present IFF apparatus, calculating the location of
    Type: Grant
    Filed: March 9, 2004
    Date of Patent: May 16, 2006
    Assignee: Rafael-Armament Development Authority, Ltd.
    Inventors: Avner Rosenberg, Alon Deutsch
  • Patent number: 7046189
    Abstract: A fill level measuring device for measuring a fill level of a fill substance in a container and a method for fill level measurement using this fill level measuring device are provided. The fill level measuring device can perform fill level measurements upon re-start immediately on its own and reliably, and includes: at least one antenna, which issues transmitted signals (S) and receives echo signals (E); a signal processor, which serves for deriving from the received echo signals (E) an echo function containing the amplitudes (A) of the echo signals (E) as a function of travel time; a memory for storing data in a table whose columns serve for storing the echo functions in the columns in a sequence which corresponds to the fill levels associated with the individual echo functions; and an evaluation unit, which accesses the table for determining the fill level.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: May 16, 2006
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Dietmar Spanke, Marc Baret, Edgar Schmitt, Yong Jin
  • Patent number: 7046188
    Abstract: Systems and methods of tracking a beam-aspect target are provided. In embodiments, a target is tracked with a Kalman filter while detections are received. After a detection is missed, the Kalman filter may be concurrently propagated with a blind-zone particle filter until a probability that the target is in a blind zone exceeds a threshold. When the probability exceeds the threshold, the Kalman filter may refrain from further propagating. After a gated detection is received, the blind-zone particle filter and an unrestricted-zone particle filter may be concurrently propagated while a probability that the target is in an unrestricted zone exceeds a threshold. The system may return to tracking with the Kalman filter when a covariance of the unrestricted-zone particle filter falls below a predetermined covariance.
    Type: Grant
    Filed: August 14, 2003
    Date of Patent: May 16, 2006
    Assignee: Raytheon Company
    Inventors: David A. Zaugg, Alphonso A. Samuel, Donald E. Waagen, Harry A. Schmitt
  • Patent number: 7042389
    Abstract: A device including a radar and a camera for detecting an object located in front of an automobile is mounted on the automobile. The radar detects a distance from the automobile to the front object, and the camera takes an image of the object. When the object such as a preceding vehicle moves out of a region detectable by the radar while remaining in a region covered by the camera, a present distance to the object is calculated based on the distance previously detected by the radar and memorized in a memory and a present object image taken by the camera. More particularly, the present distance is calculated by multiplying the memorized distance by a ratio of an object size in the memorized image to an object size in the present image.
    Type: Grant
    Filed: April 6, 2005
    Date of Patent: May 9, 2006
    Assignee: DENSO Corporation
    Inventor: Noriaki Shirai
  • Patent number: 7040570
    Abstract: Applicants' ATR system is weather-agile because it is comprised of a primary target sensing means that is capable of surveilling the target scene in foul or fair weather, and a secondary target sensing means that is also capable of sensing targets in various weather. The primary and secondary sensing means communicate through a control center so that ultimately, among several weapons available, the most strategically located and equipped weapon is activated for the destruction of a selected target, given the weather. The control center accomplishes the communication by receiving the sensed target signature from the primary sensing means, processing the signature using database already resident in the center and transmitting the processed target signature to the weapon possessing the greatest potential for successfully destroying the target.
    Type: Grant
    Filed: September 29, 2003
    Date of Patent: May 9, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: S. Richard F. Sims, William C. Pittman
  • Patent number: 7038612
    Abstract: A Synthetic Aperture Radar (SAR) avoids the need for an INS/GPS by focusing a SAR image having discernible features and a center. The image is formed from digitized returns, each of the digitized returns having a phase and an amplitude. The focusing steps of an algorithm processing the digitized returns include: computing a coarse range and coarse range rate of the center of the image, motion compensating the digitized returns, converting the digitized returns in polar format into an orthogonal Cartesian coordinate system, autofocusing the image data to obtain a focused image, performing a Fourier transform to obtain a focused image described by the returns, computing an estimated fine range and fine range rate from features contained within the focused image, and converging the fine range and fine range rate within the orthogonal Cartesian coordinate system for use within the azimuth and range coordinate system and motion compensating the digitized returns.
    Type: Grant
    Filed: August 5, 2003
    Date of Patent: May 2, 2006
    Assignee: Raytheon Company
    Inventors: James G. Chow, Robert A. Rosen, Kapriel V. Krikorian