Digital Processing Patents (Class 342/195)
  • Patent number: 7196657
    Abstract: A radar system that utilizes predetermined, pseudorandom, or random waveforms that may be substantially matched to the impulse response of the radar and any surrounding clutter such that the signal-to-clutter ratio may be optimized and/or such that specific targets may be identified and/or classified.
    Type: Grant
    Filed: March 8, 2005
    Date of Patent: March 27, 2007
    Assignee: The Ohio State University
    Inventor: Eric K. Walton
  • Patent number: 7196658
    Abstract: A conventional waveform generation circuit was required to increase a number of bits or a sampling rate for a D/A converter to enhance a precision of waveform shaping, and had a problem that a cost was increased. Therefore, as a method for enhancing the precision of waveform shaping, a quantization error of an output waveform is made smaller by controlling an output time interval of an output value from a D/A converter so as to make a difference in an output voltage between target waveform and output waveform smaller. As a result, even if the D/A converter has a small number of bits, the waveform can be generated at high precision. Also, this waveform generation method may be applied to modulation control of a radar apparatus, as a result, constituting a small and inexpensive modulation circuit for an oscillator.
    Type: Grant
    Filed: August 25, 2003
    Date of Patent: March 27, 2007
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Shigeho Inatsune
  • Patent number: 7193557
    Abstract: Tracking objects by receiving a dataframe from a detection sensor device, the dataframe containing a timestamp and data corresponding to each detected object, generating new observation nodes for each detected object, propagating group track state parameters to obtain posterior observable positions and projecting them onto the received dataframe, generating gates for the posterior observable positions and projecting them onto the received dataframe, determining feasible track node and feasible observation node assignments based on the proximity of the new observation nodes to the gates, updating track node state parameters and corresponding scores, performing a multi-frame resolution algorithm to resolve group track nodes into subtrack nodes, determining a set of feasible composite assignments for composite sets of track nodes and observation nodes, updating track node state parameters and corresponding scores, and determining a selected set of joint assignments based on the feasible composite assignments and
    Type: Grant
    Filed: April 29, 2004
    Date of Patent: March 20, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: Michael A Kovacich, Thomas R Casaletto
  • Patent number: 7193556
    Abstract: A system for measuring a position and orientation of an object in flight relative to a reference coordinate system is provided.
    Type: Grant
    Filed: February 2, 2004
    Date of Patent: March 20, 2007
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Carlos M. Pereira, Jahangir S. Rastegar
  • Patent number: 7193558
    Abstract: An adaptive radar processing system includes an antenna array for transmitting a radar signal and for receiving a return radar signal, and a signal processor programmed with an enhanced FRACTA algorithm (FRACTA.E). The basic FRACTA algorithm is enhanced to FRACTA.E with (any or all of) five enhancements, versions 1–5. Version 1 is a stopping criterion, for censoring samples, that is adaptive to a radar return data set. The inclusion of a stopping criterion improves the computational speed of FRACTA.E thereby improving its efficiency. Version 2 uses global censoring. Version 3 uses fast reiterative censoring. Version 4 uses segmenting of data vectors for AMF application. Version 5 uses Knowledge-aided covariance estimation (KACE) to reduce the required sample support that may be necessary in non-homogeneous environments, providing substantially the same level of detection performance with considerably less training data.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 20, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Karl R. Gerlach, Shannon D. Blunt
  • Patent number: 7190304
    Abstract: A method for intercepting and a defeating rocket propelled grenade (RPG) which includes the steps of detecting a thermal signature from a launch of the RPG; and cueing a narrow beam radar which locates the RPG and develops a ballistic solution and target intercept point for intercepting the PPG with an intercept vehicle.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: March 13, 2007
    Assignee: Bae Systems Information and Electronic Systems Integration Inc.
    Inventor: Mark A. Carlson
  • Patent number: 7190306
    Abstract: The invention relates to a method for detecting the passage by a vehicle of a determined point for monitoring on a road, wherein from a remotely situated location a radar beam is transmitted continuously to the point for monitoring, reflections from the transmitted radar beam are received at the remotely situated location, and it is determined from the received reflections that the vehicle is passing the point for monitoring. The radar beam can herein be transmitted at an acute angle to the travel direction of the passing vehicle. The detection can be used to activate a red-light camera, to measure the speed of the vehicle or measure the traffic intensity, without sensors, for instance induction loops, having to be arranged in the road for this purpose.
    Type: Grant
    Filed: February 18, 2005
    Date of Patent: March 13, 2007
    Assignee: Gatsometer B.V.
    Inventor: Theodorus Maria Janssen
  • Patent number: 7187321
    Abstract: Occurrence of interference is detected using sampled amplitude data obtained by oversampling a beat signal. It is detected by comparing the absolute value (|VD|) of variation in the sampled data with a threshold value (TH). When interference occurs, a wideband signal is superposed on the beat signal, and this disturbs the signal waveform of the beat signal to drastically varies its amplitude. Therefore, occurrence of interference can be detected without fail regardless of the scheme on which a radar as the source of an interference wave is based and even when the amplitude of the interference wave is low. In addition, when low-frequency noise is superposed on the beat signal, erroneous detection of occurrence of interference can be prevented.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: March 6, 2007
    Assignee: Denso Corporation
    Inventors: Yuu Watanabe, Kazuma Natsume
  • Patent number: 7187320
    Abstract: A target tracking arrangement predicts the state of a target. The predictor may be a Kalman filter. In the presence of a target which is maneuvering, the prediction may be in error. A maneuver detector is coupled to receive residuals representing the difference between the predictions and the target state. The maneuver detector is matched to the predictor or Kalman filter to thereby tend to reduce the undesirable effects of system noise. The matching may be of the frequency response.
    Type: Grant
    Filed: August 27, 2004
    Date of Patent: March 6, 2007
    Assignee: Lockheed Martin Corporation
    Inventor: Robert E. Yang
  • Patent number: 7183967
    Abstract: An airborne network configured to simultaneously transmit video imagery for battle damage indication from multiple airborne missiles to multiple tactical airborne non-launch aircraft.
    Type: Grant
    Filed: December 15, 2003
    Date of Patent: February 27, 2007
    Assignee: Rockwell Collins, Inc.
    Inventors: Richard S. Haendel, Gary C. Waller
  • Patent number: 7183963
    Abstract: An inspection system uses microwave radiation to capture a microwave image of a transportable item. The system includes a transmit scanning panel including a transmit array of transmit antenna elements, each being programmable with a respective phase delay to direct a transmit beam of microwave radiation toward a target of the transportable item for transmission of the microwave radiation through the target. The system further includes a receive scanning panel including a receive array of receive antenna elements, each being programmable with a respective phase delay to receive a receive beam of microwave radiation from the target. A processor measures the amplitude and phase of the microwave radiation in the receive beam to determine a relative value of a pixel within the microwave image of the transportable item based on a reference value of the pixel.
    Type: Grant
    Filed: March 24, 2005
    Date of Patent: February 27, 2007
    Assignee: Agilent Technologies, Inc.
    Inventors: Gregory Steven Lee, Robert C. Taber, Izhak Baharav
  • Patent number: 7180442
    Abstract: A method of identifying an unknown target comprising creating a density function of cepstral coefficients for a known target; receiving a signal from the unknown target; transforming the signal from a time spectrum to a frequency spectrum using a Fourier transform; transforming the frequency spectrum to a cepstrum; creating a density function of cepstral coefficients for the unknown target; and comparing the density function of the unknown target with the density function of the known target.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 20, 2007
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Thach N. Nguyen
  • Patent number: 7180443
    Abstract: State estimation of a system having multidimensional parameters, which are unknown, arbitrarily time-varying, but bounded, in addition to state variables, is performed by initializing the state estimate and matrices representing its covariance and bias coefficients which linearly relate initial state estimation errors to the parameter errors. System matrices ?, ?, F, G and the mean value ? of unknown, time-varying, but bounded parameters ? are determined. A matrix ? is generated, representing their physical bounds. The state estimate {circumflex over (x)}(k|k) and matrices M(k|k) and D(k|k), characterizing the effects of measurement errors and parameter uncertainty, are extrapolated to generate {circumflex over (x)}(k+1|k), M(k+1|k), and D(k+1|k). The measurement noise covariance N is determined. The filter gain matrix K is calculated.
    Type: Grant
    Filed: March 16, 2005
    Date of Patent: February 20, 2007
    Assignee: Lockheed Martin Corporation
    Inventors: Purusottam Mookerjee, Frank J. Reifler
  • Patent number: 7176830
    Abstract: An image processing system to be mounted to a vehicle includes a radar adapted to measure distance and direction to an object based on reflected electromagnetic waves which are outputted to scan the exterior of the vehicle, an image-taking device such as a camera for obtaining an image, and an image processor for carrying out image processing on a specified image processing area in an image obtained by the image-taking device. The image processor is adapted to determine a center position of the image processing area according to a measurement point of an object detected by the radar and the size of the image processing area according to a beam profile of electromagnetic waves outputted from the radar.
    Type: Grant
    Filed: November 15, 2005
    Date of Patent: February 13, 2007
    Assignee: OMRON Corporation
    Inventor: Koji Horibe
  • Patent number: 7176826
    Abstract: A system and method is provided for detecting emitter signals and for determining a scan strategy for a receiver system that receives such emitter signals. A rule-based system is provided for determining how emitters should be detected by a detection system. Rules may be used to prioritize certain emitters with respect to other emitters. The rules may also specify parameters for emitter modes, such as probability of intercept, turn-on range, detect-by range, tolerance, tolerance direction, scan periods, and other parameters. The rules may be used to compute the revisit time for the receiver. Multiple sets of rules may be created and a scan strategy may be computed based upon the selected rule set.
    Type: Grant
    Filed: December 28, 2005
    Date of Patent: February 13, 2007
    Assignee: Lockheed Martin Corporation
    Inventor: Anthony J. Gounalis
  • Patent number: 7173560
    Abstract: A forwarding looking ground penetrating mine detection apparatus includes a radiation source for irradiating a sample of ground suspected of containing at least one mine with a plurality of frequency swept ground penetrating radar signals. A detector receives target signals backscattered from the ground responsive to the radar signal. The detector includes a time-frequency analyzer which transforms the target signals into a time-frequency image representation (TFR). In a preferred embodiment, the detector can include a wavelet packet transformer (WPT) for extracting time-frequency localized information from the TFR in the form of feature set constructed from a wavelet table. The apparatus can also include a data dimensionality reducer for selecting features to form a feature subset from the feature set, preferably based on reference to a training data set. A multilayer neural network classifier can be based on the feature subset, and be adaptable to the surrounding environment through learning.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: February 6, 2007
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Jian Li, Yijun Sun
  • Patent number: 7173562
    Abstract: Described herein are frequency-domain back-projection processes for forming spotlight synthetic aperture radar (“SAR”) images that are not corrupted by the effects of multiple-bounce ghosting artifacts. These processes give an approximately exact reconstruction of the multiple bounce reflectivity function (MBRF) ƒ(x,y,?). Specifically, the evaluation of ƒ(x,y,?) in they ?=0 plane gives an approximately exact reconstruction of the true object scattering centers which is uncorrupted by multiple-bounce contributions to the phase history data G(?, ?). In addition, the non-zero dependence of ƒ(x,y,?) upon the MB coordinate ? can be used to facilitate the identification of features-interest within the imaged region.
    Type: Grant
    Filed: October 1, 2004
    Date of Patent: February 6, 2007
    Assignee: Science Applications International Corporation
    Inventor: David Alan Garren
  • Patent number: 7170440
    Abstract: A FM-CW radar system comprises a frequency modulated continuous wave digital generator that produces both in-phase (I) and quadrature-phase (Q) outputs to orthogonally oriented transmitter antennas. A linearly polarized beam is output from a switched antenna array that allows a variety of I-and-Q pairs of bowtie antennas to be alternately connected to the transmitter and receiver. The receiver inputs I-and-Q signals from another bowtie antenna in the array and mixes these with samples from the transmitter. Such synchronous detection produces I-and-Q beat frequency products that are sampled by dual analog-to-digital converters (ADC's). The digital samples receive four kinds of compensation, including frequency-and-phase, wiring delay, and fast Fourier transform (FFT). The compensated samples are then digitally converted by an FFT-unit into time-domain signals. Such can then be processed conventionally for range information to the target that has returned the FM-CW echo signal.
    Type: Grant
    Filed: December 10, 2005
    Date of Patent: January 30, 2007
    Assignee: LandRay Technology, Inc.
    Inventor: Frederick L. Beckner
  • Patent number: 7170443
    Abstract: A method for the evaluation of radar data for fully automatic creation of a map of regions with interference, in which undesirable reflections frequently occur includes the following method steps. The region to be mapped is divided up into cells. The short-lived target tracks that occur in these cells are counted. Statistics are kept, in such a manner that the short-lived target tracks are counted only within a predetermined period of time, while all older short-lived target tracks are left out of consideration. At least one threshold value is predetermined, in such a manner that a cell is considered to have been marked if the short-lived target tracks that are counted in the previous time period exceed the threshold value or values. The map of the current regions with interference results as the totality of the marked cells.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: January 30, 2007
    Assignee: EADS Deutschland GmbH
    Inventors: Dirk Liebscher, Juergen Altmann, Ulrich Lode, Christoph Schenk
  • Patent number: 7167123
    Abstract: Method and apparatus for detecting objects. In one embodiment, a person entering a secured zone is illuminated with low-power polarized radio waves. Differently polarized waves which are reflected back from the person are collected. Concealed weapons are detected by measuring various parameters of the reflected signals and then calculating various selected differences between them. These differences create patterns when plotted as a function of time. Preferably a trained neural network pattern recognition program is then used to evaluate these patterns and autonomously render a decision on the presence of a weapon.
    Type: Grant
    Filed: November 24, 2004
    Date of Patent: January 23, 2007
    Assignee: Safe Zone Systems, Inc.
    Inventors: Jerry Hausner, Jonathan M. West
  • Patent number: 7167127
    Abstract: The invention is process for tracking a moving targeted vehicle from a remote sensor platform comprising the steps of 1) tracking the targeted vehicle and periodically recording its radar signature until its identity becomes ambiguous, 2) tracking the target after it has left its ambiguous state and periodically recording its radar signature; and 3) comparing the recorded radar signatures prior to the targeted vehicle becoming ambiguous to the recorded radar signature taken after the targeted vehicle has left its ambiguous state and determining that the targeted vehicle now tracked is the same as the targeted vehicle being tracked prior to becoming ambiguous.
    Type: Grant
    Filed: November 8, 2004
    Date of Patent: January 23, 2007
    Assignee: Northrop Grumman Corporation
    Inventors: Noel Collins, Rick Bottone, Donald R. McMillan
  • Patent number: 7167124
    Abstract: A system and method for measuring ground penetrating radar data is described which includes controlling the timing for generating stimulus electromagnetic waves and the sampling rate of reflected electromagnetic waves in response to the stimulus electromagnetic waves. Generally, the timing is adjusted for spatially over-sampling the ground penetrating radar data. The speed of the system can also be adjusted based on the measured data.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: January 23, 2007
    Assignee: Sensors & Software Inc.
    Inventors: Alexander Peter Annan, Steve Cosway
  • Patent number: 7164380
    Abstract: An interrogator with an antenna that allows information exchanges with multiple transponders in a shorter distance of communication, by securing an intensified and uniform electromagnetic energy concentrated on areas near antenna elements. The interrogator is furnished with a sleeve antenna that includes a monopole conductor of ¼ wavelength (free space wavelength) continuously connected to a core wire of a coaxial cable on one end thereof, and a feed point on the other end, in which the sleeve antenna is grounded at the feed point. The interrogator has a plurality of the transponders arrayed near the antenna, and a plurality of the antennas selected by RF signal selectors. The interrogator antenna allows movable body identification such as in a goods management system for identifying multiply arrayed goods.
    Type: Grant
    Filed: August 31, 2001
    Date of Patent: January 16, 2007
    Assignee: Hitachi, Ltd.
    Inventor: Takeshi Saito
  • Patent number: 7164381
    Abstract: A target identifying apparatus identifies a target from a first signal distribution and includes a calculation section, a target signal identifying section, a subtraction section, and a correction section. The calculation section calculates a quadratic approximate expression in the first signal distribution. The target signal, identifying section identifies a signal contained in the quadratic approximate expression as a single target signal. The subtraction section subtracts a value of the quadratic approximate expression from a value of the first signal distribution to generate a second signal distribution. When the one of the beam angle and the frequency corresponding to a maximum value of the second signal distribution is in a range where the value of the quadratic approximate expression is subtracted or is in a vicinity of the range, the correction section corrects the second signal distribution based on the quadratic approximate expression.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: January 16, 2007
    Assignee: Fujitsu Ten Limited
    Inventor: Masayuki Kishida
  • Patent number: 7161531
    Abstract: A scan conversion is provided which allows the scan converter to work with data in its most convenient format in a radar memory. A displayable image is mirrored to a graphics memory simultaneously with the write portion of the radar memory of the scan conversion process. On every write to the radar memory, radar data is simultaneously converted to associated colors by indexing a color look-up table and writing the indexed color to the graphics memory. A simulated phosphor decay for the display is provided by decreasing the intensity of each pixel in the radar memory once each antenna scan and similarly decreasing the intensity of data in corresponding locations in the graphics memory to simulate the decay of a phosphor coated screen in a CRT display. The signals in the graphics memory are coupled to a display at a rate that simulates a display on a phosphor coated screen.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: January 9, 2007
    Assignee: Northrop Grumman Corporation
    Inventor: Thomas G. Beazell
  • Patent number: 7161528
    Abstract: The invention relates to a method of suppressing pulsed signals in particular of DME or TACAN type present in the radio signals received (Ue) by a radio-frequency receiver, characterized in that the reception frequency band of the receiver is divided into frequency sub-bands corresponding to the transmission channels of the pulsed signals, in that the presence of the pulsed signals and the transmission channel of said pulsed signals in the frequency sub-bands are detected, and in that the frequency sub-band comprising the detected pulsed signals is filtered over the duration of the pulsed signal so as to eliminate said pulsed signals pulse type.
    Type: Grant
    Filed: December 20, 2002
    Date of Patent: January 9, 2007
    Assignee: Thales
    Inventors: Estelle Kirby, Alain Renard
  • Patent number: 7158072
    Abstract: A weather radar signal path for an aircraft. The signal path has an antenna, a digital down-converter, a first transceiver, fiber optic cabling, a second transceiver and a processing unit. The antenna is adapted to, in a first mode, receive reflected radar signals from atmosphere ahead. The digital down-converter is adapted to convert the reflected radar signals received by the antenna into digital radar signals at a lower frequency. The first transceiver is adapted to, in the first mode, at least transmit the digital radar signals through said fiber optic cabling. The fiber optic cabling is adapted to, in the first mode, transfer the digital radar signals between the first and second transceivers. The second transceiver is adapted to, in the first mode, receive said digital radar signals from the fiber optic cabling. The processing unit is adapted to, in the first mode, process the digital radar signals to generate weather information based on predetermined algorithm.
    Type: Grant
    Filed: September 8, 2006
    Date of Patent: January 2, 2007
    Assignee: Rockwell Collins, Inc.
    Inventors: Ranganath Venkatachalam, Ronald W. Andreatta
  • Patent number: 7154434
    Abstract: An anti-personnel airborne radar application for ultra slow target tracking is provided. The anti-personnel airborne radar application includes a rotorcraft and a signal processing system. The signal processing system includes a radar antenna supported by said rotorcraft, a plurality of phase centers, a conditioning circuit for each phase center, an adaptive signal processor, and an ultra slow target indicator. Each phase center is for receiving reflected radar signals received by the radar antenna. The adaptive signal processor processes the received condition signal from each of the phase centers, allowing the ultra slow target indicator to render tracking reports. A method of detecting human motion over a ground swath is also provided.
    Type: Grant
    Filed: September 12, 2005
    Date of Patent: December 26, 2006
    Assignee: The Boeing Company
    Inventor: Daniel J. Sego
  • Patent number: 7154433
    Abstract: A method for discriminating and tracking a target in a clutter cloud includes transmitting a radar signal at a signal bandwidth to: identify a range extent of a clutter cloud; determine a centroid and a velocity growth rate of the clutter cloud; and identify a direction of movement of the centroid of the clutter cloud. The method may also include locking a another radar signal having a greater signal bandwidth onto the centroid of the clutter cloud whereby the centroid is tracked within one radar range resolution bin; providing a delay line that includes at least two Doppler filters and is configured to cover a Doppler frequency range corresponding to a velocity growth rate of the clutter cloud; and processing a reflected radar signal corresponding to the greater signal bandwidth. The processing of the reflected radar signal may comprise passing the reflected radar signal through the delay line to mitigate a portion of the reflected signal that is reflected by the clutter cloud.
    Type: Grant
    Filed: April 21, 2004
    Date of Patent: December 26, 2006
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventor: J. Michael Madewell
  • Patent number: 7154432
    Abstract: The invention intends to provide a sensor module suitable for miniaturization and reduction in costs, in the radar sensor that uses a millimeter or sub-millimeter wave signal of which frequency is more than 20 GHz. To accomplish this problem, the radar sensor is integrated into a one chip MMIC, in which an active circuit including an oscillator and a mixer is formed with an antenna on one semiconductor substrate. Further, the MMIC is sealed with a resin package. A dielectric lens is formed on the resin package over the antenna to attain a desired beamwidth. Thereby, the lens and the resin package can integrally be formed by a metal mold, thus reducing the cost.
    Type: Grant
    Filed: November 12, 2004
    Date of Patent: December 26, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Toshiyuki Nagasaku, Hiroshi Kondoh, Hiroshi Shinoda
  • Patent number: 7154431
    Abstract: A digital synthesizer includes a digital radio frequency memory (DRFM) for storing phase values and corresponding digital signals. The digital synthesizer includes a digital processing circuit receiving input from the DRFM, the circuit including tapped delay lines and a summer summing the output of the tapped delay lines. The digital synthesizer includes a signal modulator independently synthesizing within each tapped delay line a frequency modulated and gain scaled signal, wherein input to the tapped delay lines are phase values from the DRFM.
    Type: Grant
    Filed: March 1, 2004
    Date of Patent: December 26, 2006
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Phillip E. Pace, Robert E. Surratt, Siew-Yam Yeo
  • Patent number: 7151478
    Abstract: In some pseudo-orthogonal waveform embodiments, a radar system transmits pseudo-orthogonal waveforms and performs multiple correlations on a combined single receiver channel signal. In some quadratic polyphase waveform embodiments, a radar system may simultaneously transmit frequency separated versions of a single quadratic polyphase waveform on a plurality of transmit antennas, combine the return signal from each antenna into a combined time-domain signal, and perform a Fourier transformation on the combined time-domain signal to locate a target. The radar system may identify a target, such as sniper's bullet, incoming projectile, rocket-propelled grenade (RPG) or a mortar shell. In some embodiments, the system may estimate the target's trajectory to intercept the target. In some embodiments, the system may estimate the target's trajectory and may further extrapolate the target's trajectory to locate the target's source, such as the sniper.
    Type: Grant
    Filed: February 7, 2005
    Date of Patent: December 19, 2006
    Assignee: Raytheon Company
    Inventors: Vinh N. Adams, Wesley H. Dwelly
  • Patent number: 7151482
    Abstract: A radar device (2) includes plural transmission antennas and plural reception antennas. The reception antennas constitute a reception-side antenna portion (20) and are arranged at an interval of d. The transmission antennas constitute a transmission-side antenna portion (18) and are arranged at an interval of d?=d×(n?1). The path length at which the electric wave is reflected from a target is identical between channels A9 and B1, and seventeen kinds of channels (A1 to A8, A9 or B1, B2 to B9) which are different in path length by every fixed distance are achieved. The data of the channels (A1 to A9 and B1 to B9) using different transmission antennas are respectively collected in different measuring cycles, and an error based on the time difference between the measuring cycles is corrected on the basis of a correction value calculated from the data of the channels A9, B1.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: December 19, 2006
    Assignee: Denso Corporation
    Inventors: Kazuma Natsume, Hiroshi Hazumi
  • Patent number: 7151484
    Abstract: A pulse compression processor 20 compressing a modulated pulse signal correlately received by a receiver, includes a coefficient calculator 30 calculating a set of filtering coefficients for converting sampled output signal values outside a vicinity of main-lobe of a compressed pulse signal into zero as well as for minimizing S/N loss in a peak value of the main-lobe, and a pulse compression filter 40 compressing the modulated pulse signal based on the set of the filtering coefficients calculated by the coefficient calculator.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: December 19, 2006
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Mitsuyoshi Shinonaga, Shinkichi Nishimoto
  • Patent number: 7148835
    Abstract: A method and apparatus for evaluating whether one or more threat sources is actively tracking an object, such as an aircraft. A tracking system may analyze information regarding signals received from a source and provide a track indication that the source is actively tracking the object without adjusting the dwell arrangement of the scan strategy of the receiver. A track indication may be provided where a sample count of signal intercepts from the source is greater than a track count during a window. A break track indication representing that the source is not actively tracking the object may be provided when a number of signal intercepts from the source is less than a break track count during a window.
    Type: Grant
    Filed: June 24, 2005
    Date of Patent: December 12, 2006
    Assignee: Lockheed Martin Corporation
    Inventors: Jeffrey K. Bricker, Anthony J. Gounalis, James C. Rosswog, Stephen P. Wanchissen
  • Patent number: 7148840
    Abstract: A radar apparatus comprises: a transmitter unit having a high-frequency oscillating unit whose oscillation frequency is variable, and a pulse amplitude modulating unit for amplitude-modulating a pulse of a transmission high-frequency signal output from the high-frequency oscillating unit with a first control pulse signal; a receiver unit having a gating unit for controlling ON/OFF of an input of a received high-frequency signal with a second control pulse signal; and a controlling and signal processing unit for controlling the transmitter unit and the receiver unit, and for switching a first operation mode for making the apparatus function as an FM-CW radar, and a second operation mode for making the apparatus function as a pulse radar.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: December 12, 2006
    Assignees: Fujitsu Limited, Fujitsu Ten Limited
    Inventors: Yoshikazu Dooi, Satoshi Ishii, Hiroyuki Yatsuka, Nobukazu Shima, Masaki Hitotsuya
  • Patent number: 7145501
    Abstract: An altitude measuring system is described that includes a radar altimeter configured to measure altitude and a digital terrain map database. The database includes data relating to terrain elevation and at least one data parameter relating to an accuracy of the terrain elevation data and the altitude measured by the radar altimeter. The system is configured to weigh an altitude derived from the terrain elevation data and the radar altimeter measurements according to the at least one data parameter.
    Type: Grant
    Filed: September 26, 2005
    Date of Patent: December 5, 2006
    Assignee: Honeywell International Inc.
    Inventors: Mark T. Manfred, Curtis J. Call
  • Patent number: 7145503
    Abstract: A surface wave radar system including a receive antenna array (20, 22) for generating receive signals, and a data processing system (24) for processing received data representing the receive signals to mitigate ionospheric clutter. The received data is range and Doppler processed, and a spatial adaptive filter (52) is trained using training data selected from the processed data. The training data includes ionospheric clutter data and excludes cells which contain target data and substantial sea clutter. The processed data is filtered using the filter (52), which may be based on loaded sample matrix inversion. The antenna array (20,22) may be two-dimensional having an L or T shape.
    Type: Grant
    Filed: November 12, 2002
    Date of Patent: December 5, 2006
    Assignee: Telstra Corporation Limited
    Inventors: Yuri Abramovich, Pavel Turcaj, Nicholas Keith Spencer, Robert M Ellard, Yuriy Lyudviga
  • Patent number: 7145502
    Abstract: A distance can be measured with high resolution. A frequency controller (7) controls a voltage control oscillator (2) so as to change a signal source frequency f in a range containing two center frequencies f1 and f2 and transmits it as a traveling wave from an antenna (4) to a target (5). A reflected wave reflected by the target (5) and the traveling wave interfere each other and form a standing wave. A power detector (6) detects power corresponding to the amplitude of the standing wave and performs Fourier transform based on the two center frequencies f1 and f2 in Fourier transform means (11, 12), respectively, thereby calculating radar image functions P1(x), P2(x). The distance d to the target (5) satisfies the conditions that the phase difference of the two radar image functions zero-crosses and the amplitude of the radar image functions becomes maximum. The zero cross point of the phase difference is a zero cross point of a linear function and can be identified with high resolution.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: December 5, 2006
    Assignee: Shima Seiki Manufacturing Limited
    Inventors: Tetsuji Uebo, Tadamitsu Iritani
  • Patent number: 7145504
    Abstract: A system for generating a simulated radar return signal. The novel system includes a processor adapted to receive target and waveform parameters and in accordance therewith generate a composite digital signal, and a digital to analog converter adapted to convert the digital signal to an analog signal. The system also includes an upconverter adapted to convert the analog signal to radio frequency. The processor calculates time-domain digital data samples representing a composite radar return waveform based on the target and waveform parameters. These data samples are output at each time interval that the digital to analog converter samples data. The composite waveform can include returns from a large number of targets and from targets embedded in clutter. The system can also be adapted to test a radar system having multiple antenna ports by replicating the basic design for each port.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: December 5, 2006
    Assignee: Raytheon Company
    Inventors: Irwin L. Newberg, John K. Keigharn, Jonathan D. Gordon, Garin S. Bircsak
  • Patent number: 7145497
    Abstract: Detection of moving targets in SAR images is improved by a radar on a moving platform for generating a focused synthetic aperture image of a scene The scene contains a target described by pixels within the SAR image. The radar has a monopulse antenna having a sum channel output and a difference channel output feeding analog to digital converters for converting the sum channel output and difference channel output into respective digital streams concurrently. The digital streams generate a difference channel SAR image and a sum channel SAR image. Target ratios are computed for those pixels descriptive of a target within the scene. Background ratios are computed for pixels around the target. Target ratios and background ratios define respective least square fit of angle discriminants. Comparing the target least square fit of angle discriminant with the background least square fit angle discriminant identifies an angle offset and a Doppler offset of the target with respect to the background.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: December 5, 2006
    Assignee: Raytheon Company
    Inventors: Kapriel V. Krikorian, Robert A. Rosen
  • Patent number: 7142150
    Abstract: A method and system for detecting an object uses a composite evidence grid based on dual frequency sensing. A source transmits a laser transmission in a first zone. A detector receives a reflection of the laser transmission from an object in the first zone to determine laser observed data associated with points on the object. A transmitter transmits a radar transmission in a second zone that overlaps with the first zone. A receiver receives a reflection of the radar transmission from an object in the second zone to determine radar observed data associated with points on the object. The laser observed data is processed to form a laser occupancy grid for the first zone and the radar observed data is processed to form a radar occupancy grid for the second zone. An evaluator evaluates the radar occupancy grid and the laser occupancy grid to produce a composite evidence grid for at least an overlapping region defined by the first zone and the second zone.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: November 28, 2006
    Assignee: Deere & Company
    Inventor: Robert George Thackray
  • Patent number: 7142152
    Abstract: A portable, handheld electronic navigation device includes an altimeter and a GPS unit. An internal memory stores cartographic data, for displaying the cartographic data on a display of the navigation device. Accordingly, the device is capable of displaying cartographic data surrounding a location of the unit as determined by GPS and altitude information as determined by the barometric altimeter and GPS. The device provides an enhancement of the calibration and hence the accuracy of barometric altimeter measurements with the aid of derived altitudes from a GPS. The device is able to determine the need for calibration and perform the subsequent computations necessary to facilitate the calibration. Furthermore, the device is able to determine a correction quantity that should be applied to barometric altitude readings, thereby allowing the device to be calibrated while in motion. Both of these features ultimately result in a more accurate determination of altitude.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: November 28, 2006
    Assignee: Garmin Ltd.
    Inventors: Scott Burgett, Tracy Olivier
  • Patent number: 7142153
    Abstract: A unique hardware architecture that combines short pulse, stepped frequency and centerline processing. The inventive architecture implements a radar system having a transmitter for transmitting short pulses, each pulse being stepped in frequency and a receiver receiving the pulses and providing an output signal in response thereto. In the illustrative embodiment, the transmitter includes a frequency source, an RF switch coupled to the source and a controller for controlling the RF switch. The receiver includes a signal processor implemented with a center line roughing filter. The signal processor has multiple channels each of which has a range gate and a digital filter. The digital filter includes a Fast Fourier Transform adapted to output a range Doppler matrix.
    Type: Grant
    Filed: June 8, 2004
    Date of Patent: November 28, 2006
    Assignee: Raytheon Company
    Inventors: Wesley H. Dwelly, Vinh N. Adams
  • Patent number: 7138939
    Abstract: A radar has a transmission section, a reception section that receives a reflected wave of the transmission wave, a transmission switch section, a delay section that delays a predetermined timing, a reception switching section, a difference processing section, and a calculation section. The transmission section switches between a first frequency and a second frequency to transmit a transmission wave having one of the frequencies. The transmission switch section switches between turning-on and turning-off of an operation of the transmission section at the predetermined timing. The reception switching section switches between turning-on and turning-off of an operation of the reception section according to the timing delayed. The difference processing section outputs a difference between the transmission wave and the reflected wave. The calculation section calculates a distance on a basis of a delay amount, when a detection waveform has a difference frequency between the first frequency and the second frequency.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: November 21, 2006
    Assignee: Fujitsu Ten Limited
    Inventor: Kanako Honda
  • Patent number: 7138938
    Abstract: A system and method for preemptively sensing an object in the potential drive path of an automotive vehicle and selectively operating both a collision countermeasure system and a parking assistance system aboard the automotive vehicle are disclosed herein. The system includes a radar sensor, ultrasonic sensors, and a data processing system mounted aboard the automotive vehicle. The data processing system is electrically connected to the radar sensor, the ultrasonic sensors, the collision countermeasure system, and the parking assistance system. The sensors are operable to cooperatively sense the position of the object in the potential drive path of the automotive vehicle and accordingly transmit sensor data to the data processing system. The data processing system is operable to receive the sensor data, selectively process the sensor data, and accordingly transmit operating instructions to the collision countermeasure system and the parking assistance system so as to selectively operate both systems.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: November 21, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: Kwaku O. Prakah-Asante, Manoharprasad K. Rao
  • Patent number: 7138936
    Abstract: The test results found that the EMI impact depended on the UWB power that fell within the receiver passband. Specifically, EMI occurred when the average power in the receiver passband was approximately equal to the desired signal level of the receiver. One waveform, TW7, did not cause EMI because the average power was too low. Three waveforms, TW1, TW2, and TW6 only caused EMI when the receiver was tuned to the frequency of the UWB spectral component. Three waveforms, TW3, TW4, and TW5, caused EMI at all receiver frequencies. As noted, these tests were performed to determine the susceptibility of various RF receiver (radars and communications systems) devices to UWB signals. The tests were not intended to evaluate the use of UWB signals for jamming purposes.
    Type: Grant
    Filed: March 18, 2005
    Date of Patent: November 21, 2006
    Assignee: Sentel Corporation
    Inventors: William G. Duff, Theodore L. Harwood, II, Art Light, John P. Smith, Darrel Crapps
  • Patent number: 7136011
    Abstract: A field unit for warning of a danger of collision between an aircraft and an obstacle, in particular a topographical ground obstacle or an obstacle formed by a mast, building or aerial cable structure, comprises a multi-part tubular mast having devices for fixing a solar panel and a radar antenna; an elongate radar antenna in an environment-protective casing, which, with an electronics unit, forms a radar system for synthesized radar detection of an aircraft in a radar coverage area; a central processing unit for identifying on the basis of information from the radar system an aircraft which is in a zone of the radar coverage area and which on the basis of radar information such as direction, distance and/or speed computes a collision danger area; and a high-intensity light system and radio transmitter system that can be activated by the central processing unit upon detection of an aircraft in a collision danger area.
    Type: Grant
    Filed: June 4, 2004
    Date of Patent: November 14, 2006
    Assignee: OCAS AS
    Inventors: Morten Mørk, Rolf Bakken
  • Patent number: 7136009
    Abstract: A digital cueing radio receiver system embodied using digital memory in lieu of analog delay lines and thereby avoiding delay line implementation difficulties. The cueing receiver system includes a wideband receiver portion providing an output signal employed for tuning a narrowband receiver portion of the system. Signal delay enabling use of the wideband receiver portion output signals for tuning the narrow band receiver portion selection frequency is provided by a digital memory circuit operating on analog-to-digital converted samples of input signal data of the receiver system. Approximated unity value related mathematical multiplication free Kernel function values are employed in the Fourier transformation. Avoidance of analog delay line-elements in embodying the system is a significant practical advantage of the invention.
    Type: Grant
    Filed: January 31, 2003
    Date of Patent: November 14, 2006
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: James B. Y. Tsui, Stephen L. Hary, David M. Lin
  • Patent number: 7132976
    Abstract: An automotive radar which can process signals at high speed to detect a target in a wide angle range is provided. The automotive radar comprises a transmitting antenna which emits an electromagnetic wave, two receiving antennas which receive the electromagnetic wave reflected by a target, an antenna plate on which the transmitting antenna and two receiving antennas are arranged. It also includes a drive which rotates the antenna plate in an azimuth direction, which corresponds to the direction of arrangement of the two receiving antennas, to scan a detection angle formed by the two receiving antennas. The drive has rest time between scans to stop rotation. The automotive radar also includes a signal processor which detects the azimuth angle of the target with respect to a reference direction during the rest time according to received signals from the two receiving antennas and the rotation angle of the antenna plate at rest.
    Type: Grant
    Filed: August 19, 2005
    Date of Patent: November 7, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hiroshi Shinoda, Toshiyuki Nagasaku, Hiroshi Kondoh