Digital Processing Patents (Class 342/195)
  • Patent number: 8400347
    Abstract: The invention relates to a monitoring device and method allowing surveillance of an aircraft in relation to aircraft and/or craft on an airport displacement zone. The invention is a system comprising a dedicated transmitter and receiver to receive the information regarding the location and displacement of the cooperative aircraft and to monitor the location of the said aircraft in relation to the cooperative aircraft. The monitoring application is based on the detection of conflict zones by inter-correlation of constraint surfaces of the airport zone. The invention applies to aircraft carrying communication moans for ADS-B networks for an airport zone monitoring application.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: March 19, 2013
    Assignee: Thales
    Inventors: Bernard Fabre, Nicolas Marty, Hugues Meunier
  • Patent number: 8400346
    Abstract: A method comprises transmitting a radar signal into an target area, receiving reflected portions of the radar signal from the target area, and processing the reflected portions of the radar signal. The step of processing comprises windowing analog signals representative of the reflected portions of the radar signal, performing a fast Fourier transform on the windowed analog signals to produce an FFT result for each window, and obtaining the average of the FFT results from consecutive windows. In accordance with the method, a user receives indication from an indicator that a golf ball is present in the target area when the average of the FFT results corresponds to characteristics of the golf ball. The system comprises a radar transceiver, a processor for processing reflected portions of the radar signal, and an indicator indicating to the user a golf ball present in the target area.
    Type: Grant
    Filed: June 25, 2010
    Date of Patent: March 19, 2013
    Assignee: Glass Wind, LLC
    Inventors: Kevin M. Hubbard, Dennis P. Bevirt
  • Patent number: 8400348
    Abstract: Apparatus and methods for an airborne biota monitoring and control system are disclosed. Radar and laser/optical sensors are used to detect insects, with detection zones being over water in some embodiments to reduce backscatter clutter. A pest control laser or small autonomous or radio controlled aircraft under automated or human control may be used to disable a targeted flying insect. One embodiment includes use of a head-mounted display for displaying insect targeting information superimposed on a real landscape view. Technologies such as adaptive lens, holographic optical elements, polarized radar and/or laser beams, light amplifiers and light guides, thin disk, spinning disk, or vertical cavity surface emitting lasers enhance performance of the apparatus or reduce cost of the apparatus. Also disclosed are methods of discrimination of insect types using spectral information and dynamic relative variation of spectral intensities at different wavelengths reflected from an insect in flight.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: March 19, 2013
    Assignee: Applied Information Movement and Management, Inc.
    Inventors: David Lehmann Guice, Augustus Hammond Green, Jr., William Vaden Dent, Jr.
  • Patent number: 8395541
    Abstract: A method of providing weather radar images to a flight crew of an aircraft includes obtaining raw volumetric radar data corresponding to at least one signal reflected off of a weather system. Based on the radar data, the weather system is computationally classified as being of a first type of a plurality of weather-system types. After classifying the weather system, the radar data is image processed, the image processing yielding an image representing the weather system and corresponding to the first weather-system type. The image is displayed on a display device.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: March 12, 2013
    Assignee: Honeywell International Inc.
    Inventors: Ratan Khatwa, Santosh Mathan
  • Patent number: 8391336
    Abstract: To generate a pulse for ranging, a kernel is convolved with a spreading sequence. The spreading sequence is parametrized by one or more ordered (length, sparsity) pairs, such that the first sparsity differs from the bit length of the kernel and/or a subsequent sparsity differs from the product of the immediately preceding length and the immediately preceding sparsity. Alternatively, a kernel is convolved with an ordered plurality of spreading sequences, all but the first of which may be non-binary. The pulse is launched towards a target. The reflection from the target is transformed to a received reflection, compressed by deconvolution of the spreading sequence, and post-processed to provide a range to the target and/or a direction of arrival from the target.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: March 5, 2013
    Assignee: A.P.M. Automation Solutions Ltd
    Inventor: Alex Chiskis
  • Publication number: 20130050011
    Abstract: Radar in accordance with some embodiments of the inventive concept may include a transmission part outputting a signal to a target object; a receiving part receiving a reflected signal corresponding to the output signal of the transmission part; and a signal processing part receiving the reflected signal from the receiving part to distinguish the target object. The signal processing part directly samples the reflected signal and compares any one of the directly sampled reflected signal and a signal that the directly sampled reflected signal is restored with restored reflected signal data to distinguish the target object.
    Type: Application
    Filed: August 13, 2012
    Publication date: February 28, 2013
    Applicant: Industry-Academic Cooperation Foundation, Yonsei University
    Inventor: Tae Wook KIM
  • Publication number: 20130050016
    Abstract: The present invention relates to a radar package for millimeter waves. A small-size, low-cost, light-weight, and high-precision radar sensor can be embodied by packaging an antenna, transceiver chips, and a digital signal processing chip into a radar-on chip through TSVs in order to reduce the size and integrate the antenna, the transceiver chips, and the digital signal processing chip into one package. Accordingly, a radar sensor for ultra-high precision, applicable to a radar for vehicles, an imaging system for weapon monitoring, and a radar for small-sized, light-weight, and precision measurement, all of which have a millimeter band, and to the autonomous traveling of a robot, can be embodied.
    Type: Application
    Filed: August 24, 2012
    Publication date: February 28, 2013
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Cheon Soo KIM, Hyun Kyu YU
  • Patent number: 8378883
    Abstract: A device and method for correcting a position of at least one target point relative to a motor vehicle depending on a movement of the motor vehicle over a given number of cycles; starting from at least one target point, forming a first group with adjacent target points depending on a first given characteristic; verifying if the first group is homogeneous depending on a second given characteristic; and calculating a position of a formed group relative to the motor vehicle over the given number of cycles, a formed group corresponding to a target object.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 19, 2013
    Assignee: Valeo Vision
    Inventor: Siav Kuong Kuoch
  • Patent number: 8378879
    Abstract: An apparatus for sensing motion having a transmitter for transmitting a carrier signal; a frequency control connected to the transmitter for controlling the frequency of the carrier signal; a first receiver for receiving the reflected transmitted carrier signal; a second receiver for receiving the reflected transmitted carrier signal, the second receiver being placed out of phase by less than a wavelength of the carrier signal from the first receiver; means for subtracting the carrier signal received by the second receiver from the carrier signal received by the first receiver to produce an error signal; wherein when motion is sensed by the apparatus, the error signal moves from zero thereby causing a corrective signal to be generated and sent to the frequency control, the frequency control forcing the error signal to zero.
    Type: Grant
    Filed: June 17, 2010
    Date of Patent: February 19, 2013
    Assignee: The Johns Hopkins University
    Inventors: Douglas L. Lewis, Andrew E. Feldman, Christopher L. Eddins
  • Publication number: 20130038485
    Abstract: A series of samples derived by fixed-frequency sampling of a received signal are processed to detect (local) maximum-value and minimum-value samples. For each of the maximum-value samples, a corresponding reference value and a corresponding group of samples are derived. The reference value is set higher than that of a minimum-value sample which adjoins the maximum-value sample, and the corresponding group consists of successively adjacent samples including the maximum-value sample, each having a higher value than the reference value. The estimated time-axis position of a peak value of the received signal is obtained within the range of time-axis positions of the corresponding group.
    Type: Application
    Filed: June 29, 2012
    Publication date: February 14, 2013
    Applicant: DENSO CORPORATION
    Inventor: Mitsuo NAKAMURA
  • Patent number: 8373590
    Abstract: The invention relates to a method of processing an image sensed by an image sensor on board an aircraft fitted with an obstacle-locator system, in which the position and the extent of a zone in the sensed image, referred to as the zone of interest, is determined as a function of obstacle location data delivered by the obstacle-locator system, after which at least one parameter for modifying the brightness of points/pixels in said zone of interest is determined to enable the contrast to be increased in said zone of interest, and as a function of said modification parameter, the brightness of at least a portion of the image is modified.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: February 12, 2013
    Assignee: Eurocopter
    Inventor: Richard Edgard Claude Piré
  • Patent number: 8368586
    Abstract: A system includes a multi-system approach to detecting concealed weapons and person borne improvised explosive devices (PBIED). A first and second radar system operate at different center frequencies to provide, respectively, isolation of a target of interest from clutter and fine detail information on the target, such as whether the target is a living person, whether a concealed object may be present, material composition of the object, and shape, size, and position of the target relative to the system. Circular polarized radar beam may be used to distinguish a suspect object from within a crowd of people. Radar image of the object may be overlaid on visual image of a person carrying the object. Radar tracking of the object is coordinated with visual tracking of the target provided by a camera system, with visual display and tracking of the target overlaid with the radar information.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: February 5, 2013
    Assignee: Tialinx, Inc.
    Inventors: Farrokh Mohamadi, Mikko Oijala, Mohsen Zolghadri, Paul Strauch
  • Patent number: 8362944
    Abstract: A radar system is disclosed for forming a scanning receive beam from signals received by a phased array having a plurality of sub arrays. An exemplary radar system includes a plurality of phase units each configured to receive a signal from one or more sub arrays. Each phase unit includes a waveform generator configured to generate an analog waveform having a frequency corresponding to a time-varying phase shift. Each waveform generator is arranged to digitally generate the analog waveform, and output a comparison of the received signal with the waveform, incorporating the time-varying phase shift. The system further includes a combining unit configured to combine the outputs from the plurality of phase units to form a scanning receive beam.
    Type: Grant
    Filed: July 17, 2009
    Date of Patent: January 29, 2013
    Assignee: Astrium Limited
    Inventor: David Charles Lancashire
  • Patent number: 8362947
    Abstract: The invention provides a method for obtaining the object-plane field without a pure theoretical estimation or a direct experimental measurement of a point spread function (PSF) of an imaging system. Instead, at least two image-plane fields have to be recorded. It is essential that the resolutions of the system producing the images have to be quite different from each other. Although both PSFs of the system are unknown, the recording conditions have to be chosen so that the second PSF could be expressed via the first PSF. Two integral equations—(1) a convolution of the object-plane field with the first PSF and (2) a convolution of the object-plane field with the second PSF (expressed via the first PSF)—can be reduced to one functional equation in the Fourier space. The reverse Fourier transform of the solution of this equation is the object-plane field.
    Type: Grant
    Filed: March 29, 2011
    Date of Patent: January 29, 2013
    Inventor: Victor Gorelik
  • Publication number: 20130021197
    Abstract: A system, method, and apparatus for radar pulse detection using a digital radar receiver are disclosed herein. In electronic warfare (EW), radars operate in an environment with highly dense electronic waveforms. As a result, the radars may receive thousands or millions of radar pulses every second. To detect and sort out radar pulses emitted from different radars is a challenging problem in electronic warfare. The present disclosure teaches a radar pulse detection system that utilizes digital channelization and joint-channel detection techniques to detect and separate radar pulses that are sent from different radar emitters. The main features of the present disclosure are: 1.) a digital channelization technique to separate radar pulses from their mixtures; 2.) a multi-channel detection technique to detect radar pulses; and 3.) an innovative technique to separate overlapped radar pulses.
    Type: Application
    Filed: July 21, 2011
    Publication date: January 24, 2013
    Applicant: THE BOEING COMPANY
    Inventor: Qin Jiang
  • Patent number: 8358238
    Abstract: A hostile missile is identified as being of a type which maneuvers aerodynamically within the atmosphere when it performs an exoatmospheric maneuver which significantly changes its specific energy. When the determination is made that the hostile missile is an atmospheric maneuvering missile, the hostile missile is engaged with an interceptor which is guided toward a predicted intercept point (PIP) assuming horizontal hostile missile flight at an altitude above a specified minimum altitude.
    Type: Grant
    Filed: November 4, 2009
    Date of Patent: January 22, 2013
    Assignee: Lockheed Martin Corporation
    Inventor: Daniel L. Friedman
  • Patent number: 8358233
    Abstract: A process is provided for analyzing a radar signal using CLEAN to identify an undetected target in sidelobes of a detected target. The process includes obtaining system impulse response data of a waveform for a point target having a signal data vector based on a convolution under conjugate transpose multiplied by a target amplitude vector plus a noise vector, estimating the target amplitude vector, and applying a CLEAN Deconvolver to remove the detected target from the data signal vector based on the estimate amplitude vector absent the detected target and an amplitude vector of an undetected target. The process further includes building a detected target vector with the amplitude estimate vector, setting to zero all elements of the detected target vector except at an initial time, and recomputing the amplitude estimate vector by a Reformulated CLEAN Detector.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: January 22, 2013
    Assignee: The United States of America as Represented by the Secretary of the Navy
    Inventor: Terry L. Foreman
  • Publication number: 20130016004
    Abstract: A photonic-assisted digital radar system comprising an active electronically-scanned antenna; a transmitting section comprising a waveform generator to generate a modulating signal; and a modulator to receive a transmission carrier and the modulating signal and to modulate the transmission carrier by means of the modulating signal; and a receiving section comprising a photonic-assisted analog-to-digital converter to convert electric analog signals into electric digital signals; and a digital signal processor to receive and process the electric digital signals. The photonic-assisted analog-to-digital converter comprises a mode-locked laser to generate an optical clock signal; and an electronic analog-to-digital converter; wherein the electronic analog-to-digital converter, the waveform generator, the modulator and the digital signal processor are configured to operate based on electric clock signals generated based on the optical clock signal.
    Type: Application
    Filed: April 16, 2012
    Publication date: January 17, 2013
    Applicant: Selex Sistemi Integrati S.p.A.
    Inventors: Luigi Pierno, Massimiliano Dispenza, Alessandro Gatta, Annamaria Fiorello, Alberto Secchi, Massimo Ricci
  • Patent number: 8354939
    Abstract: A logging system and method for measuring propped fractures and down-hole subterranean formation conditions including: a radar source; an optical source; an optical modulator for modulating an optical signal from the optical source according to a signal from the radar source; a photodiode for converting the modulated optical signal output from the optical modulator to the source radar signal. A transmitter and receiver unit receives the source radar signal from the photodiode and transmits the source radar signal via at least one antenna attached to the casing and in communication with at least one photodiode into the formation and receives a reflected radar signal. A mixer mixes the reflected radar signal with the source radar signal to provide an output. This can describe fractures connected to the wellbore and differentiate between the dimensions of the two vertical wings of a propped fracture.
    Type: Grant
    Filed: September 12, 2007
    Date of Patent: January 15, 2013
    Assignee: Momentive Specialty Chemicals Inc.
    Inventors: Robert R. McDaniel, Michael L. Sheriff, Eric E. Funk, Ethan A. Funk
  • Patent number: 8354950
    Abstract: The present invention relates to a method for characterizing an atmospheric turbulence by representative parameters measured by a radar. The emission beam of the radar carried by an aircraft scanning the zone of the turbulence, a measured parameter being the total variance of the velocity of the turbulence ?U, this total variance at a point x0 inside the turbulence is the sum of the spatial variance of the spectral moment of order 1 of the signals received by the radar Var[M1({right arrow over (x)})] and of the spatial mean of the spectral moment of order 2 of the signals received Mean[M2({right arrow over (x)})], the moments being distributed as a vector {right arrow over (x)} sweeping an atmospheric domain around the point x0. The invention applies notably in respect of meteorological radars fitted to aircraft such as airliners for example.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: January 15, 2013
    Assignee: Thales
    Inventors: Stéphane Jean Kemkemian, Héléne Catherine Thuilliez, Myriam Patricia Nouvel
  • Patent number: 8350749
    Abstract: A method for testing and/or validating the suitability of a multi-radar signature database to be used on radar systems having automatic target recognition. The database may include measured field data and/or modeled synthetic data. The technique allows field data to be compared to the synthetic data using modal mutual information.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: January 8, 2013
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: John Malas, Krishna Pasala, Usha M. Pasala, legal representative
  • Patent number: 8339306
    Abstract: A detection system includes a detection processor configured to receive a frame of image data that includes a range/Doppler matrix, perform a rate-of-change of variance calculation with respect to at least one pixel in the frame of image data, and compare the calculated rate-of-change of variance with a predetermined threshold to provide output data. The range/Doppler matrix may include N down-range samples and M cross-range samples. The detection processor may calculate a rate-of-change of variance over an N×M window within the range/Doppler matrix.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: December 25, 2012
    Assignee: Raytheon Company
    Inventors: Donald P. Bruyere, Ivan S. Ashcraft, John B. Treece
  • Patent number: 8334799
    Abstract: Detecting and grading the state and evolution of wake turbulence caused by an aircraft is made on the basis of radar signals reflected by this turbulence, these signals being analyzed through analysis cells of given dimension in terms of distance and bearing. A first preliminary detection step detects and locates turbulence in a cell. A second step determines the strength of the detected turbulence, while a third step determines the age of the detected turbulence as well as the geometric parameters which characterize it. This method makes it possible to detect wake turbulence and to determine at one and the same time the position and the strength of the latter as well as its stage of evolution.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: December 18, 2012
    Assignee: Thales
    Inventor: Frédéric Stéphane Barbaresco
  • Patent number: 8334802
    Abstract: A radar system includes radars and a controller. The controller controls waveform patterns of the radars. As a signal processing unit of each of the radars receives an instruction from the controller, the signal processing unit selects a frequency modulation pattern of a VCO between an FM-CW mode and a CW mode stored in a waveform memory to perform mode switching, and then outputs a radio wave from a transmission antenna. Then, the controller instructs each signal processing unit for a frequency modulation pattern of each radar or an output timing of each pattern so that a time, at which continuous wave signals output from the radars have the same frequency, is not continuous.
    Type: Grant
    Filed: October 5, 2009
    Date of Patent: December 18, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Masaru Ogawa
  • Publication number: 20120313813
    Abstract: A direct-to-digital software defined radar system includes a high-speed digitizer coupled directly to a receive antenna and outputs a digital signal to a processor which receives the digitized signal, along with an arbitrarily-defined reference signal provided by signal generator, and indexes the signal data according to time and geo-location, arranges the data according to a three-dimensional data structure, declutters and filters and refines the data for storage or display.
    Type: Application
    Filed: May 29, 2012
    Publication date: December 13, 2012
    Inventor: John W. Brooks
  • Patent number: 8330647
    Abstract: A land-based smart sensor system and several system architectures for detection, tracking, and classification of people and vehicles automatically and in real time for border, property, and facility security surveillance is described. The preferred embodiment of the proposed smart sensor system is comprised of (1) a low-cost, non-coherent radar, whose function is to detect and track people, singly or in groups, and various means of transportation, which may include vehicles, animals, or aircraft, singly or in groups, and cue (2) an optical sensor such as a long-wave infrared (LWIR) sensor, whose function is to classify the identified targets and produce movie clips for operator validation and use, and (3) a supercomputer to process the collected data in real-time. The smart sensor system can be implemented in a tower-based or a mobile-based, or combination system architecture. The radar can also be operated as a stand-alone system.
    Type: Grant
    Filed: June 8, 2007
    Date of Patent: December 11, 2012
    Assignee: Vista Research, Inc.
    Inventors: Phillilp A. Fox, Joseph W. Maresca, Jr.
  • Patent number: 8330651
    Abstract: A high resolution, low power marine radar for use in applications such as the newly mandated barge/river radars that are to be used in very confined spaces such as canals. An example radar system includes frequency-modulated/continuous-wave (FM/CW) radar that uses very low transmitter power (a fraction of a watt) and has an exceptionally short sensing range of a few feet or even inches if needed.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: December 11, 2012
    Assignee: Honeywell International Inc.
    Inventor: David C. Vacanti
  • Patent number: 8330642
    Abstract: A high resolution imaging system is used to detect and locate targets using time reversal in rich scattering environments, where the number of scatterers is significantly larger than the number of antennas. Our imaging system performs two major tasks by time reversal: clutter mitigation and target focusing. Clutter mitigation is accomplished through waveform reshaping to suppress the clutter returns. After the suppressed clutter is subtracted from the returned signal, a second time reversal for target focusing is performed. A final image is then obtained by beamforming.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: December 11, 2012
    Assignee: Carnegie Mellon University
    Inventors: Yuanwei Jin, Jose′ M. F. Moura
  • Patent number: 8325084
    Abstract: A calibration system for a dual polarization radar system with built in test couplers has been developed. The system includes a dual polarization radar transmitter antenna that generates a transmission pulse. A test coupler is located behind the antenna that reads a sample of the transmission pulse a test signal. A calibration circuit receives the sample of the transmission pulse and generates a test signal that simulates a desired atmospheric condition. Finally, a test antenna transmits the test signal to the dual polarization radar transmitter antenna for calibration of the system.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: December 4, 2012
    Assignee: Baron Services, Inc.
    Inventor: William H. Walker
  • Patent number: 8319682
    Abstract: A method examining an object using millimeter-wave signals includes: (a) providing at least two millimeter-wave signal sources; (b) transmitting at least two millimeter-wave signals having at least two different frequencies from the signal sources illuminate the object; (c) in no particular order: (1) determining whether a return reflected signal is above a threshold level; [a] if yes, processing the return signal to identify object shape; [b] if not, processing another return signal; and (2) determining whether a return intermodulation product or harmonic signal is detected; [a] if yes, processing the return signal to identify object nature; [b] if not, processing another return signal; (d) determining whether checked all return signals; (1) if not, processing another return signal; (2) if yes, proceeding to step (e); (e) determining whether results are satisfactory; (1) if not, changing frequency of at least one of the wave signals; (2) if yes, terminating the method.
    Type: Grant
    Filed: January 6, 2011
    Date of Patent: November 27, 2012
    Assignee: The Boeing Company
    Inventor: Robert A. Smith
  • Publication number: 20120293363
    Abstract: A method and device for recognizing a pulse repetition interval (PRI) modulation type of a radar signal are provided. The method for recognizing a pulse repetition interval (PRI) modulation type includes: extracting time of arrival (TOA) information of pulses aligned in time order from a received radar signal; generating a PRI sequence based on a difference of adjacent TOAs in the TOA information of pulses; generating a difference of PRIs (DPRI) sequence by using a difference of the adjacent PRIs in the PRI sequence; generating respective symbol sequences by using specific partition rules from the PRI sequence and the DPRI sequence; and calculating characteristic factors from the symbol sequences, and comparing the characteristic factors with threshold values for discriminating a PRI modulation type to determine the PRI modulation type. Thus, the PRI modulation type, a promising feature for radar signal identification, can be precisely derived.
    Type: Application
    Filed: September 12, 2011
    Publication date: November 22, 2012
    Inventors: Kyu-Ha SONG, Jin-Woo HAN, Byung-Koo PARK, Je-Il JO
  • Patent number: 8314732
    Abstract: A method of classifying items from reflected signals returned from said items is disclosed, the method comprising: processing said return signals to discriminate between a first set of signals indicative of items of interest and a further set of signals indicative of clutter; identifying items from said first set of signals and classifying them as a first class of item; processing said further set of signals to identify a second set of signals indicative of further items of interest; identifying items from said second set of signals and classifying them as a second class of item.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: November 20, 2012
    Assignee: Cambridge Consultants Ltd.
    Inventors: Gordon Kenneth Andrew Oswald, Edwin Christopher Carter, Per Arne Vincent Utsi, Samuel Julius Pumphrey, Desmond Keith Phillips, Michael Hugh Burchett, Allan Geoffrey Smithson, Jonathan Peter Edgecombe
  • Patent number: 8314733
    Abstract: A radar system tracks targets, and for each target determines the maximum acceleration of the target which can be tracked. The target acceleration is compared with the maximum acceleration that the radar can maintain in track, and if the decision is that the radar cannot maintain track, the radar data rate is increased, at least for that target. In at least some cases in which the target acceleration is such that the target can be maintained in track, the data rate for that target is decreased.
    Type: Grant
    Filed: October 13, 2009
    Date of Patent: November 20, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Kourken Malakian, Stephen J. Salvatore
  • Patent number: 8310392
    Abstract: A radar device includes an antenna, from which a detection signal is transmitted while the antenna being rotated and by which a reflective wave of the transmitted detection signal is received to detect echo data, wherein image data is generated based on the detected echo data, a continuity detecting module for detecting a planar continuity of the currently detected echo data with respect to a pixel concerned in the image data, a behavior data generating module for generating behavior data indicative of a behavior of the echo data for a predetermined number of scans of the past in the pixel concerned based on behavior determination data, and an echo kind determining module for determining a kind of the echo data of the pixel concerned based on the planar continuity and the behavior data.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 13, 2012
    Assignee: Furuno Electric Company, Limited
    Inventors: Tatsuya Kojima, Takumi Fujikawa, Hidetoshi Kaida, Yu Morita, Toshiaki Takaki, Katsunori Okamatu
  • Patent number: 8305261
    Abstract: A method of adaptively removing mainlobe clutter from range-Doppler data includes estimating the peak of the mainlobe clutter, and determining clutter regionboundaries adaptively and robustly. The mainlobe clutter peak may be estimated from the range-Doppler data, for example using both nonlinear and linear filters. Alternatively the mainlobe clutter peak may be estimated from knowledge of the position and speed of the vehicle, such as a missile, upon which the radar system moves. The clutter boundaries may be determined at each of the range bins by stepping along Doppler bins from the mainlobe clutter peak estimate in opposite directions, locating the boundary at locations off of the mainlobe clutter peak estimate that meet a given criterion. The method produces a finer determination of the mainlobe clutter region, resulting in less of the range-Doppler data being excluded as part of the mainlobe clutter region.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 6, 2012
    Assignee: Raytheon Company
    Inventor: Kyle P. Hunter
  • Patent number: 8305259
    Abstract: The radar includes a PCB having a top surface and a bottom surface, and a processor mounted on the bottom surface of the PCB. The radar includes a second liquid crystal polymer layer formed on the top surface of the printed circuit board, a second microstrip array printed on the second liquid crystal polymer layer, the second microstrip array having a patch, a first liquid crystal polymer layer formed on the second liquid crystal polymer layer, a first microstrip array printed on the first liquid crystal polymer layer, the first microstrip array having a perforated patch, an antenna positioned underneath the patch and connected to the second microstrip array, and a transmit/receive module connected to a bottom surface of the second liquid crystal polymer layer and configured to transmit a first frequency signal to the first microstrip array and a second frequency signal to the second microstrip array.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: November 6, 2012
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Alexandros Margomenos
  • Patent number: 8305257
    Abstract: A method and apparatus of determining a wave height directional spectrum of an ocean wave field using the intermediate-frequency (IF) signal from marine radars with a rotating antenna, using either a fully coherent or a standard non-coherent transmitter/receiver modified for coherent-on-receive use. The method may include receiving the IF radar ocean surface echo signal for a series of transmit pulses, at a sequence of azimuthal antenna positions, and a number of antenna rotations covering several minutes, then generating a matrix of complex IF signal samples from these, deriving phases for each sample, generating the difference in phase for consecutive azimuths, then Doppler shifts, and finally radial velocities.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: November 6, 2012
    Inventor: Dennis B. Trizna
  • Patent number: 8305255
    Abstract: The radar includes a PCB having a top surface and a bottom surface, and a processor mounted on the bottom surface of the PCB. The radar includes a second liquid crystal polymer layer formed on the top surface of the printed circuit board, a second microstrip array printed on the second liquid crystal polymer layer, the second microstrip array having a patch, a first liquid crystal polymer layer formed on the second liquid crystal polymer layer, a first microstrip array printed on the first liquid crystal polymer layer, the first microstrip array having a perforated patch, an antenna positioned underneath the patch and connected to the second microstrip array, and a transmit/receive module connected to a bottom surface of the second liquid crystal polymer layer and configured to transmit a first frequency signal to the first microstrip array and a second frequency signal to the second microstrip array.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: November 6, 2012
    Assignee: Toyota Motor Engineering & Manufacturing North America, Inc.
    Inventor: Alexandros Margomenos
  • Patent number: 8299955
    Abstract: The present invention relates to a method for cleaning signals for centralized antijamming. The invention makes it possible to provide as many cleaned antenna channels as sub-arrays with limited computational requirements. The method proceeds in two steps. Initially, an antijamming matrix is computed. This matrix depends on the noise covariance matrix, on a weighting vector representing the form of the desired antenna pattern on reception in an unjammed environment, and on constraints for preserving the shape of this antenna pattern. Subsequently, the signals arising from the antenna sub-arrays undergo a linear recombination effected by the antijamming matrix. The antijamming method is termed centralized since the data necessary for the antijamming processing are concentrated in the lone antijamming matrix. The invention applies notably to radar systems, notably to airborne radar systems.
    Type: Grant
    Filed: April 16, 2008
    Date of Patent: October 30, 2012
    Assignee: Thales
    Inventors: Amaury Fuss, Laurent Savy
  • Patent number: 8289202
    Abstract: A method, system, and computer program product for storing weather radar return data into a three-dimensional buffer. The system located on an aircraft includes a radar system that transmits a radar signal and generates a radar measurement as a result of radar return of the transmitted radar signal. A three-dimensional buffer includes a plurality of storage locations. A processor generates or updates a reflectivity value in storage locations in the three-dimensional buffer based on the generated radar measurement, a previously stored reflectivity value for the storage location, and uncertainty parameters. The uncertainty parameters of normalized radar cross section for ground elements are initialized based on a type of ground associated with each of the elements. The uncertainty parameters for weather reflectivity are initialized based on a priori information. The generated reflectivity values are stored in the three-dimensional buffer according to the storage locations.
    Type: Grant
    Filed: April 4, 2011
    Date of Patent: October 16, 2012
    Assignee: Honeywell International Inc.
    Inventor: Paul Christianson
  • Patent number: 8289201
    Abstract: A method and apparatus for detecting objects located underground. In one advantageous embodiment, a detection system detects objects having electrical non-linear characteristics located underground. The detection system comprises a transmitter unit, a receiver, and a processor. The transmitter transmits a plurality of pulsed radio frequency signals having a first frequency and a second frequency into a ground. The receiver monitors for a response radio frequency signal having a frequency equal to a difference between the first frequency and a second frequency, wherein the response radio frequency signal is generated by an object having the non-linear conductive characteristics in response to receiving the plurality of electromagnetic signals. The processor is connected to the transmitter unit and the receiver, wherein the processor controls an operation of the transmitter unit and the receiver, wherein the object is detected when the response radio frequency signal is detected by the receiver.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: October 16, 2012
    Assignee: The Boeing Company
    Inventors: Sandor Holly, Nicholas Koumvakalis, Robert Alan Smith
  • Patent number: 8288696
    Abstract: A method for engaging a target missile includes sensing the position of the target and of an interceptor missile, and determining time-to-go to intercept and direction of thrust of the interceptor. A one-step intercept solution is determined based on position estimates of the target and the interceptor and is used to iteratively estimate at least two components of a three-dimensional unit thrust vector, and apply updated guidance commands to the interceptor. A system for thrust vector control of an interceptor against a target missile includes a processor for receiving sensed target signals, determining a one-step initial solution to produce time-to-go and current direction of thrust of the interceptor, iteratively estimating at least two components of a three-dimensional unit thrust vector, and producing a guidance vector for application to the interceptor.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: October 16, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Jeffrey B. Boka, Purusottam Mookerjee, Naresh R. Patel
  • Publication number: 20120256778
    Abstract: Short-range vehicular radar systems are described. In one implementation, an apparatus used in radar applications includes a programmable digital receiver having an adaptable interference filter that is configured to reject radar pulses received from another radar system. In another implementation, a short-range vehicular radar system includes receive and transmission antennae, a programmable delay generator, and programmable receiver. The programmable delay generator is configured to control transmission of pulses from the transmission antenna at randomly selected times to prevent ambiguities associated with target objects that are distances away from the transmission antenna that are greater than the speed of light times the pulse repetition rate divided by two. The programmable receiver is calibrated to sample signals received by the receive antenna relative to when the pulses are emitted from the transmission antenna.
    Type: Application
    Filed: July 2, 2003
    Publication date: October 11, 2012
    Applicant: M/A COM, Inc.
    Inventors: Bruce David Labitt, Michael John Paradie, Matthew Douglas Marple
  • Patent number: 8279105
    Abstract: Embodiments of the invention relate to configuring a receiver. In some embodiments, when a receiver is executing a dwell, configuration settings for one or more next possible dwells to be executed by the receiver may be sent to the receiver. In this way, when the receiver completes execution of the current dwell, the receiver need not wait to receive configuration settings for the next dwell to be executed as they may be already loaded into the receiver.
    Type: Grant
    Filed: January 9, 2008
    Date of Patent: October 2, 2012
    Assignee: Lockheed Martin Corporation
    Inventors: Scott Kunz, Walter S. Richter, Jerry L. Twoey, Barrett L. Snedaker, Shawn Halferty, Douglas N. McMartin, Stephen A. Orzechowski
  • Patent number: 8279113
    Abstract: A signal y is received by a radar, the signal y being the reflection of a signal s emitted by the radar, the signal s having been reflected by a target. A filter w is estimated and applied to the signal y, in which the filter w compensates for an unwanted and beforehand unknown distortion d in the emitted signal s.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: October 2, 2012
    Assignee: Thales Nederland B.V.
    Inventors: Mayazzurra Ruggiano, Emiel Stolp
  • Patent number: 8279108
    Abstract: The general field of the invention is that of viewing systems of the synthetic vision type SVS, for a first aircraft, the said system comprising at least one cartographic database of a terrain, position sensors, for the said aircraft, an air traffic detection system calculating the position and the danger rating of at least one second aircraft exhibiting a risk of collision with the said first aircraft on the basis of data originating from sensors or systems such as TCAS or ADS-B, an electronic computer, a man-machine interface means and a display screen, the computer comprising means for processing the various items of information originating from the database, sensors and interface means, the said processing means arranged so as to provide the display screen with a synthetic image of the terrain comprising a representation of the said second aircraft.
    Type: Grant
    Filed: August 17, 2009
    Date of Patent: October 2, 2012
    Assignee: Thales
    Inventors: Christian Nouvel, Corinne Bacabara, Jean-Noel Perbet
  • Patent number: 8279111
    Abstract: A high-precision distance measuring with a reduced error in a distance measuring system which calculates a distance from an arrival time of each pulse signal constituting a pulse sequence is provided. For an oscillator which generates pulse signals by counting the number of pulse signals constituting a received pulse sequence, a relative time difference between a transmitting device and a return device is acquired, a distance from the transmitting device to the return device is calculated, and the calculated distance is corrected based on the calculated relative time difference.
    Type: Grant
    Filed: February 9, 2007
    Date of Patent: October 2, 2012
    Assignee: National Institute of Information and Communications Technology
    Inventors: Bin Zhen, Huan-Bang Li, Ryuji Kohno
  • Patent number: 8274427
    Abstract: A radar device including: a reception antenna that receives radio waves, includes at least three antennas and is arranged so that the phase center points thereof form an isosceles triangle; an arrival direction detection unit that detects an arrival direction of the radio waves by a phase monopulse method; and a phase correction unit that corrects a phase difference between phases of radio waves respectively received by two adjacent antennas among the three antennas based on the relationship of the phases of the radio waves respectively received by the three antennas.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: September 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Yoshiaki Minami
  • Patent number: 8274428
    Abstract: A method for estimating a radar cross-section (RES) of a given object by using a diffraction model of this object. With the model, it is possible to determine a basis adapted to said object on which is projected a vector of measurement. With the projected vector, it is possible to obtain a more complete reconstructed vector than the measurement vector in terms of incident wave and diffracted wave observation directions/polarizations and the components of which have a better signal/noise ratio than the measurements. The reconstructed vector is then used for calculating the RCS.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: September 25, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Olivier Vacus, Sylvain Morvan
  • Patent number: 8259002
    Abstract: Systems and methods for radar altimeter antenna performance monitoring via reflected power measurements are provided. In one embodiment, a single antenna radar altimeter comprises: an antenna; a circulator coupled to the antenna; a transmitter coupled to the circulator; a receiver coupled to the circulator; wherein the circulator provides coupling of the transmitter and the receiver to the antenna while providing isolation between the transmitter and the receiver; a reflected power monitor positioned between the circulator and receiver; and a processor coupled to the reflected power monitor via a first analog-to-digital converter, the processor configured to compute and track reflected power measurement statistics from data generated by the reflected power monitor and provide a performance output indicating when one or more of the reflected power measurement statistics exceed a predetermined deviation threshold.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: September 4, 2012
    Assignee: Honeywell International Inc.
    Inventors: David C. Vacanti, Anthony H. Luk