With Control Of Safety Device (e.g., Air Bags) Patents (Class 342/72)
  • Patent number: 7227494
    Abstract: A vehicular traffic surveillance Doppler radar system and method for use of the same are disclosed. In one embodiment, the system comprises a modulation circuit portion for generating modulated FM signals. An antenna circuit portion transmits the modulated FM signals to a target and receives the reflected modulated FM signals therefrom. A ranging circuit portion performs a quadrature demodulation on the reflected modulated FM signals and determines a range measurement based upon phase angle measurements derived therefrom.
    Type: Grant
    Filed: April 11, 2006
    Date of Patent: June 5, 2007
    Assignee: Applied Concepts, Inc.
    Inventor: John L. Aker
  • Patent number: 7205929
    Abstract: An electromagnetic wave is transmitted from a signal transmission antenna using a signal transmission IC; this electromagnetic wave is received, after having been reflected by a target object, by signal receiving antennas and signal receiving ICs; and the distance to the target object or the azimuth of the target object is detected by a signal processing section. The signal receiving antennas have approximately the same signal receiving characteristics and directivity in approximately the same direction, and are arranged in a row with a predetermined gap between them, thus constituting an antenna array.
    Type: Grant
    Filed: June 25, 2005
    Date of Patent: April 17, 2007
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masahito Shingyoji, Hiroyuki Ando
  • Patent number: 7199747
    Abstract: A method and apparatus for generating short electronic pulses using a modified differential trigger that is partly an analogue sinusoidal voltage and partly a selectable, DC voltage. The differential trigger is applied to a differential base band pulse generator having a NAND gate and AND gate. The trigger is applied to both NAND inputs and to one AND input. The NAND output is applied the other AND input. Such a circuit is an OFF state for all input states. However, as the input switches state, the NAND gate delay causes the AND gate to be ON briefly, generating a short pulse. The timing of this pulse can be controlled by varying the constant DC voltage. By using fast switching SiGe CML gates, short pulses with a controllable time off-set can be generated that are suitable for use in automotive radar applications, using only sub-GHz clocks.
    Type: Grant
    Filed: May 3, 2005
    Date of Patent: April 3, 2007
    Assignee: M/A-Com, Inc.
    Inventors: Alan Peter Jenkins, Robert Ian Gresham
  • Patent number: 7164381
    Abstract: A target identifying apparatus identifies a target from a first signal distribution and includes a calculation section, a target signal identifying section, a subtraction section, and a correction section. The calculation section calculates a quadratic approximate expression in the first signal distribution. The target signal, identifying section identifies a signal contained in the quadratic approximate expression as a single target signal. The subtraction section subtracts a value of the quadratic approximate expression from a value of the first signal distribution to generate a second signal distribution. When the one of the beam angle and the frequency corresponding to a maximum value of the second signal distribution is in a range where the value of the quadratic approximate expression is subtracted or is in a vicinity of the range, the correction section corrects the second signal distribution based on the quadratic approximate expression.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: January 16, 2007
    Assignee: Fujitsu Ten Limited
    Inventor: Masayuki Kishida
  • Patent number: 7159899
    Abstract: A possibility for controlling and supplying energy to a larger number of restraint means components in a vehicle seat that can be installed in variable fashion, this possibility being able to be realized using a constructively simple and robust electrical connection, so that this connection in particular also withstands the mechanical stresses that occur during the installation and removal of the vehicle seat. For this purpose, the vehicle seat is equipped with at least one system bus for controlling and supplying energy to the individual restraint means components of the vehicle seat. In addition, means are provided for the electrical contacting of the system bus during the installation of the vehicle seat.
    Type: Grant
    Filed: December 16, 2003
    Date of Patent: January 9, 2007
    Assignee: Robert Bosch GmbH
    Inventors: Werner Nitschke, Heiko Buehring, Heiko Fricke, Jorge Sanchez Arriazu
  • Patent number: 7158217
    Abstract: In a vehicle radar device, a predetermined number of received light signals output based on a predetermined number of laser beams radiated from a radar sensor are integrated by an integrator to produce an integrated signal. Integration of the predetermined number of received light signals helps amplify the received light signal components corresponding to the waves reflected by reflecting objects, making it possible to improve the sensitivity for detecting the waves reflected by the reflecting object. There are set a plurality of ranges of the received light signals to be integrated, each being shifted by one received light signal. This minimizes a drop in the angular resolution based on the integrated signals.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: January 2, 2007
    Assignee: Denso Corporation
    Inventors: Yoshiaki Hoashi, Katsuhiro Morikawa
  • Patent number: 7098844
    Abstract: Calibration of an acceleration detector is initiated by a user depressable button such as a button indicating a vehicle is at rest and/or by the detector reading an OBDII vehicle communication protocol to determine the condition of the vehicle. Calibration permits more accurate measurements in a vehicle performance test.
    Type: Grant
    Filed: December 10, 2004
    Date of Patent: August 29, 2006
    Assignee: Escort Inc.
    Inventors: Steven K. Orr, John Kuhn, Jeffrey J. Clawson
  • Patent number: 7090247
    Abstract: A system for detecting the seat occupancy in a vehicle includes a microwave transmitter (10) and a plurality of small-area reflectors (12) which are arranged in the vehicle. By activating or deactivating the different reflectors (12) during different time intervals, the reflectors (12) can be identified via the unequivocal assignment between the time intervals and the reflectors. This makes it possible to use narrow-band microwave radiation, since it is then not absolutely necessary to identify the reflectors (12) with the aid of different frequencies. It is also possible to arrange receivers in the seat (20) instead of reflectors (12).
    Type: Grant
    Filed: May 10, 2004
    Date of Patent: August 15, 2006
    Assignee: Siemens Aktiengesellschaft
    Inventors: Klaus Hofbeck, Birgit Rösel
  • Patent number: 7084807
    Abstract: The present invention provides a method for generating HF signals for determining a distance and/or a speed of an object, having the following steps: generating a pulsed demodulated signal (6?) from a first signal (3) and a second signal (4) in a signal generator (31; 1, 2, M1, 7, 8); with a transmitting device (20), sending the pulsed modulated signal (6?) in the direction of an object (40); with a receiving device (21), receiving a pulsed signal (6?) reflected by the object (40); generating a pulsed demodulated signal (4?) from the received signal (6?) and the first signal (3) in a first signal processor (32; M2, 15); and generating a coherent signal (23) from the pulsed demodulated signal (4?) and the second signal (4) and a noncoherent signal (22) from the pulsed demodulated signal (4?) in a second signal processor (33; M3, 16, 17, 18). The present invention also provides an apparatus for generating HF signals for determining a distance and/or a speed of an object.
    Type: Grant
    Filed: April 2, 2003
    Date of Patent: August 1, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Dirk Steinbuch, Martin Reiche
  • Patent number: 7068211
    Abstract: An apparatus and method obtains positional information about one or more objects in a detection field. An array includes a transmitting element and a plurality of receiving elements. A truncated cross-correlation function may be applied to determine the interval between signals received by a plurality of the receiving elements, thereby to determine an angular position of an object. A warning zone may be defined and it is determined whether an object is within the warning zone. Also disclosed are techniques for stretching received signals, and techniques for obtaining positional information relating to an object using non-Doppler radar.
    Type: Grant
    Filed: February 8, 2001
    Date of Patent: June 27, 2006
    Assignee: Cambridge Consultants Limited
    Inventors: Gordon Kenneth Andrew Oswald, Alan Trevor Richardson, Michael Hugh Burchett, Eric Nicol Clouston, Danielle Emma Toutoungi
  • Patent number: 7046167
    Abstract: An adaptive collision load path modification system (10) for a vehicle (12) includes multiple object detection sensors (14) that generate object detection signals. The system (10) may include a structural stiffness-adjusting device (46), which is coupled within a frame rail (58, 62) of the vehicle (12), and in addition or alternatively a tire deflation apparatus (48). A controller (18) is coupled to the object detection sensors (14) and through use of the structural stiffness-adjusting device (46) or the tire deflation apparatus (48) adjusts collision load paths of the vehicle (12) in response to the object detection signals. In so doing, the controller (18) may activate the structural stiffness-adjusting device (46) and deflate a tire (76) of the vehicle (12).
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: May 16, 2006
    Assignee: Ford Global Technologies, LLC
    Inventors: Manoharprasad K. Rao, Kwaku O. Prakah-Asante, Gary S. Strumolo
  • Patent number: 7034742
    Abstract: A first Kalman filter estimates true measures of yaw rate and vehicle speed from associated noisy measures thereof generated by respective sensors in a host vehicle, and a second Kalman filter estimates therefrom parameters of a clothoid model of road curvature. Measures of range, range rate, and azimuth angle from a target state estimation subsystem, e.g. a radar system, are processed by an extended Kalman filter to provide an unconstrained estimate of the state of a target vehicle. Associated road constrained target state estimates are generated for one or more roadway lanes, and are compared—either individually or in combination—with the unconstrained estimate. If a constrained target state estimate corresponds to the unconstrained estimate, then the state of the target vehicle is generated by fusing the unconstrained and constrained estimates; and otherwise is given by the unconstrained estimate alone.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: April 25, 2006
    Assignee: Automotive Systems Laboratory, Inc.
    Inventors: Shan Cong, Shi Shen, Lang Hong
  • Patent number: 7012560
    Abstract: An object sensing apparatus for driver assistance systems in motor vehicles, including at least two sensor systems which measure data concerning the location and/or motion status of objects in the vicinity of the vehicle, and whose detection regions overlap one another, characterized by an error recognition device that checks the data measured by the sensor systems for absence of contradictions, and outputs an error signal upon detection of a contradiction.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: March 14, 2006
    Assignee: Robert Bosch GmbH
    Inventors: Goetz Braeuchle, Martin Heinebrodt, Jürgen Böcker
  • Patent number: 6999024
    Abstract: An average power value of a peak pair corresponding to a subjective target objective is converted into a radar cross section, to calculate a normalized average power value NP and a standard deviation DP representing a temporal dispersion of a power difference between peak pairs. When the value NP is larger than an automotive vehicle discriminating threshold THnp, the attribute of the subjective target objective is set to “automotive vehicle.” When the value NP is not larger than the threshold THnp and the deviation DP is larger than a human objective discriminating threshold THdp, the attribute of the subjective target objective is set to “non-vehicle objective: human objective.” Furthermore, when the value NP is not larger than the threshold THnp and the deviation DP is not larger than the threshold THdp, the attribute of the subjective target objective is set to “non-vehicle objective: non-human.
    Type: Grant
    Filed: December 9, 2003
    Date of Patent: February 14, 2006
    Assignee: Denso Corporation
    Inventors: Hiroaki Kumon, Yukimasa Tamatsu
  • Patent number: 6993422
    Abstract: A system for adjusting a height of a first road vehicle with respect to the ground prior to impacting a second road vehicle is disclosed. The system includes a predictive crash sensor mounted to the first vehicle for sensing the second road vehicle, a control unit, and a height adjustment apparatus. The control unit is in communication with the predicative crash sensor for receiving a predictive crash signal and determining whether the first and the second road vehicles will collide. The height adjustment apparatus is mounted to the first road vehicle and in communication with the control unit. The height adjustment apparatus includes a shock absorber, a bladder, and a first valve. The shock absorber is mounted at a first end to a vehicle body of the first road vehicle and at a second end to a vehicle axle of the first road vehicle. The bladder is fixed at a first end to the first end of the shock absorber and at a second end to the second end of the shock absorber.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: January 31, 2006
    Assignee: Autoliv ASP, Inc.
    Inventors: Bernard De Mersseman, Saeed D. Barbat, Charles J. Sherwin, Stephen W. Decker
  • Patent number: 6975263
    Abstract: A device for determining the position of a vehicle on a roadway by using radio waves which are emitted from the device and reflected by the vehicle and received by at least two array antennas (1, 2) arranged across the roadway, wherein the array antennas (1, 2) comprise a number of antenna elements (5–14), one of the antenna elements in the respective array antenna constituting the phase center (5, 10) of the array antennas, and wherein the antenna elements (5–14) of the array antennas are connected to one another such that the distance (d) between the phase centers (5, 10) of the array antennas (1, 2) included is smaller than half the width of an individual array antenna (1, 2).
    Type: Grant
    Filed: May 31, 1999
    Date of Patent: December 13, 2005
    Assignee: Combitech Traffic Systems AB
    Inventor: Håkan Lövsén
  • Patent number: 6940448
    Abstract: A method and a device for ascertaining the imminence of an unavoidable collision of a vehicle with an object, all locations within a determinable prediction time interval being predetermined as a function of the maximum possible longitudinal acceleration and lateral acceleration of the vehicle and of the at least one object. The imminence of an unavoidable collision between the vehicle and the object may be recognized, also taking into account the extension of the vehicle and of the at least one object.
    Type: Grant
    Filed: August 4, 2003
    Date of Patent: September 6, 2005
    Assignee: Robert Bosch GmbH
    Inventors: Michael Knoop, Martin Heinebrodt, Joachim Thiele, Martin Staempfle, Fred Oechsle, Ulf Wilhelm
  • Patent number: 6930631
    Abstract: A sensor front end for an electronic radar sensor is disclosed that provides for a lower parts count while providing technical functionality by using multifunction parts, i.e., parts that are used both in transmitting and receiving. The sensor front end includes a continuous wave signal source that functions as a signal source when the front end is transmitting a signal and as a local oscillator when the front end is receiving a signal. The sensor front end also includes a tri-mode mixer that functions as a phase-modulator and transmit switch when the front end is transmitting a signal and as a mixer/down-converter when the front end is receiving a signal. The sensor front end further includes a common aperture antenna that acts as both a transmitting antenna for transmitting a sensor signal and for receiving a reflected signal from a object.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: August 16, 2005
    Assignee: M/A-Com, Inc.
    Inventor: Kenneth V. Puglia
  • Patent number: 6923483
    Abstract: An airbag (10) for mounting in the bumper (18) of a motor vehicle (12) is provided. The airbag can have an up-side-down “L” shape or a cylindrical shape. Further, multiple bags can be combined within one system. The airbag is configured to cover substantially the width of the vehicle upon deployment and also provide protection to the occupant of a struck vehicle (36) in the event the occupant is partially expelled from the struck vehicle in the direction of the bag. The airbag is combined with an inflation (23), collision sensor (34) and an electronic control unit (38) to form the airbag system.
    Type: Grant
    Filed: January 10, 2002
    Date of Patent: August 2, 2005
    Assignee: Universal Propulsion Company, Inc.
    Inventors: Paul G. Curry, Wesley Pack, Steve Hailstone, Jeffrey A. Baker, Robert V. McClenathan, Michael T. Vecchio, Saeed David Barbat, Priyaranjan Prasad
  • Patent number: 6921106
    Abstract: A passenger protecting apparatus according to the invention is disposed rearward of the position of the head of a driver or another passenger, and is arranged to control the operation thereof in accordance with the output from a position detecting means detecting the distance to the rear surface such as the back of the head, the back etc. of the passenger. According to the invention, there is an advantage of being able to obtain a safer passenger protecting apparatus.
    Type: Grant
    Filed: May 22, 2001
    Date of Patent: July 26, 2005
    Assignee: Mitsubishi Denki Kabushiki
    Inventor: Katsuaki Yasui
  • Patent number: 6879281
    Abstract: A radar based sensor detection system comprises a microwave source operative to provide a continuous wave signal at an output. A pulse-former is coupled to the output of the source and is operative to provide at an output a variable length pulse that increases the transmitted energy of the radar system according to the range of object detection. A modulator is coupled to the output of the pulse-former for providing a modulated pulse signal when required. A transmit/receive switch coupled to the output of the modulator is selectively operative between a first transmit position and a second receive position. A transmit channel coupled to the transmit/receive switch transmits the pulse signal when the switch is operated in the transmit position. A receiving channel coupled to the transmit/receive switch receives the modulator signal when the switch is operated in the receive position.
    Type: Grant
    Filed: May 21, 2003
    Date of Patent: April 12, 2005
    Assignee: M/A - Com, Inc.
    Inventors: Robert Ian Gresham, Robert Egri
  • Patent number: 6873286
    Abstract: The system comprises: detector devices (1) operable to provide electrical signals indicative of the relative distance and relative speed of the motor vehicle (V) with respect to a fixed or moving obstacle (O) ahead, and a processing and control unit (ECU) connected to such detector devices (1) as well as to brake actuators (2-4) and arranged to cause activation of the brake actuators (2-4) to effect automatic emergency braking of the motor vehicle (V) when the relative distance between the motor vehicle (V) and an obstacle (O) ahead lies between a first predetermined limit value (dF) equal to the minimum value at which it is still possible to avoid collision by braking and a preselected intermediate value (dE) comprised between said first limit value (dF) and a second limit value (dEcrit) which is less than the said first limit value (df) and is equal to the minimum relative distance value at which it is still possible to follow a path which avoids the obstacle (O), or when the relative distance (dR) becomes
    Type: Grant
    Filed: March 25, 2002
    Date of Patent: March 29, 2005
    Assignee: C.R.F. Societa Consortile per Azioni
    Inventors: Domenico Albero, Pier Claudio Antonello, Sebastiano Campo, Angela Chinu, Renzo Cicilloni, Silvia Citelli, Maurizio Miglietta, Vincenzo Murdocco, Valter Quenda, Andrea Saroldi
  • Patent number: 6859731
    Abstract: In a collision damage reduction system, a microcomputer obtains relative position data corresponding to a relative between a vehicle and an object from a first detecting unit, the detected speed of the vehicle as detected by a second detecting unit, the detected turning angle of the vehicle as detected by a third detecting unit. The microcomputer calculates a total collision probability representing a probability that the vehicle and the object will collide on a runnable space according to the relative position data, the detected speed of the own vehicle and the detected turning angle. In addition, the microcomputer instructs the operation unit to operate at least one of a first collision avoidance operation and a second collision avoidance operation according to the total collision probability.
    Type: Grant
    Filed: January 15, 2003
    Date of Patent: February 22, 2005
    Assignee: Denso Corporation
    Inventors: Tetsuya Takafuji, Tomoji Suzuki
  • Patent number: 6859705
    Abstract: A control system (10) for an automotive vehicle (50) coupled to a countermeasure system having a countermeasure includes an object sensor system (18) generating an object signal, an object distance signal, an object azimuth position signal, and object relative velocity signal. The control system (10) further includes an object classifier coupled to the object sensor system (18) generating an object classification signal in response to the object signal and a controller coupled to the object sensor object classifier for activating the countermeasure (42) in response to the object distance, object azimuth position, relative velocity and the object classification signal.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: February 22, 2005
    Assignee: Ford Global Technologies, LLC
    Inventors: Manoharprasad K. Rao, Kwaku O. Prakah-Asante, Gary Steven Strumolo, Samuel Edward Ebenstein
  • Publication number: 20040257556
    Abstract: An object recognition apparatus for vehicles is provided which is equipped with a radar. The apparatus is designed to detect adhesion of any dirt to the radar which will disturbs emission of radar waves to and reception radar echoes from a target. When the number of radar waves is great which cause the times required by the radar waves to travel to and return from a target to be measured as being shorter than a predetermined period of time and the intensities of the radar returns to be greater than a predetermined value, it is determined that the dirt is adhered to the radar, thereby improving the accuracy of detecting the adhesion of dirt to the radar.
    Type: Application
    Filed: June 17, 2004
    Publication date: December 23, 2004
    Applicant: DENSO CORPORATION
    Inventors: Yoshie Samukawa, Mamoru Shimamoto, Tadashi Hyodo, Toyohito Nozawa, Yoshiaki Hoashi
  • Publication number: 20040257266
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone and with changing range gates in each of the antenna beams the coverage of the detection zone can be varied.
    Type: Application
    Filed: July 8, 2004
    Publication date: December 23, 2004
    Inventors: Joseph S. Pleva, Mark E. Russell, Walter Gordon Woodington, Michael Joseph Delcheccolo, H. Barteld Van Rees
  • Publication number: 20040246167
    Abstract: An average power value of a peak pair corresponding to a subjective target objective is converted into a radar cross section, to calculate a normalized average power value NP and a standard deviation DP representing a temporal dispersion of a power difference between peak pairs. When the value NP is larger than an automotive vehicle discriminating threshold THnp, the attribute of the subjective target objective is set to “automotive vehicle.” When the value NP is not larger than the threshold THnp and the deviation DP is larger than a human objective discriminating threshold THdp, the attribute of the subjective target objective is set to “non-vehicle objective: human objective.” Furthermore, when the value NP is not larger than the threshold THnp and the deviation DP is not larger than the threshold THdp, the attribute of the subjective target objective is set to “non-vehicle objective: non-human.
    Type: Application
    Filed: December 9, 2003
    Publication date: December 9, 2004
    Inventors: Hiroaki Kumon, Yukimasa Tamatsu
  • Publication number: 20040246169
    Abstract: A target determination apparatus for determining type of a target, includes a transmission unit, a reception unit, and a determination unit. The transmission unit emits an electromagnetic wave. The reception unit receives the electromagnetic wave reflected at the target to obtain reception information. The determination unit determines the type of the target on the basis of radar cross section obtained from the reception information.
    Type: Application
    Filed: May 27, 2004
    Publication date: December 9, 2004
    Applicants: FUJITSU TEN LIMITED, FUJITSU LIMITED
    Inventors: Masao Nakano, Kimihisa Yoneda
  • Publication number: 20040246170
    Abstract: A radar detection process includes computing a derivative of an FFT output signal to detect an object within a specified detection zone. In one embodiment, a zero crossing in the second derivative of the FFT output signal indicates the presence of an object. The range of the object is determined as a function of the frequency at which the zero crossing occurs. Also described is a detection table containing indicators of the presence or absence of an object within a respective radar beam and processing cycle. At least two such indicators are combined in order to detect the presence of an object within the detection zone.
    Type: Application
    Filed: July 8, 2004
    Publication date: December 9, 2004
    Inventors: Walter Gordon Woodington, Michael Joseph Delcheccolo, Joseph S. Pleva, Mark E. Russell, H. Barteld Van Rees
  • Patent number: 6828928
    Abstract: Driving assistance device for a motor vehicle, including at least one emitter of radiation toward the front of the vehicle, a receiver of part of this radiation reflected by a target vehicle, and control and calculation means for influencing the acceleration and braking of the following vehicle in accordance with information coming from the unit comprising the emitter and the receiver and in accordance with data pertaining to the following vehicle. At least the emitter is mounted so as to be rotatable in terms of the azimuth and means for driving the emitter in rotation are provided in order to modify the azimuth of the beam of the emitter in accordance with the curvature of the road. This beam advantageously turns by the same angle as that of the beam of an adaptive lighting system.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: December 7, 2004
    Assignee: Valeo Vision
    Inventor: Alexis Dubrovin
  • Publication number: 20040239555
    Abstract: The present invention provides a method for generating HF signals for determining a distance and/or a speed of an object, having the following steps: generating a pulsed demodulated signal (6′) from a first signal (3) and a second signal (4) in a signal generator (31; 1, 2, M1, 7, 8); with a transmitting device (20), sending the pulsed modulated signal (6′) in the direction of an object (40); with a receiving device (21), receiving a pulsed signal (6″) reflected by the object (40); generating a pulsed demodulated signal (4″) from the received signal (6″) and the first signal (3) in a first signal processor (32; M2, 15); and generating a coherent signal (23) from the pulsed demodulated signal (4″) and the second signal (4) and a noncoherent signal (22) from the pulsed demodulated signal (4″) in a second signal processor (33; M3, 16, 17, 18).
    Type: Application
    Filed: March 29, 2004
    Publication date: December 2, 2004
    Inventors: Dirk Steinbuch, Martin Reiche
  • Publication number: 20040227663
    Abstract: A millimeter-wave radar has a radome or radar cover including a layer, the dielectric constant of which is a greater than that of the other portion without the layer, or including a magnetic loss layer in an appropriate position with respect to the antenna. The dielectric constant of the radome or radar cover can be made higher in a portion corresponding to the side of the antenna than in a portion corresponding to the front of the antenna.
    Type: Application
    Filed: February 24, 2004
    Publication date: November 18, 2004
    Inventors: Mitsushige Suzuki, Kazuaki Takano
  • Patent number: 6819283
    Abstract: A vehicle control apparatus includes an obstruction detection unit for measuring a headway distance until an existing ahead of the vehicle by means of a radar device, a unit for performing vehicle control or alarm control on the basis of the headway distance, a unit for detecting detection performance of the obstruction detection means in a vehicle in which the obstruction detection unit is used to perform two or more controls containing the vehicle control or alarm control, and a unit for controlling to stop operation of the vehicle control or alarm control in accordance with the detection performance individually.
    Type: Grant
    Filed: February 27, 2002
    Date of Patent: November 16, 2004
    Assignee: Hitachi, Ltd.
    Inventors: Fumihiko Okai, Hiroshi Kuroda
  • Publication number: 20040222918
    Abstract: A transmission wave is transmitted to a target from a transmission section. A receiving section receives a wave reflected from the target as a received wave. A conversion section converts a time difference between the transmission time at which a transmission wave is transmitted and the receiving time at which a received wave is received in to a voltage. The thus-obtained voltage is subjected to analog-to-digital conversion by means of a processing circuit, whereby a distance is computed.
    Type: Application
    Filed: February 18, 2004
    Publication date: November 11, 2004
    Applicant: FUJITSU TEN LIMITED
    Inventors: Etsuo Kakishita, Kimihisa Yoneda
  • Patent number: 6812883
    Abstract: A radar system mounted in a reference vehicle can detect a distance and orientation of a preceding vehicle to thereby compute a relative position of a width center of the preceding vehicle. A curving radius of the reference vehicle is then detected for computing a relative rotation angle between a direction from the reference vehicle and a longitudinal direction of the preceding vehicle. Relationship between a relative rotation angle and a lateral bias of the relative position of the width center is previously prepared in a map. The computed relative rotation angle is applied on the map, so that the corresponding lateral bias is obtained to correct the computed relative position of the width center of the preceding vehicle. Thus, the width center of the preceding vehicle moving in an adjacent lane can be accurately estimated.
    Type: Grant
    Filed: December 30, 2003
    Date of Patent: November 2, 2004
    Assignee: Denso Corporation
    Inventors: Hiroaki Kumon, Yukimasa Tamatsu
  • Patent number: 6809680
    Abstract: In detecting an obstacle of a vehicle, to be able to eliminate dead angle, shorten a detection period and reduce erroneous detection of the obstacle, when a vehicle runs on a running road, by pivoting a pivoting radar in a direction in accordance with a progressing direction of the vehicle, a total or a portion of a detection range of the pivoting radar can be made to be outside of a detection range of fixed radars. Therefore, an obstacle in a range outside of the detection range of the fixed radars can be detected by the pivoting radar.
    Type: Grant
    Filed: October 22, 2002
    Date of Patent: October 26, 2004
    Assignee: Komatsu Ltd.
    Inventor: Masanori Tojima
  • Patent number: 6784828
    Abstract: A near object detection (NOD) system includes a plurality of sensors, each of the sensors for providing detection coverage in a predetermined coverage zone and each of the sensors including a transmit antenna for transmitting a first RF signal, a receive antenna for receiving a second RF signal and means for sharing information between each of the plurality of sensors in the NOD system.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: August 31, 2004
    Assignee: Raytheon Company
    Inventors: Michael Joseph Delcheccolo, Mark E. Russell, Walter Gordon Woodington, Joseph S. Pleva, H. Barteld Van Rees
  • Patent number: 6776436
    Abstract: A vehicular occupant restraint system includes a distance sensor, an electromagnetic wave radiation-type occupant sensor, a controller, and an airbag drive circuit. When the controller predicts a collision and determines it is unavoidable based on the output of the distance sensor, the controller sends an instruction signal to the occupant sensor to determine the seating condition of an occupant. Then, the airbag drive circuit performs an airbag deployment control in accordance with the determined seating condition. This system thus reduces power consumption and electromagnetic wave radiation of the occupant sensor.
    Type: Grant
    Filed: October 16, 2002
    Date of Patent: August 17, 2004
    Assignees: Nippon Soken, Denso Corporation
    Inventors: Akira Takagi, Masahiro Taguchi, Tomoyuki Goto, Hironori Sato, Masayuki Imanishi
  • Publication number: 20040155811
    Abstract: The system comprises: detector devices (1) operable to provide electrical signals indicative of the relative distance and relative speed of the motor vehicle (V) with respect to a fixed or moving obstacle (O) ahead, and a processing and control unit (ECU) connected to such detector devices (1) as well as to brake actuators (2-4) and arranged to cause activation of the brake actuators (2-4) to effect automatic emergency braking of the motor vehicle (V) when the relative distance between the motor vehicle (V) and an obstacle (O) ahead lies between a first predetermined limit value (dF) equal to the minimum value at which it is still possible to avoid collision by braking and a preselected intermediate value (dE) comprised between said first limit value (dF) and a second limit value (dEcrit) which is less than the said first limit value (dF) and is equal to the minimum relative distance value at which it is still possible to follow a path which avoids the obstacle (O), or when the relative distance (dR) becomes
    Type: Application
    Filed: September 25, 2003
    Publication date: August 12, 2004
    Inventors: Domenico Albero, Pier Claudio Antonello, Sebastiano Campo, Angela Chinu, Renzo Cicilloni, Silvia Citelli, Maurizio Miglietta, Vincenzo Murdocco, Valter Quenda, Andrea Saroldi
  • Patent number: 6775605
    Abstract: A pre-crash assessment system (1) includes a host vehicle (3) in motion and a high frequency sensor (4), which detects position and relative velocity of a target object in the near zone of the host vehicle (3). A safety device actuator (5) is also coupled to the host vehicle (3). A pre-crash algorithm provides a comparison of a future position prediction of the target object relative to the host vehicle (3). A safety device controller (9) is coupled to the host vehicle (3). The controller (9) generates a threshold assessment based on the target object future relative position and relative velocity. The controller (9) also controls the safety device actuator (5) by providing an actuation signal. The controller (9) operates through logic designed to estimate whether a potential for crash between the host vehicle (3) and the target object is within the threshold for the safety device actuator (5).
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: August 10, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Manoharprasad K. Rao, Kwaku O. Prakah-Asante, Md Abul Masrur
  • Publication number: 20040145513
    Abstract: In the on-vehicle radar apparatus of the present invention, the vertical scanning width of the radar beam is narrowed, before the horizontal scanning, thereby avoiding unnecessary data processing and improving the data processing efficiently. Further, the SIN ratio of the target detection signal is increased, thereby stabilizing the distance detection and its accuracy. The vertical scanning antenna is a single travelling wave excitation antenna (TWEA) constructed by a plurality of antenna elements. At the same time, the horizontal scanning antenna is a multi-channel antenna wherein a plurality of TWEAs is assigned to a plurality of horizontal directions. The horizontal scanning angle is arbitrarily widened by increasing the number of TWEAs.
    Type: Application
    Filed: September 8, 2003
    Publication date: July 29, 2004
    Inventors: Tetsuya Katayama, Yuichi Tanaka
  • Patent number: 6768446
    Abstract: A vehicle-mounted radar apparatus which periodically derives and registers successive momentary position values for a target object such as a preceding vehicle based on received reflected radio waves and derives final lateral position data by smoothing the momentary position data, judges when a degree of scattering of the registered momentary position values exceeds a first predetermined level and in that case derives corrected position data based on differences between envelope curve line values which are generated based on local extreme values of the momentary position data, and performs smoothing of the corrected position data instead of the momentary position data, to obtain the final lateral position data. If the target object is not estimated to be located directly ahead of the host vehicle along a straight route, the corrected position data are adjusted in accordance with relative positions and orientations of the target object and host vehicle.
    Type: Grant
    Filed: May 23, 2003
    Date of Patent: July 27, 2004
    Assignee: Denso Corporation
    Inventors: Yukimasa Tamatsu, Hiroaki Kumon, Akira Isogai
  • Publication number: 20040140927
    Abstract: In a method for determination of the length of objects in traffic, especially passenger cars, trucks, buses, motorbikes, bicycles and pedestrians, radar signals are transmitted by a vehicle, the radar signals are reflected by an object being measured, the reflected radar signals are received in the vehicle, the frequency spectra of the reflected radar signals are evaluated, and the reflection peaks contained in the frequency spectra are determined. Length measurement, by means of known radar sensors, from a vehicle is made possible by the fact that the width of the reflection peaks is determined, and that the length of the object being measured is determined by means of the determined width.
    Type: Application
    Filed: December 12, 2003
    Publication date: July 22, 2004
    Inventors: Marc-Michael Meinecke, Ralph Mende, Marc Behrens
  • Publication number: 20040119633
    Abstract: Apparatus for and methods of obtaining positional information about one or more objects in a detection field are disclosed. An array including a transmitting element and a plurality of receiving elements is provided. In one aspect a truncated cross-correlation function is applied to determine the interval between signals received by a plurality of the receiving elements, thereby to determine an angular position of an object. In another aspect a warning zone is defined and it is determined whether an object is within the warning zone. Also disclosed are techniques for stretching received signals, and techniques for obtaining positional information relating to an object using non-Doppler radar. Various implementations, modifications and applications of the techniques described are disclosed. Typical applications of the techniques described are with vehicles.
    Type: Application
    Filed: June 26, 2003
    Publication date: June 24, 2004
    Applicant: Cambridge Consultants Limited
    Inventors: Gordon Kenneth Andrew Oswald, Alan Trevor Richardson, Michael Hugh Burchett, Eric Nicol Clouston, Danielle Emma Toutoungi
  • Publication number: 20040119634
    Abstract: An obstacle detection system includes a laser radar sensor that emits laser beams for scanning a two-dimensional detection area ahead of a vehicle and receives reflected beams in a form of reflecting dots representing the obstacle such as a preceding vehicle. To effectively detect a preceding vehicle traveling on a curved road, a reference angular direction in which the preceding vehicle is most probably located is set based on a traveling speed of the own vehicle and a calculated radius of the curved road. The reflecting dots are selected from those located closer to the reference angular direction until they reach a predetermined number, thereby forming a target model. The preceding vehicle is detected based on the target model.
    Type: Application
    Filed: November 20, 2003
    Publication date: June 24, 2004
    Inventors: Yoshie Samukawa, Toyohito Nozawa, Hiroshi Ohkata, Tsutomu Natsume
  • Patent number: 6749218
    Abstract: Externally deployed airbag system for a vehicle including one or more inflatable airbags deployable outside of the vehicle, an anticipatory sensor system for assessing the probable severity of an impact involving the vehicle based on data obtained prior to the impact and initiating inflation of the airbag(s) in the event an impact above a threshold severity is assessed, and an inflator coupled to the anticipatory sensor system and the airbag for inflating the airbag when initiated by the anticipatory sensor system. The airbag may be housed in a module mounted along a side of the vehicle, in a side door of the vehicle (both for side impact protection), at a front of the vehicle (for frontal impact protection) or at a rear of the vehicle (for rear impact protection). Also, the externally deployed airbag can be deployed to cushion a pedestrian's impact against the vehicle.
    Type: Grant
    Filed: March 13, 2002
    Date of Patent: June 15, 2004
    Assignee: Automotive Technologies International, Inc.
    Inventor: David S. Breed
  • Patent number: 6747592
    Abstract: A diplex Doppler type radar system which can detect a preceding vehicle even when the range rate (e.g. a relative velocity, a relative distance) of a preceding vehicle relative to a vehicle having the radar system is small. A Radar system is mounted on a vehicle, the transmit antenna alternately transmits two signals on different frequencies. When the transmitted signals met an object (a preceding vehicle) and reflected, the reflected signals are received by a receive antenna. Usually, The first A/D converter digitizes IF signals (said received signals) and the DSP (digital signal processor) frequency-analyzes the digitized signals to compute the range rate of the preceding vehicle. When a peak spectrum exists in a low frequency range below a preset threshold as the result of the frequency analysis, the IF signals are digitized by the second A/D converter which has a higher sampling resolution than that of the second A/D converter.
    Type: Grant
    Filed: May 13, 2003
    Date of Patent: June 8, 2004
    Assignee: Hitachi, Ltd.
    Inventor: Kazuto Nakamura
  • Patent number: 6737963
    Abstract: A tailgating safety system for a vehicle includes a distance determiner for determining a distance of the vehicle from objects which are leading or following the vehicle. The system also includes a speedometer for determining a speed of the vehicle and an alarm. If the speed of the vehicle is greater than a predetermined speed, and the distance of the vehicle from another object is less than a predetermined distance, then the alarm is activated to advise the driver that at the speed the vehicle is traveling, the distance between the vehicle and the object is not a safe traveling distance.
    Type: Grant
    Filed: March 30, 2001
    Date of Patent: May 18, 2004
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Srinivas Gutta, Miroslav Trajkovic, Antonio Colmenarez
  • Patent number: 6736231
    Abstract: System and method for determining occupancy of a vehicle in which a radar system emits radio waves into an interior of the vehicle in which objects might be situated and receives radio waves and a processor coupled to the radar system determines the presence of any repetitive motions indicative of a living occupant in the vehicle based on the received radio waves such that the presence of living occupants in the vehicle is ascertainable upon the determination of the presence of repetitive motions indicative of a living occupant. Repetitive motions indicative of a living occupant may be a heart beat or breathing as reflected by movement of the chest. The processor may be programmed to analyze the frequency of the repetitive motions based on the received radio waves whereby a frequency in a predetermined range is indicative of a heartbeat or breathing.
    Type: Grant
    Filed: June 26, 2001
    Date of Patent: May 18, 2004
    Assignee: Automotive Technologies International, Inc.
    Inventors: David S. Breed, Wilbur E. DuVall, Wendell C. Johnson
  • Patent number: 6728617
    Abstract: A pre-crash sensing system (10) for a source vehicle (50) having a source vehicle length and a source vehicle width that is coupled to a countermeasure system (30) is described. The system includes an object sensor (17) having a radar sensor (18) generating an object distance signal and an object relative velocity signal, and a vision system (20) generating an object classification signal. A controller (12) is coupled to the object sensor for activating the countermeasure system (30) based on the object distance, relative velocity and the object classification signal.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: April 27, 2004
    Assignee: Ford Global Technologies, LLC
    Inventors: Manoharprasad K. Rao, Nikolay V. Smirnov, Kwaku O. Prakah-Asante, Gary Steven Strumolo