Gas Patents (Class 356/437)
  • Patent number: 9746408
    Abstract: A dust sensor includes a multi-wavelength light source, a receiver, and a controller. The light source emits light of different wavelengths. The receiver generates one or more acoustic wave measurement values based on acoustic waves irradiated from the light source to air particles. The controller controls at least one flickering cycle of the light source, determines the type particles based on the acoustic wave measurement values, and calculates the concentration of particles. The controller calculates the concentration of particles in proportion to an intensity of the acoustic wave measurement values, and determine the type of particles based on the acoustic wave measurement values. The acoustic waves are generated differently based on wavelengths of light emitted from the multi-wavelength light source.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: August 29, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hong Shik Shim, Jae Ik Lim, Jin Woo Choi
  • Patent number: 9739143
    Abstract: Systems and methods for detecting faults in the active damping of a logging tool are disclosed herein. A wellbore logging tool system comprises a processor, a memory, a wellbore logging tool comprising an acoustic transmitter, and a logging tool control module. The logging tool control module is operable to receive sensor signals from one or more sensors coupled to the wellbore logging tool after a damping control signal has been transmitted to the acoustic transmitter. The logging tool control module is also operable to determine one or more expected sensor signals, determine error values using the expected sensor signals and the sensor signals received from the one or more sensors, and compare the error values with one or more thresholds.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 22, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Xingyong Song, Yiming Zhao, Jason D. Dykstra
  • Patent number: 9739903
    Abstract: Systems and methods for actively controlling the damping of a wellbore logging tool are disclosed herein. A wellbore logging tool system comprises a processor, a memory, a wellbore logging tool comprising an acoustic transmitter, and a logging tool control module. The logging tool control module is operable to receive sensor signals from one or more sensors coupled to the wellbore logging tool after an actuation control signal has been transmitted to the acoustic transmitter and determine, using the received sensor signals, one or more current dynamic states of the acoustic transmitter. The logging tool control module is also operable to determine a damping control signal based on the one or more current dynamic states of the acoustic transmitter and transmit the damping control signal to the acoustic transmitter of the wellbore logging tool.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: August 22, 2017
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Xingyong Song, Yiming Zhao, Jason D. Dykstra
  • Patent number: 9644940
    Abstract: A system and method for the monitoring of ammonia in a fluid. The ammonia monitoring system includes an ammonia sensor that is configured to detect trace amounts of ammonia (NH3) in a fluid (i.e., gas or liquid) that is pumped through it in real time. The real time ammonia sensor includes an interferometer configured to track the amount of ammonia that is pumped into the real time ammonia sensor. The ammonia monitoring system, via the real time ammonia sensor, is further configured to detect ammonia levels in industrial poultry houses and provide electronic feedback to the building's ventilation control system.
    Type: Grant
    Filed: January 13, 2014
    Date of Patent: May 9, 2017
    Assignee: Lumense, Inc.
    Inventors: Daniel Campbell, Jayme Caspall, Janet Cobb-Sullivan, Bonnie Bobzin, Kenneth Johnson, Robert E. Jones, Michael Slawson
  • Patent number: 9645076
    Abstract: A method for determining a concentration of at least one individual gas present in a gas-mixture includes irradiating a first component by incident modulated-light-beams characterized by a determined absorption wavelength range, modulation frequencies and a modulation amplitudes to generate first transmitted-light-beams, irradiating a second component, comprising a determined concentration of the at least one individual gas, by the first incident modulated-light-beams to generate second transmitted-light-beams, generating noise signals representative of a characteristic of the first transmitted-light-beams, generating noise-free signals representative of a characteristic of the second transmitted-light-beams, selecting an optimal modulation frequency and an optimal modulation amplitude from the modulation frequencies and the modulation amplitudes based on the noise signals and the noise-free signals, and determining a concentration of the at least one individual gas in the gas-mixture based on the optimal mod
    Type: Grant
    Filed: December 26, 2014
    Date of Patent: May 9, 2017
    Assignee: General Electric Company
    Inventors: Nagapriya Kavoori Sethumadhavan, Sandip Maity, Samhitha Palanganda Poonacha, Moitrayee Mukherjee, Purbasha Halder, Harish Sasikumar, Prasenjit Pandey
  • Patent number: 9632028
    Abstract: A dryness measurement device includes a pipe arranged in a horizontal direction, a light incident portion, and a detecting portion. The light transmitting portion has a solid shape and the light transmitting portion is arranged in a bottom portion of the pipe so that a first portion where a vertical surface crosses a horizontal plane portion of the light transmitting portion is at the same height as a second portion where the vertical surface crosses the lowest part, or so that the first portion is higher than the second portion as well as so that a portion crossing the horizontal plane portion is in the lowest position on a cross line where a cross section of the pipe including a point where light is incident on the horizontal plane portion crosses an inner surface of the pipe and the light transmitting portion.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: April 25, 2017
    Assignee: Azbil Corporation
    Inventors: Yasuhiro Goshoo, Giichi Nishino, Shiko Tanabe
  • Patent number: 9577124
    Abstract: A filter member includes a first lead terminal, an optical filter, and a first mold member, and a light incidence surface and a light emission surface of the optical filter is exposed from the first mold member. A sensor member includes an IR sensor element, a second lead terminal and a second mold member. A light-receiving surface of the IR sensor element is exposed from the second mole member. The filter member is disposed on the sensor member so that the light emission surface of the optical filter faces the light-receiving surface of the IR sensor element in the sensor member.
    Type: Grant
    Filed: November 29, 2013
    Date of Patent: February 21, 2017
    Assignee: Asahi Kasei Microdevices Corporation
    Inventors: Toshiaki Fukunaka, Yasutaka Myoraku
  • Patent number: 9546902
    Abstract: A method and system for correcting the effect of intensity fluctuations of the transmitted light in an absorption spectroscopy system used for the detection or measurement of chemical species in a medium, whereby one or more modulation bursts are imposed onto a light beam that passes through the medium. This burst signal may be obtained by modulating the bias current of a tunable diode laser, and the modulation burst signal may be optimally at the second harmonic of the modulation frequency of a wavelength modulated beam to allow usage of the same signal path processing used for the spectroscopic detection of the measurand for a second harmonic detection system.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 17, 2017
    Assignee: Servomex Group Limited
    Inventors: Richard P. Kovacich, Bahram Alizadeh, Ian C. Gaskin, James D. Hobby, Martin Lopez
  • Patent number: 9546953
    Abstract: A device for real-time analysis of airborne chemical, biological and explosive substances has at least a gas analysis sensor, a fluorescence/luminescence sensor and a sensor for determining the particle size and number of particles. Each of the sensors is connected to a multireflection cell (multipass laser cell) as an open measurement path. In addition, the device also includes an evaluation unit for the real-time analysis of chemical, biological and explosive substances.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: January 17, 2017
    Assignee: Spherea GmbH
    Inventors: Johann Goebel, Matthias Kessler
  • Patent number: 9504422
    Abstract: A portable system is provided for measuring a ketone, such as an acetone, in the breath or other bodily fluid of a user. The system includes a portable measurement device that analyzes fluid samples and generates corresponding ketone measurements. The portable measurement device communicates with an application which runs on a smartphone or other mobile device of the user. The application tracks, and generates graphs of, the ketone measurements, and may include various features for facilitating the analysis of the measurements.
    Type: Grant
    Filed: April 18, 2016
    Date of Patent: November 29, 2016
    Assignee: Invoy Technologies, LLC
    Inventors: Lubna M. Ahmad, Salman A. Ahmad, Zachary Smith
  • Patent number: 9482608
    Abstract: The present invention concerns an optical molecular sensing device and related method. The optical molecular sensing device has an optical resonator adapted to be connected to an excitation source. The excitation source may be a laser operating at a 2.7-2.8 um spectral range. The optical molecular sensing device has an emission spectrum comprised of a plurality wavelengths. Also included are a detection unit and a RF frequency counter to detect at least one RF beat note resulting from detecting the emission spectrum of the optical resonator. A change in frequency of the RF beat note indicates the presence of a target molecule.
    Type: Grant
    Filed: March 16, 2015
    Date of Patent: November 1, 2016
    Assignee: STC.UNM
    Inventors: Ravinder Jain, Mani Hossein-Zadeh
  • Patent number: 9459209
    Abstract: If the specific gas concentration is relatively high, controller sets 0 as the modulation amplitude in a modulation amplitude controlling voltage generator for frequency modulation of laser light, controls a switching unit to select the output of a second ADC, and causes a computation unit to compute according to the direct absorption detection method to calculate the water molecule volume concentration. If the specific gas concentration is relatively low, the modulation amplitude is set to A, not 0, controls switching unit to select the output of a first ADC, which digitizes a synchronized detection signal, and causes the computation unit to compute according to the harmonic synchronous detection method to calculate the water molecule volume concentration. The concentration calculated using either of the methods is compared against a threshold value, and if decided that an accurate result cannot be obtained, the method is switched as the measurements are continuously executed.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: October 4, 2016
    Assignee: SHIMADZU CORPORATION
    Inventor: Fumiaki Otera
  • Patent number: 9372152
    Abstract: A method is provided for monitoring one or more silicon-containing compounds present in a biogas. The method includes generating a first absorption spectrum based on a ratio of a first spectral measurement and a second spectral measurement. The first spectral measurement is from a non-absorptive gas having substantially no infrared absorptions in a specified wavelength range of interest and the second spectral measurement is from a sample gas comprising the biogas. The method includes generating at least one surrogate absorption spectrum based on, at least, individual absorption spectrum for each of a subset of one or more silicon-containing compounds selected from a larger set of known silicon-containing compounds with known concentrations. A total concentration of the one or more silicon-containing compounds in the biogas can be calculated based on the first absorption spectrum and the at least one surrogate absorption spectrum.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: June 21, 2016
    Assignee: MKS Instruments, Inc.
    Inventors: Charles Mark Phillips, Barbara Marshik-Geurts, Leonard I. Kamlet, Martin L. Spartz, Vidi Saptari
  • Patent number: 9340878
    Abstract: Apparatus and method for monitoring a vapor deposition installation in which a gas mixture can undergo gas phase nucleation (GPN) and/or chemically attack the product device, under process conditions supportive of such behavior. The apparatus includes a radiation source arranged to transmit source radiation through a sample of the gas mixture, and a thermopile detector assembly arranged to receive output radiation resulting from interaction of the source radiation with the gas mixture sample, and to responsively generate an output indicative of onset of the gas phase nucleation and/or chemical attack when such onset occurs. Such monitoring apparatus and methodology is useful in tungsten CVD processing to achieve high rate tungsten film growth without GPN or chemical attack.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: May 17, 2016
    Assignee: ENTEGRIS, INC.
    Inventors: Jose I. Arno, Joseph R. Despres, Shkelqim Letaj, Steven M. Lurcott, Thomas H. Baum, Peng Zou
  • Patent number: 9329123
    Abstract: Methods and optical detection systems (200, 300, 800, 900) for generating and processing a real-time time-domain cavity ringdown spectroscopy (CRDS) signal (831, 931) from an absorbing species in an optical detection system (200, 300, 800, 900) having an optical ringdown cavity (200, 300) are disclosed. The optical ringdown cavity (200, 300) is adapted for accepting a sample of an absorbing species. One or more modulated light signals (241,243,245,341) are generated using one or more light sources (240, 242, 244, 340). The light source(s) (240, 242, 244, 340) is pulsed at a specified pulse rate(s). The modulated light signal(s) (241,243,245, 341) is resonated using the optical ringdown cavity (200, 300) comprising a plurality of mirrors (220, 230), or sets of mirrors (320, 330), to produce the CRDS signal (831, 931). The reflectivity of the mirrors (220, 230), or sets of mirrors (320, 330), is dependent upon the pulse rate of the modulated light signals (241,243,245,341).
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: May 3, 2016
    Assignee: NewSouth Innovations Pty Limited
    Inventor: Charles Charbel Harb
  • Patent number: 9261453
    Abstract: Gas analyzer and method for measuring the concentration of a gas component in a sample gas, wherein the wavelength of the light of a wavelength-tunable light source is varied within periodically successive sampling intervals and, in the process, additionally modulated with a frequency to perform wavelength dependent sampling of an absorption line of a gas component to be measured in the sample gas.
    Type: Grant
    Filed: September 15, 2014
    Date of Patent: February 16, 2016
    Assignee: Siemens Aktiengesellschaft
    Inventor: Franz Steinbacher
  • Patent number: 9250130
    Abstract: A quantum cascade laser (QCL) may include a QCL crystal having an emitting facet, and an active region adjacent the emitting facet, the emitting facet for providing an electromagnetic beam. The QCL may include an optical cavity comprising a mirror being external to the QCL crystal, and for redirecting the electromagnetic beam into the active region of the QCL crystal to provide optical feedback, and a driver circuit for driving the QCL crystal with a constant current. The QCL may include a controller coupled to the optical cavity and for dynamically and autonomously aligning the optical cavity based upon an error signal from the QCL crystal to maintain stable the optical feedback into the active region of the QCL crystal.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: February 2, 2016
    Assignee: UNIVERSITY OF CENTRAL FLORDIA RESEARCH FOUNDATION, INC.
    Inventors: Andrey V. Muraviev, Douglas Maukonen, Christopher J. Fredricksen, Robert E. Peale
  • Patent number: 9234905
    Abstract: A method of calibrating a gas analysis apparatus that measures the moisture concentration in a gas using a radiating unit includes a moisture concentration measurement value calibrated based on the relationship between the intensity of an absorption spectrum of moisture of a concentration to be measured and the intensity of an absorption spectrum of an other component gas that can be measured by the radiating unit, for which the relationship to the intensity of the absorption spectrum of moisture of the measured prescribed concentration is known, and based on the intensity of an absorption spectrum obtained by measuring the other component gas.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: January 12, 2016
    Assignee: Horiba, Ltd.
    Inventors: Takuya Ido, Tetsuya Mori
  • Patent number: 9212989
    Abstract: A chemical composition analyzer may be used to optically determine and report chemical compositions associated with gases within a gas collection and transmission infrastructure. This analyzer includes a number of optical sensors which may be used to perform spectroscopic spectrographic analysis in order to determine the chemical composition of the gas. Additionally other sensors may be used to measure other physical properties associated with the gas. These sensors are tied to a data collection system wherein the output of the optical sensors and sensors used to measure the physical properties of the gas may be combined and processed in order to determine in a nearly continuous fashion the chemical composition associated with the gas at various locations within the gas collection and transmission infrastructure. This real time compositional analysis may be used to determine valuations of the gas or to optimize other processes or equipment configurations.
    Type: Grant
    Filed: June 18, 2009
    Date of Patent: December 15, 2015
    Assignee: JP3 Measurement, LLC
    Inventors: Paul Little, Charles E. Miller
  • Patent number: 9207169
    Abstract: A laser spectrometer and method for measuring gas component concentration in a measurement gas, wherein light intensity from a wavelength-tunable laser diode is detected after irradiation of the measurement gas and a reference gas, and the concentration of the gas component is determined based on reduction of the light intensity by the absorption of light at the position of a selected absorption line of the gas component, and the position of the absorption line of the gas component is referenced based on a selected absorption line of the reference gas, and wherein there is a mixed operation consisting of actual measurements of fast concentration changes of the gas component to be measured and a short reference/standardization phase for wavelength referencing, line locking and standardization, where the duration of the actual measurement is measured such that measuring conditions remain constant and do not deviate from those during the reference/standardization phase.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: December 8, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Hankiewicz, Piotr Strauch
  • Patent number: 9194794
    Abstract: An optical absorption spectroscopy apparatus comprises a multi-pass optical cell (1) having a first reflector (2) and a second reflector (4, 4?), a first light source (6) for light of a first waveband and a second light source (6?) for light of a second waveband. The cell (1) is constructed and arranged such that light entering the cell is reflected one or more times between the first and second reflectors (2, 4, 4?) before exiting the cell. Light of the first waveband enters and exits the cell (1) in a first plane and light of the second waveband enters and exits the cell in a second plane that is different from the first plane.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 24, 2015
    Assignee: DUVAS TECHNOLOGIES LIMITED
    Inventor: Steven Wilkins
  • Patent number: 9157778
    Abstract: Disclosed are a gas flow meter and a method for measuring the velocity of gas, wherein the reliability of real time measurement may be improved and a specific gas may be selected and measured. The gas flow meter includes: at least a gas detecting section for radiating light having a wavelength that is absorbed by a specific gas to the specific gas, of which flow velocity is to be measured, in a mixture gas including at least one gas, detecting the irradiance absorption of the corresponding wavelength of the specific gas, and providing a detection signal corresponding to the detected irradiance and a control section for calculating the flow velocity of the specific gas to be measured in real time based on the detection signal, which is provided from the gas detection section.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: October 13, 2015
    Inventor: Sung-Won Kim
  • Patent number: 9121727
    Abstract: A detection system that includes an emitter, a power supply source, a receiver, a detector, and a processor. The emitter includes a light-emitting diode that emits a luminous signal. The power supply source applies a constant voltage to the light-emitting diode. The receiver senses the luminous signal emitted by the light-emitting diode and generates a first input signal representative of the luminous signal detected. The detector measures the current passing through the light-emitting diode and generates a second input signal representative of the current measured. The processor is connected to the receiver and provides an output signal as a function of the first input signal and of the second input signal.
    Type: Grant
    Filed: May 23, 2012
    Date of Patent: September 1, 2015
    Assignee: Schneider Electric Industries SAS
    Inventors: Laurent Chiesi, Hynek Raisigel, Gilles Chabanis
  • Patent number: 9110006
    Abstract: A spectrometer comprising an optical cavity, a light source capable of producing light at one or more wavelengths transmitted by the cavity and with the light directed at the cavity, a detector and optics positioned to collect light transmitted by the cavity, feedback electronics causing oscillation of amplitude of the optical signal on the detector at a frequency that depends on cavity losses, and a sensor measuring the oscillation frequency to determine the cavity losses.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: August 18, 2015
    Assignee: Southwest Sciences Incorporated
    Inventors: David Christian Hovde, Anthony Gomez
  • Patent number: 9097583
    Abstract: A tunable mid-infrared laser operated in a pulsed mode is coupled off-axis into a high-finesse optical cavity to produce a long-path spectrometer. The cavity receives a gas sample. Laser pulses may be wavelength-scanned by stepping an external grating, allowing the grating to mechanically settle, then measuring the ring-down with a set of laser pulses, before moving on the next wavelength. A detector receiving infrared light exiting the cavity supplies a cavity ring-down trace representative of sample absorption of the infrared pulses. A processor determines an absolute absorption spectrum of the gas sample from the ring-down trace and analyzes sample gas composition and trace concentration from that spectrum. The absorption baseline is highly reproducible and stable, improving the accuracy of multivariate fits, and the spectral resolution can be better than 0.001 cm?1 (contingent upon the laser source), allowing for high-resolution measurements of sharp absorption features.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: August 4, 2015
    Assignee: Los Gatos Research
    Inventors: Manish Gupta, J. Brian Leen, Douglas S. Baer
  • Patent number: 9097656
    Abstract: The present invention relates to precision linewidth control and frequency measurements of continuous wave lasers for the near to far IR spectral regions, precision frequency synthesizers and exemplary applications in molecular detection. Methods and systems are disclosed for simultaneous line narrowing of cw lasers, as well as referencing the desired emission wavelength to a frequency comb laser.
    Type: Grant
    Filed: March 27, 2013
    Date of Patent: August 4, 2015
    Assignee: IMRA AMERICA, INC.
    Inventors: Martin E. Fermann, Marco Marangoni, Davide Gatti
  • Patent number: 9068940
    Abstract: An apparatus and method for differential optical dispersion using a first sample and a second sample are disclosed. The apparatus includes a single frequency chirped laser source configured to generate a single frequency chirped laser beam. A first beam splitter is configured to split the single frequency chirped laser beam into first and second optical branches, the first sample being located in the first optical branch, the second sample being located in the second optical branch. A frequency shifter is located in the second optical branch, downstream of the second sample. A second beam splitter is configured to combine the first and second optical branches and generate a chirp-modulated mixed light beam. A square law detector is configured to detect the chirp-modulated mixed light beam and generate a heterodyne beatnote signal. A demodulator is configured for detection of the heterodyne beatnote signal to generate a transmission/differential optical dispersion spectrum.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: June 30, 2015
    Assignee: The Trustees of Princeton University
    Inventors: Michal Nikodem, Gerard Wysocki
  • Patent number: 9057718
    Abstract: A chemical composition analyzer may be used to optically determine and report chemical compositions associated with natural gases within a gas collection and transmission infrastructure. This analyzer includes a number of optical sensors which may be used to perform spectroscopic spectrographic analysis in order to determine the chemical composition of the natural gas. Additionally other sensors may be used to measure other physical properties associated with the natural gas. These sensors are tied to a data collection system wherein the output of the optical sensors and sensors used to measure the physical properties of the natural gas may be combined and processed in order to determine in a nearly continuous fashion the chemical composition associated with the natural gas at various locations within the gas collection and transmission infrastructure. This real time compositional analysis may be used to determine valuations of the gas or to optimize other processes or equipment configurations.
    Type: Grant
    Filed: May 19, 2006
    Date of Patent: June 16, 2015
    Assignee: JP3 Measurement, LLC
    Inventor: Joseph Paul Little, III
  • Patent number: 9052274
    Abstract: A method for operating a laser spectrometer includes passing light of a semiconductor laser through a gas mixture containing a gas component and through an etalon structure onto a detector. The method also includes varying an injection current of the laser based on a predefined current-time function in order to tune the wavelength of the laser in a tuning range using a specific absorption line of the gas component. The method further includes modulating the function with a modulation signal having a frequency and alternately a first modulation amplitude and a second modulation amplitude. The method also includes evaluating a detector signal generated by the detector for determining (1) the concentration of the gas component upon the modulation with the first modulation amplitude and (2) the wavelength stabilization of the laser upon the modulation with the second modulation amplitude at the second harmonic of the frequency.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: June 9, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Daniel Depenheuer
  • Publication number: 20150138558
    Abstract: Cavity enhanced absorption spectroscopy systems and methods for detecting trace gases using a resonance optical cavity, which contains a gas mixture to be analyzed, and a laser coupled to the cavity by optical feedback. The cavity has any of a variety of configurations with two or more mirrors, including for example a linear cavity, a v-shaped cavity and a ring optical cavity. The cavity will have multiple cavity resonant modes, or a comb of frequencies spaced apart, as determined by the parameters of the cavity, including the length of the cavity, as is well known. Systems and methods herein also allow for optimization of the cavity modes excited during a scan and/or the repetition rate.
    Type: Application
    Filed: October 21, 2014
    Publication date: May 21, 2015
    Inventors: Alexander Kachanov, Serguei Koulikov
  • Patent number: 9030665
    Abstract: The invention relates to a method for monitoring and/or regulating fuel cells, in particular comprising determining the composition of the operating gases of the fuel cells. The method comprises the following steps: introducing the gas mixture to be analyzed into a measuring cell (1); producing an arc in the measuring cell (1); absorbing the radiation emitted by the arc; optical filtering of the emitted radiation and/or spectral decomposition of the emitted radiation; converting the emitted radiation into an electric signal; evaluating the electric signal.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: May 12, 2015
    Assignee: Heinrich-Heine Universität Düsseldorf
    Inventors: Hans Bettermann, Peter Fischer, Arno Goedecke Reichelt, Irmgard Buder, Volker Peinecke
  • Patent number: 9030666
    Abstract: A non-dispersive gas analyzer comprising a light source, having light that shines through a measuring cuvette containing a measuring gas to be analyzed onto a non selective detector having a downstream evaluation unit, wherein a multi-component gas analysis is made possible using in a simple manner in that the light source is a flash discharge lamp and the evaluation unit is configured to evaluate the temporal pulse curves of the flash shining onto the detector such that it is possible to take advantage of the property of flash discharge lamps in that the emitted wavelength components vary over the duration of the flash.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: May 12, 2015
    Assignee: Siemens Aktiengeselschaft
    Inventors: Ralf Bitter, Camiel Heffels, Thomas Hörner
  • Patent number: 9025165
    Abstract: Of two pairs of biaxial goniometers and a uniaxial straight-ahead stage, one pair of biaxial goniometers and the uniaxial straight-ahead stage are subjected to fully-closed feedback control (follow-up control) under which output from a QPD is directly input into an axis drive motor, and the remaining pair of biaxial goniometers are subjected to semi-closed feedback control (constant-value control), encoder outputs on all the axes and QPD output are acquired simultaneously, measurement point coordinates and normal vectors derived from the encoder outputs are corrected with the QPD output, thereby eliminating influence of steady-state deviation in a goniometer control system.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: May 5, 2015
    Assignee: Osaka University
    Inventors: Katsuyoshi Endo, Junichi Uchikoshi, Yasuo Higashi
  • Patent number: 9019501
    Abstract: Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and first and second integrated computational elements arranged in primary and reference channels, respectively, the first and second computational elements are configured to be either positively or negatively correlated to the characteristic of the sample. The first and second integrated computational elements produce first and second modified electromagnetic radiations, and a detector is arranged to receive the first and second modified electromagnetic radiations and generate an output signal corresponding to the characteristic of the sample.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 28, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9018608
    Abstract: An optical liquid sensor utilizing a light source, fiber optic cables, a light detector and an irregular transparent surface is provided to detect the presence of liquid in mist and continuous form. The sensor may be integrated into a probe designed for insertion into a pressurized fluid process.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 28, 2015
    Assignee: A+ Manufacturing, LLC
    Inventor: Donald P Mayeaux
  • Patent number: 9019502
    Abstract: The disclosure relates to a method of detecting a change in a chemical composition by contacting a electronically conducting perovskite-based metal oxide material with a monitored stream, illuminating the electronically conducting perovskite-based metal oxide with incident light, collecting exiting light, monitoring an optical signal based on a comparison of the incident light and the exiting light, and detecting a shift in the optical signal. The electronically conducting perovskite-based metal oxide has a perovskite-based crystal structure and an electronic conductivity of at least 10?1 S/cm, where parameters are specified at the gas stream temperature. The electronically conducting perovskite-based metal oxide has an empirical formula AxByO3-?, where A is at least a first element at the A-site, B is at least a second element at the B-site, and where 0.8<x<1.2, 0.8<y<1.2.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 28, 2015
    Assignee: U.S. Department of Energy
    Inventors: Paul R. Ohodnicki, Jr., Andrew M. Schultz
  • Patent number: 9013702
    Abstract: Optical computing devices are disclosed. One optical computing device includes an electromagnetic radiation source that emits electromagnetic radiation into an optical train to optically interact with a sample and at least one integrated computational element, the sample being configured to generate optically interacted radiation. A sampling window is arranged adjacent the sample and configured to allow transmission of the electromagnetic radiation therethrough and has one or more surfaces that generate one or more stray signals. A first focal lens is arranged to receive the optically interacted radiation and the one or more stray signals and generate a primary focal point from the optically interacted radiation. A structural element defines a spatial aperture aligned with the primary focal point such that the optically interacted radiation is able to pass therethrough while transmission of the one or more stray signals is substantially blocked by the structural element.
    Type: Grant
    Filed: April 26, 2012
    Date of Patent: April 21, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Robert Freese, Christopher Michael Jones, David Perkins, Michael Simcock, William Soltmann
  • Patent number: 9013703
    Abstract: A gas analyzing apparatus includes a probe for measuring a concentration of sample gas flowing in a pipe by an optical measurement system. Influence of a thermal lens effect phenomenon is suppressed so that measurement accuracy is improved. The apparatus includes a probe tube disposed to cross a flow path of the sample gas in the pipe to introduce the sample gas flowing in the pipe to a predetermined hollow measurement region. A light emission portion and a light receiving portion for project measurement light to the measurement region in the probe tube and receive the measurement light after passing through the sample gas in the measurement region. A purge gas feed tube disposed in the probe tube supplies purge gas to a region between the optical system members and the measurement region, with a gap to the inner wall surface of the probe tube.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: April 21, 2015
    Assignee: Horiba, Ltd.
    Inventors: Toshikazu Ohnishi, Toshiyuki Tsujimoto
  • Publication number: 20150103350
    Abstract: The present invention provides a fiber laser gas detection system using active feedback compensation by a reference cavity, said system comprising: an optical fiber laser consists of a laser diode pump source, a wavelength division multiplexer, an active optical fiber and a fiber Bragg grating connected successively; an optical isolator coupled with said wavelength division multiplexer for blocking a reverse light transmission in said active fiber; a coupler connected with said optical isolator for dividing the laser light after being isolated by the optical isolator into a reference beam, a detecting beam and an intensity measuring beam according a certain ration power. The gas detection system according to the present invention can take advantages of the unique superiority of compact structure and narrow linewidth of the laser output of the fiber laser, and achieve a gas detection method with high sensitive and high precision by feedback controlling.
    Type: Application
    Filed: October 1, 2014
    Publication date: April 16, 2015
    Inventors: Fei Luo, Lianqing Zhu, Mingli Dong, Wei He, Yinmin Zhang
  • Patent number: 9007594
    Abstract: The present invention provides a fiber laser gas detection system using active feedback compensation by a reference cavity, said system comprising: an optical fiber laser consists of a laser diode pump source, a wavelength division multiplexer, an active optical fiber and a fiber Bragg grating connected successively; an optical isolator coupled with said wavelength division multiplexer for blocking a reverse light transmission in said active fiber; a coupler connected with said optical isolator for dividing the laser light after being isolated by the optical isolator into a reference beam, a detecting beam and an intensity measuring beam according a certain ration power. The gas detection system according to the present invention can take advantages of the unique superiority of compact structure and narrow linewidth of the laser output of the fiber laser, and achieve a gas detection method with high sensitive and high precision by feedback controlling.
    Type: Grant
    Filed: October 1, 2014
    Date of Patent: April 14, 2015
    Assignee: Beijing Information Science & Technology University
    Inventors: Fei Luo, Lianqing Zhu, Mingli Dong, Wei He, Yinmin Zhang
  • Patent number: 9007593
    Abstract: Methods and systems of the invention can determine the identity and quantity of analytes in a vapor. In preferred methods, a porous optical film is exposed to vapor which contains analyte. The porous optical film is heated and its optical response is monitored during heating. An optical response observed via heating can determine the identity and/or quantity of the analyte. In preferred embodiments, optical response during a thermal pulse is compared to a database of sensor responses that are characteristic of various analytes. Preferred methods are conducted a relatively low temperatures, for example below about 200° C. In preferred methods, a heating and cooling cycle produces a hysteresis curve in the optical response that is indicative of analytes. In preferred embodiments, a thermal reset pulse resets the porous optical film for later use and also provides an optical response that can be used for sensing.
    Type: Grant
    Filed: July 19, 2011
    Date of Patent: April 14, 2015
    Assignee: The Regents of the University of California
    Inventors: Michael J. Sailor, Brian H King, Sadafumi Noda
  • Patent number: 9007592
    Abstract: A gas analyzer is capable of detecting abnormality of a measurement environment without using either or both of a pressure sensor and a gas temperature sensor. The gas analyzer creates absorption spectra from transmitted light intensity of laser beams applied to gas for measuring the amount of spread W and compares the amount of spread against a threshold D. The amount of spread of the absorption spectra does not depend on pressure if the pressure of the gas to be measured falls within a high-vacuum region, and monotonously increases with increased pressure if the pressure of the gas to be measured is higher than the high-vacuum region. Thus, if W>D, it is determined that the measurement environment does not form a high-vacuum region and abnormality is transmitted to the outside. In all other cases, the measurement environment is deemed to form a high-vacuum region, and partial pressure is calculated.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: April 14, 2015
    Assignee: Shimadzu Corporation
    Inventor: Fumiaki Otera
  • Patent number: 9001335
    Abstract: A method is provided for monitoring one or more silicon-containing compounds present in a biogas. The method includes generating a first absorption spectrum based on a ratio of a first spectral measurement and a second spectral measurement. The first spectral measurement is from a non-absorptive gas having substantially no infrared absorptions in a specified wavelength range of interest and the second spectral measurement is from a sample gas comprising the biogas. The method includes generating at least one surrogate absorption spectrum based on, at least, individual absorption spectrum for each of a subset of one or more silicon-containing compounds selected from a larger set of known silicon-containing compounds with known concentrations. A total concentration of the one or more silicon-containing compounds in the biogas can be calculated based on the first absorption spectrum and the at least one surrogate absorption spectrum.
    Type: Grant
    Filed: January 17, 2013
    Date of Patent: April 7, 2015
    Assignee: MKS Instruments Inc.
    Inventors: Charles Mark Phillips, Barbara Marshik-Geurts, Leonard I. Kamlet, Martin L. Spartz, Vidi Saptari
  • Patent number: 9001332
    Abstract: A multi-channel gas correlation sensor and sensing method are provided. A spectral partitioning filter at the sensor's aperture or a pupil image thereof partitions a beam of light energy into unique spectral regions. Each spectral region is confined to a unique spatial region of the beam and passes light energy associated with a unique spectral band. The spectrally-partitioned beam undergoes a single split into two beams traversing a first path and a second path, respectively. Each of at least one gas of interest is disposed in only one of the first path and second path. Each gas at least partially absorbs/filters the light energy in at least one of the spectral regions. A detector is positioned such that each of the two beams form a pupil image on a unique portion of the detector after they traverse the first path and second path.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: April 7, 2015
    Assignee: G&A Technical Software, Inc.
    Inventor: Larry L. Gordley
  • Patent number: 9001331
    Abstract: A device adapted for spectral analysis having a transmitting means adapted for electromagnetic radiation, a delimited space,in the form of a cavity, serving as a measuring cell and intended to be capable of defining an optical measuring distance, a sensing means of the electromagnetic radiation passing the optical measuring distance from said transmitting means, and a unit at any rate connected to the sensing means performing the spectral analysis, the sensing means for the electromagnetic radiation is opto-electrically adapted sensitive to the electromagnetic radiation, which is intended to fall within the spectral range whose chosen wavelength components or spectral elements are to become objects of an analysis in the unit performing the spectral analysis for determining in this unit, over calculations, the relative intensity of radiation of the spectral element.
    Type: Grant
    Filed: September 24, 2009
    Date of Patent: April 7, 2015
    Assignee: Senseair AB
    Inventors: Hans Göran Evald Martin, Pavel Zyrianov
  • Patent number: 8994947
    Abstract: A method for detecting component concentrations in human gas emissions such as breath and gas emitted from skin. A gas sample containing a specified component is collected into a gas cell using a pump and a series of valves to draw the gas sample into the cell and control the gas pressure within the cell. A tunable optical radiation beam is passed through the gas cell and the amount of energy absorbed by the specified component may be measured indirectly by taking the difference between the incident and emerging beam energy or directly by optoacoustic methods. Concentrations of the specified component as small as 0.1 ppB may be determined. Additionally, the tunable optical radiation beam may be multiplexed for use with a plurality of systems utilizing the beam for medical purposes.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 31, 2015
    Assignee: Pranalytica, Inc.
    Inventors: C. Kumar Patel, L. Ravi Narasimhan
  • Patent number: 8994948
    Abstract: An apparatus for the non-destructive testing of the integrity and/or suitability of sealed packagings having at least one portion (111,121) at least partially optically transparent, preferably food packagings, in particular through a verification of conformity of the atmosphere inside such food packagings, wherein the apparatus comprises at least one inspection area (20); at least one laser source (11) with an optical axis (A); at least one detector (13) positioned so as to detect at least one portion of back-scattered beams (12?) following the collision of the laser beam (12) emitted by the laser source (11) with a target (100,200) and provide—at the output—a representative datum of an absorption spectrum of the gas. The apparatus includes means for measuring a distance covered by the laser beam (12) and electronic processing means for calculating the concentration of the gas.
    Type: Grant
    Filed: March 17, 2013
    Date of Patent: March 31, 2015
    Assignee: L Pro S.R.L.
    Inventor: Giuseppe Tondello
  • Patent number: 8994949
    Abstract: A gas detector including an assembly of two hemispherical caps having opposite concavities, and which are reflective on at least a portion of their opposite surfaces, and a wafer arranged in an equatorial plane of the assembly of the two caps, in the vicinity of but spaced apart from the center of the equatorial plane, including, back-to-back: a diverging light emitter directed towards the first cap and a light receiver directed towards the second cap.
    Type: Grant
    Filed: September 19, 2013
    Date of Patent: March 31, 2015
    Assignee: Commissariat a l'energie atomique et aux energies alternatives
    Inventors: Serge Gidon, Pierre Gidon
  • Publication number: 20150085288
    Abstract: Gas analyzer and method for measuring the concentration of a gas component in a sample gas, wherein the wavelength of the light of a wavelength-tunable light source is varied within periodically successive sampling intervals and, in the process, additionally modulated with a frequency to perform wavelength dependent sampling of an absorption line of a gas component to be measured in the sample gas.
    Type: Application
    Filed: September 15, 2014
    Publication date: March 26, 2015
    Inventor: Franz STEINBACHER
  • Patent number: 8988687
    Abstract: Provided is a device and method for detecting the presence of a material in a gaseous medium, including a reaction assembly including at least one detection unit including a matrix adapted for exposure to the gaseous medium, such that at least part of the gaseous medium comes into contact with the matrix; the matrix being configured for capturing a gas-born particle of a material carried by the gaseous medium, and for permitting a liquid or solute reagent to come in contact with the matrix, thereby enabling said liquid reagent to react with said particle to yield an optically altered reaction product.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: March 24, 2015
    Assignee: Aphelion Ltd.
    Inventor: Israel Hirsch