Spectroscopy Patents (Class 356/451)
  • Patent number: 9569845
    Abstract: A method and system for characterizing cell motion comprising: receiving image data corresponding to a set of images of a cell culture captured at a set of time points; segmenting, from at least one image of the set of images, a cell subpopulation from the cell culture; determining a resting signal for the cell subpopulation; determining a single-peak motion signal based upon the set of images, the set of time points, and the resting signal; detrending the single-peak motion signal of the cell subpopulation based upon the resting signal; determining values of a set of motion features of the cell subpopulation, thereby characterizing cell motion; and clustering the cell subpopulation with at least one other cell subpopulation based upon at least one of the single-peak motion signal and a value of the set of motion features.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: February 14, 2017
    Assignee: Cellogy, Inc.
    Inventors: Seyyedeh Mahnaz Maddah, Kevin Loewke
  • Patent number: 9560973
    Abstract: A subject information acquiring device which has: an light absorbing member provided outside a subject; a light source radiating pulsed light on the subject and the light absorbing member; a detector detecting an acoustic wave produced from the subject and the light absorbing member by means of the pulsed light; and a signal processing unit acquiring subject information using a detection signal, and the signal processing unit calculates a second detection signal by specifying a signal resulting from an acoustic wave produced from the light absorbing member in a first detection signal, acquiring impulse response data using the specified signal, and deconvoluting the first detection signal using the impulse response data, and acquires the subject information using the second detection signal, can reduce image deterioration due to probe characteristics even when an impulse response of a probe is not measured in advance in a photoacoustic tomography.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: February 7, 2017
    Assignee: Canon Kabushiki Kaisha
    Inventor: Kazuhiko Fukutani
  • Patent number: 9476768
    Abstract: The present invention relates to a system and methods for acquiring two-dimensional Fourier transform (2D FT) spectra. Overlap of a collinear pulse pair and probe induce a molecular response which is collected by spectral dispersion of the signal modulated probe beam. Simultaneous collection of the molecular response, pulse timing and characteristics permit real time phasing and rapid acquisition of spectra. Full spectra are acquired as a function of pulse pair timings and numerically transformed to achieve the full frequency-frequency spectrum. This method demonstrates the ability to acquire information on molecular dynamics, couplings and structure in a simple apparatus. Multi-dimensional methods can be used for diagnostic and analytical measurements in the biological, biomedical, and chemical fields.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: October 25, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Lauren DeFlores, Andrei Tokmakoff
  • Patent number: 9466628
    Abstract: A solid-state spectral imaging device is described. The device includes an image sensor and a plurality of optical filters directly processed on top of the image sensor. Each optical filter includes a first mirror and a second mirror defining an optical filter cavity having a fixed height. Each optical filter also includes a first electrode and a second electrode having a fixed position located opposite to each other and positioned to measure the height of the optical filter cavity. Further, a method to calibrate spectral data of light and a computer program for calibrating light is described.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: October 11, 2016
    Assignee: IMEC
    Inventors: Pilar Gonzalez, Murali Jayapala, Andy Lambrechts, Klaas Tack
  • Patent number: 9407060
    Abstract: Embodiments herein provide for an optical frequency reference including a fine optical frequency comb and a coarse optical frequency comb. The fine comb has a first tooth and a frequency spacing (FCS) between teeth that is locked to a fractional or integer multiple of a radio frequency reference. The coarse comb has a second tooth that is locked to the first tooth and a frequency spacing (CCS) between teeth that is locked to an integer multiple of the FCS. An absolute optical frequency of at least one tooth of the coarse optical frequency comb is set.
    Type: Grant
    Filed: November 20, 2014
    Date of Patent: August 2, 2016
    Assignee: Honeywell International Inc.
    Inventors: Chad Fertig, Steven Tin
  • Patent number: 9329085
    Abstract: A spectroscopy system comprising at least two laser modules, each of the laser modules including a laser cavity, a quantum cascade gain chip for amplifying light within the laser cavity, and a tuning element for controlling a wavelength of light generated by the modules. Combining optics are used to combine the light generated by the at least two laser modules into a single beam and a sample detector detects the single beam returning from a sample.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 3, 2016
    Assignee: Block Engineering, LLC
    Inventors: Petros Kotidis, Erik Deutsch, Ninghui Zhu, Dan Cavicchio
  • Patent number: 9322768
    Abstract: A pseudo-active chemical imaging sensor including irradiative transient heating, temperature nonequilibrium thermal luminescence spectroscopy, differential hyperspectral imaging, and artificial neural network technologies integrated together. The sensor may be applied to the terrestrial chemical contamination problem, where the interstitial contaminant compounds of detection interest (analytes) comprise liquid chemical warfare agents, their various derivative condensed phase compounds, and other material of a life-threatening nature. The sensor measures and processes a dynamic pattern of absorptive-emissive middle infrared molecular signature spectra of subject analytes to perform its chemical imaging and standoff detection functions successfully.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: April 26, 2016
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventors: Arthur H. Carrieri, Tudor N. Buican, Erik S. Roese, James Sutter, Alan C. Samuels
  • Patent number: 9291444
    Abstract: Provided is an inexpensive, high performance, compact, and energy saving light reflection mechanism comprising a first moving portion having a reflecting surface on the front surface, a supporting portion which supports the first moving portion, a first beam and a translating beam which couple the first moving portion and the supporting portion in the form of cantilever beam above and below the supporting portion, and a drive portion which moves the first moving portion, wherein a large amplitude can be obtained by small energy when the first moving portion is forced into resonance vibration in the direction perpendicular to the first reflecting surface. Also provided is an optical interferometer and a spectral analyzer.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: March 22, 2016
    Assignee: Konica Minolta Holdings, Inc.
    Inventors: Shinya Matsuda, Satoru Hirose
  • Patent number: 9273994
    Abstract: A method and a system for measuring an optical asynchronous sample signal. The system for measuring an optical asynchronous sampling signal comprises a pulsed optical source capable of emitting two optical pulse sequences with different repetition frequencies, a signal optical path, a reference optical path, and a detection device. Since the optical asynchronous sampling signal can be measured by merely using one pulsed optical source, the complexity and cost of the system are reduced. A multi-frequency optical comb system using the pulsed optical source and a method for implementing the multi-frequency optical comb are further disclosed.
    Type: Grant
    Filed: September 2, 2014
    Date of Patent: March 1, 2016
    Assignee: BEIHANG UNIVERSITY
    Inventors: Zheng Zheng, Xin Zhao, Lei Liu, Jiansheng Liu
  • Patent number: 9240060
    Abstract: A method and an apparatus for generating a tomographic image are provided. The method for generating a tomographic image may involve: detecting a principal frequency region corresponding to a portion of a frequency data corresponding to a tomographic image, determining a plurality of sub frequency regions within the principal frequency region, and generating, by a processor, the tomographic image by synthesizing data of the plurality of sub frequency regions.
    Type: Grant
    Filed: January 9, 2013
    Date of Patent: January 19, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-guyn Lim, Won-hee Choe, Seong-deok Lee, Woo-young Jang
  • Patent number: 9198860
    Abstract: The present invention provides a particulate pharmaceutical composition which has improved drug encapsulation stability and is suitable for a drug delivery system. The particulate pharmaceutical composition 1 contains: a plurality of block copolymer unit 2 arranged radially, each of which has a hydrophobic polymer-chain segment 2b, which is arranged radially inside, and a hydrophilic polymer-chain segment 2a, which is arranged radially outside; a drug 4, which includes a biomacromolecule; and a charged lipid 3, which has an electrical charge opposite to that of the drug 4; wherein the charged lipid 3 is being attracted to the hydrophobic polymer-chain segment 2b, and the drug 3 is positioned radially inside the hydrophobic polymer-chain segment 2b. The pharmaceutical composition 1 can effectively prevent the drug 4 from disengaging from the particle.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: December 1, 2015
    Assignee: NANOCARRIER CO., LTD.
    Inventors: Atsushi Ishii, Yasuki Kato
  • Patent number: 9153928
    Abstract: The invention relates to scanning pulsed laser systems for optical imaging. Coherent dual scanning laser systems (CDSL) are disclosed and some applications thereof. Various alternatives for implementation are illustrated. In at least one embodiment a coherent dual scanning laser system (CDSL) includes two passively modelocked fiber oscillators. In some embodiments an effective CDSL is constructed with only one laser. At least one embodiment includes a coherent scanning laser system (CSL) for generating pulse pairs with a time varying time delay. A CDSL, effective CDSL, or CSL may be arranged in an imaging system for one or more of optical imaging, microscopy, micro-spectroscopy and/or THz imaging.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: October 6, 2015
    Assignee: IMRA AMERICA, INC.
    Inventors: Martin Fermann, Ingmar Hartl, Axel Ruehl
  • Patent number: 9146158
    Abstract: A four port scanning Michelson interferometer suppresses self-emission by using either a beamsplitter that is uncoated or a beamsplitter that has reflection enhancing dielectric coatings in the splitting and combining areas of the substrate on opposite sides of the substrate. Both beamsplitters are fabricated from infrared optical materials that have a predetermined absorptivity in a predetermined wavelength interval which is from 2 ?m (5000 cm?1) to 13 ?m (770 cm?1) in the infrared. The optical materials of the uncoated beamsplitter are selected from a group of materials made up of ZnSe, ZnS, CdS, CdTe, Silicon, Germanium or Diamond. The optical materials of the other beamsplitter are selected from a group of materials made up of KBr, KCl, NaCl, CsI, BaF, CaF and the like.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: September 29, 2015
    Assignee: ABB Inc.
    Inventor: Henry L. Buijs
  • Patent number: 9143746
    Abstract: An endoscopic video system and method using a camera with a single color image sensor, for example a CCD color image sensor, for fluorescence and color imaging and for simultaneously displaying the images acquired in these imaging modes at video rates in real time is disclosed. The tissue under investigation is illuminated continuously with fluorescence excitation light and is further illuminated periodically using visible light outside of the fluorescence excitation wavelength range. The illumination sources may be conventional lamps using filters and shutters, or may include light-emitting diodes mounted at the distal tip of the endoscope.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 22, 2015
    Assignee: NOVADAQ TECHNOLOGIES, INC.
    Inventors: Paul Westwick, David Potkins, John Fengler
  • Patent number: 9128059
    Abstract: A coherent anti-Stokes Raman spectroscopy (CARS) system comprises a laser light source for emitting pulsed light, a dichroic beam splitter for splitting a light pulse from the light source into a pump pulse and a Stokes pulse and directing these pulses along respective distinct paths, chirping means, e.g. dispersive glass blocks for chirping the pump and Stokes pulses, directing means for directing the chirped pump and Stokes samples to a sample in time overlap, and detecting means for detecting light stimulated from the sample by the interaction of the pump and Stokes pulses. The system may comprise a reflector connected to a linear motor, for adjusting the period between the arrival at the sample of the starts of the chirped pump and Stokes pulses. The system may further comprise a pulse replicating unit for converting a pulse from the light source into a plurality of pulses distributed in time.
    Type: Grant
    Filed: March 19, 2010
    Date of Patent: September 8, 2015
    Assignee: University College Cardiff Consultants Ltd.
    Inventors: Wolfgang Langbein, Paola Borri
  • Patent number: 9121701
    Abstract: A fiber optically coupled laser rangefinder (LRF) for use in a gimbal system to input/extract a laser beam into/from a camera is disclosed. In one embodiment, the fiber optically coupled LRF includes a gimbal assembly. Further, the gimbal assembly includes a first fiber optic cable for receiving the laser beam from a remote transmitter assembly, a fiber optically coupled laser interface module to receive the laser beam and opposing mirrors to direct the laser beam to a target. In addition, the gimbal assembly includes a second fiber optic cable for transmitting a return laser beam to a remote receiver assembly. The opposing mirrors are further configured to direct the return laser beam from the target to the fiber optically coupled laser interface module. The fiber optically coupled laser interface module is further configured to transmit it to the receiver assembly via the second fiber optic cable.
    Type: Grant
    Filed: August 21, 2012
    Date of Patent: September 1, 2015
    Assignee: BAE Systems Information and Electronic Systems Integration Inc.
    Inventors: William E. Shaw, Bruce Whaley, Marcus Hatch, Raymond J. Silva, Michael E. DeFlumere
  • Patent number: 9109869
    Abstract: An interferometer (1) measures a measuring interference beam, while detecting the position of a moving mirror (16) on the basis of detection results obtained from a reference beam detector (25). In the interferometer, a reference beam source (21) is configured by including a light source (21a) composed of a semiconductor laser device. A reference optical system (20) has a collimating optical system (22) for a reference beam, said collimating optical system converting a laser beam outputted from the reference beam source (21) into a collimated beam, and the collimated beam is diagonally inputted to a fixed mirror (15).
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 18, 2015
    Assignee: KONICA MINOLTA, INC.
    Inventor: Yusuke Hirao
  • Patent number: 9091665
    Abstract: When light beams of two different wavelengths applied from an excitation light source are made incident on a nonlinear optical crystal having a unique nonlinear coefficient, the nonlinear optical crystal generates THz waves resulting from difference frequency generation according to the nonlinear coefficient that the crystal itself has and SHG waves in which the light beams of two different wavelengths have been wavelength converted in accordance with the nonlinear coefficient. The generated THz waves pass through or are reflected from a sample and are detected by a THz detector. The SHG waves are detected by a SHG detector. A control unit acquires THz measurement values T from the THz detector, acquires SHG measurement values S from the SHG detector, and uses baseline THz measurement values TB and baseline SHG measurement values SB acquired without the sample to perform baseline correction using (T/S)/(TB/SB).
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: July 28, 2015
    Assignee: ARKRAY, Inc.
    Inventor: Shigeru Kitamura
  • Patent number: 9091523
    Abstract: A profilometer incorporating a partial coherence interferometer directs a beam containing a band of wavelengths along object and reference arms of the interferometer into respective engagements with a test object surface and a reference object surface en route to a spectrometer for measuring a spectrum of the beam. Within the object arm, the test object surface is relatively moved through a range of positions offset from a null position at which optical path lengths of the object and reference arms are equal. Modulation frequencies of the beam spectrum are calculated at a succession of different focus spot positions across the test object surface. Changes in the modulation frequency are interpreted to distinguish between optical path length differences at which the optical path length of the object arm is longer or shorter than the optical path length of the reference arm.
    Type: Grant
    Filed: July 19, 2013
    Date of Patent: July 28, 2015
    Assignee: Quality Vision International, Inc.
    Inventor: David B. Kay
  • Patent number: 9086383
    Abstract: Disclosed are systems and methods for monitoring chemical reaction processes in or near real-time. One method may include containing a fluid within a flow path, the fluid having a chemical reaction occurring therein, optically interacting at least one integrated computational element with the fluid, thereby generating optically interacted light, and producing an output signal based on the optically interacted light that corresponds to a characteristic of the chemical reaction.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: July 21, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Ola Tunheim, Robert P. Freese, Alexis Wachtel, II, James R. MacLennan
  • Patent number: 9074993
    Abstract: White-light snapshot channeled linear imaging (CLI) polarimeters include polarization gratings (PGs) configured to produce a compensated shear between portions of an input light flux in first and second polarization states. The disclosed CLI polarimeters can measure a 2-dimensional distribution of linear Stokes polarization parameters by incorporating two identical PGs placed in series along an optical axis. In some examples, CLI polarimeters are configured to produce linear (S0, S1, and S2) and complete (S0, S1, S2 and S3) channeled Stokes images.
    Type: Grant
    Filed: February 17, 2012
    Date of Patent: July 7, 2015
    Assignee: The Arizona Board of Regents on Behalf of the University of Arizona
    Inventor: Michael W. Kudenov
  • Patent number: 9042414
    Abstract: A tunable laser source that includes multiple gain elements and uses a spatial light modulator in an external cavity to produce spectrally tunable output is claimed. Several designs of the external cavity are described, targeting different performance characteristics and different manufacturing costs for the device. Compared to existing devices, the tunable laser source produces high output power, wide tuning range, fast tuning rate, and high spectral resolution.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: May 26, 2015
    Assignee: Spectral Sciences, Inc.
    Inventors: Pajo Vukovic-Cvijin, Neil Goldstein
  • Publication number: 20150138560
    Abstract: A spectroscopic sensor 1A comprises an interference filter unit 20A having a cavity layer 21 and first and second mirror layers 22, 23 and a light detection substrate 30 having a light-receiving surface 32a for receiving light transmitted through the interference filter unit 20A. The interference filter unit 20A has a first filter region 24 corresponding to the light-receiving surface 32a and a ring-shaped second filter region 25 surrounding the first filter region 24. The light detection substrate 30 has a plurality of pad units 33a contained in the second filter region 25, while the second filter region 25 is formed with through holes 6 for exposing the pad units 33a to the outside.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 21, 2015
    Inventors: Takashi Kasahara, Katsumi Shibayama
  • Publication number: 20150138561
    Abstract: A spectroscopic measurement apparatus includes a wavelength tunable interference filter that selects light of a predetermined wavelength from incident light, allows the selected light to exit, and is capable of changing the wavelength of the light that is allowed to exit, a light dividing element that divides the exiting light having exited out of the wavelength tunable interference filter into a plurality of light fluxes, and a first light receiving device and a second light receiving device that are provided in correspondence with the plurality of divided light fluxes divided by the light dividing element and have sensitivities different from each other.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 21, 2015
    Inventors: Akira SANO, Tomohiro MAKIGAKI, Kazunori SAKURAI
  • Publication number: 20150131101
    Abstract: A spectroscopic sensor 1A comprises an interference filter unit 20A having a cavity layer 21 and first and second mirror layers 22, 23 and a light detection substrate 30 having a light-receiving surface 32a for receiving light transmitted through the interference filter unit 20A. The interference filter unit 20A has a first filter region 24 corresponding to the light-receiving surface 32a and a ring-shaped second filter region 25 surrounding the first filter region 24. The distance between the first and second mirror layers 22, 23 varies in the first filter region 24 and is fixed in the second filter region 25.
    Type: Application
    Filed: May 8, 2013
    Publication date: May 14, 2015
    Inventors: Takashi Kasahara, Katsumi Shibayama
  • Patent number: 9025156
    Abstract: Provided is a small, highly accurate Fourier spectrometer which enables highly accurate detection of an optical path difference in an interferometer. An element for changing to a narrow band is provided to return reflected light to a second light source (4), and the wavelength of light emitted by the second light source is locked, whereby the position of a movable mirror (8) is measured highly accurately and an optical path length (1) and an optical path length (2) match highly accurately.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 5, 2015
    Assignee: Konica Minolta Holdings, Inc.
    Inventor: Yusuke Hirao
  • Publication number: 20150116720
    Abstract: The present invention relates to a spectrometer including a diopter (11); capturing means (15, 18) at said diopter (11) of an interferogram (12) originating from two interference beams (F1, F2) and forming interference lines (13) along the transverse axis (Ox) of the interferogram (12) within the plane (xOy) of the diopter (11), said capturing means (15, 18) including a network (18) of detection elements (19) so arranged to detect the spatial distribution of said interferogram (12), characterized in that said network (18) of detection elements (19) is two-dimensional and in that at least a portion of said capturing means (15, 18) and said interferogram (12) are tilted with regard to each other along the transverse axis (Ox) of the interferogram (12). The present invention also relates to a spectroscopic imaging device, including means for emitting two interference beams (F1, F2), and to such a spectrometer.
    Type: Application
    Filed: March 17, 2009
    Publication date: April 30, 2015
    Applicant: UNIVERSITÉ DE TECHNOLOGIE DE TROYES
    Inventors: Yassine Hadjar, Sylvain Blaize, Aurélien Bruyant, Gilles Lerondel, Pascal Royer
  • Patent number: 9019507
    Abstract: A signal is amplified by making a CARS beam from an observed body and a reference beam which is a portion of a super continuum beam and has a frequency of ?AS=2?P??ST interfere with each other and taking out the signal from an interference beam of the CARS beam and the reference beam.
    Type: Grant
    Filed: January 7, 2013
    Date of Patent: April 28, 2015
    Assignee: Hitachi, Ltd.
    Inventors: Shigeharu Kimura, Masataka Shirai, Koichi Watanabe
  • Publication number: 20150109620
    Abstract: Provided are a method and an apparatus for measuring the spectral intensity and phase of a light pulse having an arbitrary time duration. The apparatus includes: a nonlinear mixing means for generating a signal light pulse expressed by the following Formula (? denotes an operator representing general nonlinear mixing, and ? denotes a coefficient which is proportional to a nonlinear susceptibility in the nonlinear mixing) by nonlinearly mixing a reference light pulse having an electric field Er(t??) delayed by an optical delay means and a measurement target light pulse having an electric field E0(t); and Er(t??)+?Er(t??)?E0(t) an imaging spectrum device for spectrally splitting the signal light pulse and outputting a Fourier transform signal expressed by the following Formula (F denotes a symbol indicating Fourier transform, * denotes a complex conjugate, and R denotes a symbol indicating a real part), |F[Er(t??)]|2+|?F[Er(t??)?E0(t)]|2+2R{?F[Er(t??)]*·F[Er(t??)?E0(t)]}.
    Type: Application
    Filed: April 23, 2013
    Publication date: April 23, 2015
    Applicant: INTER-UNIVERSITY RESEARCH INSTITIUTE CORPORATION NATIONAL INSTITUTE OF NATURAL
    Inventors: Takao Fuji, Yutaka Nomura
  • Patent number: 9013707
    Abstract: A device for optical sensing of substances or environmental conditions in a fluid includes a number of non-overlapping adjacent sensing elements, each having a layered optical element for generating a wavelength-specific interference effect and being treated so as to respond to the presence of a predefined substance or a predefined environmental condition to cause an optically detectable change. The sensing elements are distinct from each other both in their wavelength-specific interference effect and in the corresponding optically detectable change. As a result, when the device is illuminated by a common illumination beam of multi-wavelength illumination, spectral analysis performed on the reflected or transmitted illumination enables simultaneous sensing of a plurality of substances or environmental conditions. In certain preferred implementations, the layered optical element includes at least one layer of porous silicon.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: April 21, 2015
    Assignee: Ramot At Tel-Aviv University Ltd.
    Inventors: Shlomo Ruschin, Tanya Hutter
  • Publication number: 20150103353
    Abstract: Systems and methods for controlling the optical path length between a feedback enabled laser and a cavity, and hence the optical feedback phase. A phasor element, positioned along an optical path between the laser and the cavity coupling mirror, includes a gas medium within a volume defined by the phasor element. The phasor element is configured to adjust or control an optical path length of the laser light between the laser and the cavity coupling mirror by adjusting or controlling a density of the gas medium within the phasor volume.
    Type: Application
    Filed: October 11, 2013
    Publication date: April 16, 2015
    Inventor: Serguei Koulikov
  • Patent number: 8988688
    Abstract: Disclosed are optical sensing devices and methods for detecting samples using the same. The optical sensing device comprises a source unit configured to generate a polychromatic light beam containing p-polarized and s-polarized components; an interferometric unit configured to split the light beam into a probe beam passing a first path and a reference beam passing a second path and to recombine the probe beam output from the first path and the reference beam output from the second path; a sensing unit disposed in the first path to introduce a first SPR effect associated with a target sample to the probe beam; and a detection unit configured to detect target sample characteristics by obtaining an intensity spectrum of the recombined light beam. The introduction of a polychromatic light source in the optical sensing device increases the detection dynamic range and the detection sensitivity.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: March 24, 2015
    Assignees: The Chinese University of Hong Kong, City University of Hong Kong
    Inventors: Lawrence Chi-man Wu, Siu pang Ng, Ho Pui Ho, Shu Yuen Wu
  • Patent number: 8988689
    Abstract: Multiple rays such as scattered lights and fluorescent lights emitted radially in a variety of directions from each bright point in a measurement area enter an objective lens, where the multiple rays are converted into a parallel beam. The parallel beam is reflected by both a reference mirror unit and an oblique mirror unit, and the reflected beams pass through an imaging lens to form an interference image on a light-receiving surface of a detection unit. The detection of the light intensity of the interference image on the light-receiving surface enables an acquisition of the interferogram (the waveform of the change of imaging intensity) in which the light intensity continuously changes. By Fourier-converting the interferogram, spectral characteristics can be obtained which show the relative intensities for each wavelength of the lights emitted from one bright point of an object to be measured.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: March 24, 2015
    Assignee: National University Corporation Kagawa University
    Inventor: Ichiro Ishimaru
  • Patent number: 8982355
    Abstract: Disclosed is a system and method for characterizing optical materials, using steps and equipment for generating a coherent laser light, filtering the light to remove high order spatial components, collecting the filtered light and forming a parallel light beam, splitting the parallel beam into a first direction and a second direction wherein the parallel beam travelling in the second direction travels toward the material sample so that the parallel beam passes through the sample, applying various physical quantities to the sample, reflecting the beam travelling in the first direction to produce a first reflected beam, reflecting the beam that passes through the sample to produce a second reflected beam that travels back through the sample, combining the second reflected beam after it travels back though the sample with the first reflected beam, sensing the light beam produced by combining the first and second reflected beams, and processing the sensed beam to determine sample characteristics and properties.
    Type: Grant
    Filed: December 9, 2010
    Date of Patent: March 17, 2015
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sang Hyouk Choi, Yeonjoon Park
  • Publication number: 20150070698
    Abstract: A quantum cascade laser (QCL) may include a QCL crystal having an emitting facet, and an active region adjacent the emitting facet, the emitting facet for providing an electromagnetic beam. The QCL may include an optical cavity comprising a mirror being external to the QCL crystal, and for redirecting the electromagnetic beam into the active region of the QCL crystal to provide optical feedback, and a driver circuit for driving the QCL crystal with a constant current. The QCL may include a controller coupled to the optical cavity and for dynamically and autonomously aligning the optical cavity based upon an error signal from the QCL crystal to maintain stable the optical feedback into the active region of the QCL crystal.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 12, 2015
    Inventors: Andrey V. MURAVIEV, Douglas MAUKONEN, Christopher J. FREDRICKSEN, Robert E. PEALE
  • Publication number: 20150062586
    Abstract: A system for performing optical spectroscopy measurements includes a light source for generating an input optical beam and an interferometer. The interferometer includes a beam splitter that splits the input optical beam into first and second light beams; a first light path that directs the first light beam through a sample containing an analyte to a first output port; and a second light path that directs the second light beam to the first output port. At least one of the first and second light paths adjusts a relative phase of a corresponding one of the first and second light beams, so that the first and second light beams are out of phase at the first output port, substantially canceling background light and outputting sample light corresponding to a portion of the first light signal absorbed by the sample in the sample cell. A detection system detects the output sample light.
    Type: Application
    Filed: August 30, 2013
    Publication date: March 5, 2015
    Applicant: AGILENT TECHNOLOGIES, INC.
    Inventors: Miao Zhu, Adam Kleczewski, Robert C. Taber
  • Patent number: 8953158
    Abstract: A system for grading an agricultural product employing hyper-spectral imaging and analysis. The system includes at least one light source for providing a beam of light, an interferometer or a prism array for dispersing electromagnetic radiation emitted from said agricultural product into a corresponding spectral image, a light measuring device for detecting component wavelengths within the corresponding spectral image and a processor operable to compare the detected component wavelengths to a database of previously graded agricultural products to identify and select a grade for the agricultural product. A method for grading an agricultural product via hyper-spectral imaging and analysis is also provided.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: February 10, 2015
    Inventors: Danny S. Moshe, Henry M. Dante, Seetharama C. Deevi, Curtis M. Hinton
  • Publication number: 20150036145
    Abstract: The invention relates to a method and a device for twin-focus photothermal correlation spectroscopy for the characterization of dynamical processes in liquids and biomaterials with the help of absorbing markers. Thereby non-fluorescent absorbing nano objects are heated by an intensity-modulated heating laser which leads to a refractive index gradient lens around the object. This refractive index gradient is detected by a detection laser with a focal volume that, depending on the position of the heated object relative to the focal plane of the detection beam, splits into two-sub-volumes forming a twin-focus comprising two sharply separated parts of a focal volume showing no spatial overlap.
    Type: Application
    Filed: July 12, 2012
    Publication date: February 5, 2015
    Applicant: Universität Leipzig
    Inventors: Frank Cichos, Marco Braun, Markus Selmke, Romy Schachoff
  • Patent number: 8947670
    Abstract: A novel means of provided a hybrid flexure mounted moving mirror component in an interferometer is introduced herein. In particular, a linear bearing in combination with a novel flexure mounting having novel tilt and velocity control of the moving optical component is provided. Such an arrangement enables correction of the errors at the mirror itself while also solving the problem of isolating vibration and noise caused by the imperfections in the bearing surfaces used in many conventional interferometers. Using such a coupled flexure mounting of the present invention, in addition to the above benefits, also enhances velocity control because the resultant low mass of the moving mirror assembly enables the systems disclosed herein to respond faster than conventional mirror velocity controlled interferometer instruments and with a lower velocity error so as to provide a more stable and lower noise spectra from the analytical instrument.
    Type: Grant
    Filed: December 7, 2010
    Date of Patent: February 3, 2015
    Assignee: Thermo Electron Scientific Instruments Inc.
    Inventor: John Magie Coffin
  • Patent number: 8941836
    Abstract: In the field of Fourier transform interferometry and in particular a device and a method for improving the precision of such a device for remotely analyzing a gaseous compound, a Fourier transform interferometer includes: at least one movable retroreflector; a metrology subsystem using at least three laser beams; and a metrology unit generating, for each sounding point represented by a pixel on the capture matrix imaging a gaseous compound, a metrology signal incorporating the displacements in space of the movable element(s).
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: January 27, 2015
    Assignee: Thales
    Inventors: Jean-Michel Gaucel, Didier Miras
  • Patent number: 8941828
    Abstract: Described are methods for multi-wavelength cavity ring-down spectroscopy; comprising simultaneously and continuously irradiating an optical cavity with light at two or more different wavelengths, each light being intensity-modulated at a different modulation frequency, detecting the light of two or more wavelengths after the light has traveled through the optical cavity; measuring an optical loss of each detected light; and determining a characteristic of the optical cavity from the optical loss of each detected light. Also described are apparatus and systems for multi-wavelength cavity ring-down spectroscopy.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: January 27, 2015
    Assignee: Queen's University at Kingston
    Inventors: Hans-Peter Loock, Helen Waechter
  • Publication number: 20150022796
    Abstract: An interferometer includes: an optical system configured to generate interfering light by dividing light from a light source, and combining reference light and measurement light; a detector configured to detect the interfering light generated by the optical system; and an optical member configured to give spatial coherence to the light from the light source before the detector detects the light from the light source. The optical member gives higher spatial coherence in a second direction serving as a direction of a line of intersection of a cross section of a beam of the light incident on the optical member, and a plane including optical paths of the light from the light source before being divided by the optical system, the reference light, the measurement light, and the interfering light, than in a first direction perpendicular to the plane.
    Type: Application
    Filed: July 10, 2014
    Publication date: January 22, 2015
    Inventors: Wataru Yamaguchi, Takahiro Matsumoto, Hideki Ina
  • Publication number: 20150022817
    Abstract: A profilometer incorporating a partial coherence interferometer directs a beam containing a band of wavelengths along object and reference arms of the interferometer into respective engagements with a test object surface and a reference object surface en route to a spectrometer for measuring a spectrum of the beam. Within the object arm, the test object surface is relatively moved through a range of positions offset from a null position at which optical path lengths of the object and reference arms are equal. Modulation frequencies of the beam spectrum are calculated at a succession of different focus spot positions across the test object surface. Changes in the modulation frequency are interpreted to distinguish between optical path length differences at which the optical path length of the object arm is longer or shorter than the optical path length of the reference arm.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: Quality Vision International, Inc.
    Inventor: David B. Kay
  • Publication number: 20150009504
    Abstract: A method and system are presented for determining a line profile in a patterned structure, aimed at controlling a process of manufacture of the structure. The patterned structure comprises a plurality of different layers, the pattern in the structure being formed by patterned regions and un-patterned regions. At least first and second measurements are carried out, each utilizing illumination of the structure with a broad wavelengths band of incident light directed on the structure at a certain angle of incidence, detection of spectral characteristics of light returned from the structure, and generation of measured data representative thereof. The measured data obtained with the first measurement is analyzed, and at least one parameter of the structure is thereby determined.
    Type: Application
    Filed: September 24, 2014
    Publication date: January 8, 2015
    Inventors: Moshe FINAROV, Boaz BRILL
  • Publication number: 20150002848
    Abstract: Method and device for optical inspection of a sample using spectral interferometry, wherein a beam (2?) emitted by a radiation source (1) is directed onto the sample (5) and a reference beam (2?) is directed onto a reference sample (4), and the spectral interference of both beams after being reflected on the samples or after passing the samples is recorded by means of a spectrograph (6); the interferogram I(?) thus obtained is numerically derived with respect to the angular frequency ?. For the function I?(?) thus obtained the zeros ?i are calculated numerically as solutions to the equation I?(?)=0 and the frequency-dependent group delay ?(?) is then calculated from the zeros ?i according to the equation ?(?n)=?/(?i+1??i), wherein i=1, 2 . . . and ?n=(?i+1+?i)2.
    Type: Application
    Filed: January 15, 2013
    Publication date: January 1, 2015
    Inventor: Gabriel-Florin Tempea
  • Patent number: 8922783
    Abstract: A multiband spatial heterodyne spectrometer for determining spectra in first and second wavelength bands has a beamsplitter configured to split incident light and to direct the incident light upon a first and a second diffraction grating. The gratings are configured for Littrow reflection of incident light of the first wavelength band at a first order and Littrow reflection of incident light of the second wavelength band at a second order. Light reflected by the first and the second diffraction grating forms diffraction patterns imaged by an electronic camera. A dispersive device separates the imaged interference patterns onto separate groups of pixel sensors corresponding to the wavelength bands. A processing device receives information from the detector and computes spectra therefrom. The second diffraction grating is split spatially or temporally to provide two different responses, so the system can disambiguate spectra. In embodiments, the spectrometer computes hyperspectral images of a target.
    Type: Grant
    Filed: April 9, 2012
    Date of Patent: December 30, 2014
    Assignee: Bodkin Design and Engineering LLC
    Inventor: Andrew Bodkin
  • Publication number: 20140375999
    Abstract: An apparatus including a transform spectrometer with n×4 multi-mode interface optical hybrid couplers, wherein n=2 or 4, is herein provided. A transform spectrometer apparatus implemented on a planar waveguide circuit is also provided, including: an input optical signal waveguide for carrying an input optical signal; a plurality of input couplers connected to the input optical signal waveguide, each input coupler capable of sending an output signal; an array of interleaved waveguide Mach-Zehner interferometers (MZI), with each MZI coupled to a respective input coupler and each MZI having at least one MZI waveguide for receiving an output signal; and, a plurality of output coupler portions, each output coupler portion coupled to a respective MZI. Each output coupler portion includes one or more inputs along which the output is received from the MZI, and a plurality of outputs for outputting a plurality of signals.
    Type: Application
    Filed: June 25, 2014
    Publication date: December 25, 2014
    Inventor: Katsunari OKAMOTO
  • Publication number: 20140368824
    Abstract: A Fourier-transform interferometer with self-apodization compensation comprises at least one pair of mobile prisms forming a plate with thickness which varies at the same time as an optical path length difference is itself varied. The prisms are displaced using a mobile system with a single degree of freedom, comprising two support elements and at least two rotatably hinged levers. The interferometer is adapted to be installed on board a satellite, for spectral analysis of a radiation originating from the Earth's surface.
    Type: Application
    Filed: June 13, 2014
    Publication date: December 18, 2014
    Inventor: Frédéric Pasternak
  • Publication number: 20140362384
    Abstract: A spectroscopic instrument includes a first optical component for spatial spectral splitting of a polychromatic beam of light impinging onto the first optical component, an objective, which routes various spectral regions of the split beam of light onto differing spatial regions, and a sensor, situated downstream of the objective in the beam path of the beam of light, with a plurality of light-sensitive sensor elements. The sensor elements are arranged in the beam path of the split beam of light in such a manner that each sensor element registers the intensity of a spectral sector of the beam of light and the medians of the spectral sectors are situated equidistant from one another in the k-space, where k denotes the wavenumber.
    Type: Application
    Filed: December 28, 2011
    Publication date: December 11, 2014
    Applicant: WAVELIGHT GMBH
    Inventors: Claudia Gorschboth, Tobias Jeglorz, Ole Massow, Henning Wisweh, Klaus Vogler
  • Patent number: 8885163
    Abstract: Various systems and methods for performing optical analysis downhole with an interferogram (a light beam having frequency components with a time variation that identifies those frequency components. The interferogram is produced by introducing an interferometer into the light path, with the two arms of the interferometer having a propagation time difference that varies as a function of time. Before or after the interferometer, the light encounters a material to be analyzed, such as a fluid sample from the formation, a borehole fluid sample, a core sample, or a portion of the borehole wall. The spectral characteristics of the material are imprinted on the light beam and can be readily analyzed by processing electronics that perform a Fourier Transform to obtain the spectrum or that enable a comparison with one or more templates. An interferometer designed to perform well in the hostile environments downhole is expected to enable laboratory-quality measurements.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: November 11, 2014
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Marian L. Morys, Steve Zannoni, Christopher M. Jones