Deflection Using A Moving Element Patents (Class 359/196.1)
  • Patent number: 9469252
    Abstract: A mirror element sub-assembly for a vehicular exterior rearview mirror assembly includes a mirror reflective element, a mirror back plate and an indicator. The front side of the mirror back plate includes a reflective element attaching portion and the rear side of the mirror back plate includes (i) an actuator attaching portion and (ii) an indicator attaching portion, all of which are integrally formed during injection molding of the mirror back plate. The indicator attaching portion includes structure extending from the rear side of the mirror back plate and having a passageway therethrough. The indicator is attached at the structure, and light emitted by the indicator passes through the passageway and through an opening of the mirror back plate and through the mirror reflective element so as to exit from the mirror reflective element at an angle relative to the reflective element attaching portion.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: October 18, 2016
    Assignee: DONNELLY CORPORATION
    Inventors: Michael J. Baur, Ian A. McCabe, Hamid Habibi, Niall R. Lynam
  • Patent number: 9395542
    Abstract: A display system includes an optical component having a first and second surface, wherein the first surface comprises a diffractive optical element, and a projector system to create a projected image on the optical component. The projector includes an illumination source that emits electromagnetic radiation within a predetermined spectral band, an image generator that ascribes image characteristics to the radiation, and an optically-powered component that directs the radiation at the first surface of the optical component. The diffractive optical element reflects at least a portion of the radiation in a predetermined direction. The optical component has zero optical power for transmitted light. The optical component transmits at least a portion of the ambient scenery within a predetermined spectral band within a field-of-view of the projected image. The projected image maintains substantial boresight alignment with the ambient image.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: July 19, 2016
    Assignee: Elbit Systems of America, LLC
    Inventors: Michael M. Tilleman, Jon R. Lyford
  • Patent number: 9392231
    Abstract: In image capturing processor in one embodiment comprises: an image capturing section including an image sensor that captures a polarization image of an object being illuminated with an illuminating light beam; and an image processing section. The image processing section has: a light intensity image generator which generates a light intensity image based on the output of the image sensor; a polarization degree image generator which generates a polarization degree image by calculating the degree of polarization on a pixel-by-pixel basis; a retouching section which generates a retouched polarization image by enhancing the degree of polarization of the polarization degree image at depressions on a micro-geometric surface of the object and by correcting at least one of its hue, saturation and value; and an image synthesizing section which synthesizes the retouched polarization image and the light intensity image together.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: July 12, 2016
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Katsuhiro Kanamori, Toshinobu Matsuno
  • Patent number: 9362767
    Abstract: A portable wireless communication device includes a connector configured to charge the portable wireless communication device by electronically connecting a power source to the portable wireless communication device. The connector includes a plurality of pins, one of the pins configured to serve as a radiation portion of an antenna to receive/send wireless signals when the connector electronically is uncoupled to the power source.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: June 7, 2016
    Assignee: Chiun Mai Communication Systems, Inc.
    Inventors: Kun-Lin Sung, Ting-Chih Tseng, Yen-Hui Lin
  • Patent number: 9348133
    Abstract: An image projection method and a microelectromechanical system (MEMS) image projection apparatus are provided. The image projection method controls a MEMS scanning mirror swinging around a first swing axis to project an image light beam. The image projection method includes following steps. A resonance frequency and a damping coefficient of the MEMS scanning mirror at swinging are measured to calculate a first amplitude scale and a first maintaining period, and a periodic wave signal is generated accordingly. The periodic wave signal is output to the MEMS scanning mirror for controlling the MEMS scanning mirror to swing, and a swing speed error thereof is recorded. By adjusting the first amplitude scale and the first maintaining period, the periodic wave signal is also adjusted, and the corresponding swing speed error is recorded. According to the recorded swing speed errors, the corrected periodic wave signal is generated for controlling the MEMS scanning mirror.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: May 24, 2016
    Assignee: Lite-On Technology Corporation
    Inventors: Chia-Hao Hsu, Chun-Lai Hsiao
  • Patent number: 9239260
    Abstract: The invention relates to an optical measuring device (1) comprising a housing (3), in which at least one optical transmitter (20) for emitting at least one transmission beam (22, 24) and at least one optical receiver are arranged, a covering plate (5) closing off the housing and forming a transmission window (10) and a reception window (7), with the at least one transmission beam (22, 24) emerging from the housing through the transmission window (10). In order to provide a measuring device (1) with an outer surface (14) which is as flat as possible and in order to achieve a reduction in disturbance signals which can be traced back, inter alia, to the reflection of the transmission beam (22, 24) on the transmission window (10), the outer side (5.1) of a covering plate (5) is arranged substantially perpendicular to the emission direction and the transmission window (10) is embodied with a tilt with a predetermined tilt angle (?).
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: January 19, 2016
    Assignee: VALEO Schalter und Sensoren GmbH
    Inventors: Heiner Bayha, Peter Horvath, Jens Nicolai
  • Patent number: 9217705
    Abstract: The binding state of ionic materials, including metal ions, in a fluid phase can be determined using an integrated computational element. Methods for determining the binding state of an ionic material in a fluid phase can comprise optically interacting electromagnetic radiation with an ionic material and one or more integrated computational elements, the ionic material being located in a fluid phase while being optically interacted with the electromagnetic radiation; and determining one or more binding states of the ionic material in the fluid phase, using the one or more integrated computational elements.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 22, 2015
    Assignee: Halliburton Energy Services, Inc.
    Inventors: Aaron Gene Russell, Johanna Haggstrom, Robert P. Freese
  • Patent number: 9217991
    Abstract: A multifunction peripheral includes: an apparatus body including an intake opening through which external air is taken in; an axial flow fan configured to send air through the intake opening to an interior of the apparatus body; and a substrate including a temperature sensor placed on one surface thereof facing a first air flow path formed by activation of the blower and a humidity sensor placed on the other surface thereof facing a second air flow path along which a smaller amount of air flow flows than along the first air flow path.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: December 22, 2015
    Assignee: KYOCERA Document Solutions Inc.
    Inventor: Masahiro Tsutsumi
  • Patent number: 9198578
    Abstract: A hyperspectral imaging system having an optical path. The system including an illumination source adapted to output a light beam, the light beam illuminating a target, a dispersing element arranged in the optical path and adapted to separate the light beam into a plurality of wavelengths, a digital micromirror array adapted to tune the plurality of wavelengths into a spectrum, an optical device having a detector and adapted to collect the spectrum reflected from the target and arranged in the optical path and a processor operatively connected to and adapted to control at least one of: the illumination source; the dispersing element; the digital micromirror array; the optical device; and, the detector, the processor further adapted to output a hyperspectral image of the target.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: December 1, 2015
    Assignee: Board of Regents, The University of Texas System
    Inventors: Karel J. Zuzak, Jeffrey A. Cadeddu, Rafael Ufret-Vincenty, Robert P. Francis, Edward Livingston
  • Patent number: 9195162
    Abstract: A cover member to be attached to a housing including a bottom portion and a side wall, the cover member including: a closing surface configured to close an opening surrounded by the side wall; at least three protruding portions protruding from the closing surface so as to be located on an inside of the housing; and a protection portion configured to protect a circuit board fixed to the side wall, the protection portion having: a first opposed portion opposed to the circuit board and provided to stand on the closing surface; a second opposed portion opposed to the circuit board and protruding with respect to the first opposed portion away from the circuit board; and a connecting portion configured to connect the first opposed portion and the second opposed portion, wherein a length of the at least three protruding portions is larger than a length of the first opposed portion.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: November 24, 2015
    Assignee: CANON KABUSHIKI KAISHA
    Inventors: Yasuaki Otoguro, Takehiro Ishidate
  • Patent number: 9134229
    Abstract: A system and method for optical data acquisition of an illuminated turbid medium object, the system comprises a variable structured light detector and a controller. The light detector is adapted to retrieve light from a plurality of detection points of an output surface of the illuminated turbid medium object with a plurality of detection patterns. The controller is adapted to control the variable structured light detector for the variable structured light detector to use a detection pattern corresponding to an illumination pattern of the illuminated turbid medium object. The light detector is further adapted to optically measure a combination of retrieved light from the plurality of detection points as an optical measurement. The controller is further adapted to store an illumination pattern identifier indicative of the illumination pattern, a detection pattern identifier indicative of the detection pattern and the corresponding optical measurement.
    Type: Grant
    Filed: September 22, 2010
    Date of Patent: September 15, 2015
    Assignee: POLYVALOR, LIMITED PARTNERSHIP
    Inventors: Frédéric Lesage, Samuel Bélanger, Maxime Abran, Jean Provost
  • Patent number: 9116351
    Abstract: Provided is an optical scanning device including: a plurality of light sources; an optical deflector that includes reflection surfaces that deflect different light beams toward opposite sides of the optical deflector; and a light-shielding member provided in an area between incident light beams emitted from the plurality of light sources. The light-shielding member is positioned such that a portion of the light-shielding member is in a light-shield area surrounded by a circumscribed circle of the optical deflector, a line tangent to the circumscribed circle and orthogonal to a Y direction, and the incident light beam, the Y direction being a direction parallel to a main scanning direction and passing through a rotation center of the optical deflector, the main scanning direction being a direction, in which surfaces of image carriers are scanned.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: August 25, 2015
    Assignee: RICOH COMPANY, LIMITED
    Inventors: Shigeaki Imai, Yukio Itami, Kensuke Masuda
  • Patent number: 9103718
    Abstract: The inventive technique of detecting and analyzing light from a light-emitting particle in accordance with the scanning molecule counting method using an optical measurement with a confocal microscope or a multiphoton microscope is characterized by detecting intensities of components of two or more wavelength bands of light from a light detection region of an optical system with moving the position of the light detection region in a sample solution by changing the optical path of the optical system of the microscope; detecting individually signals of the light from each light-emitting particle in the intensities of the components of the two or more wavelength bands of the detected light; and identifying a kind of light-emitting particle based on the intensities of the components of the two or more wavelength bands of the signals of the light of the detected light-emitting particle.
    Type: Grant
    Filed: May 7, 2013
    Date of Patent: August 11, 2015
    Assignee: OLYMPUS CORPORATION
    Inventors: Takuya Hanashi, Tetsuya Tanabe, Mitsushiro Yamaguchi
  • Patent number: 9039198
    Abstract: In a method for projecting an image onto a projection area (10) by at least one first (110) and second (210) beam, in order to create an improved image on the projection area, the deviation of the projection of the first and second beam on the projection area is determined, and the intensity of the first and/or second beam is varied over time according to the previously determined deviations.
    Type: Grant
    Filed: November 8, 2007
    Date of Patent: May 26, 2015
    Assignee: OSRAM Gesellschaft mit beschraenkter Haftung
    Inventors: Jan Oliver Drumm, Henning Rehn, Bakuri Lanchava, Wolfgang Pabst, Robert Kraus
  • Patent number: 9042024
    Abstract: The method includes the steps of: obtaining lateral magnification of an optical scanning system; obtaining the maximum value of thickness in the optical axis direction of an scanner lens; obtaining allowance b on one side and beam diameter a in the vertical scanning direction in the lens; and obtaining width h in the vertical scanning direction of the lens by the following expression h=a+2b. The allowance b is a product of the maximum value of thickness in the optical axis direction of the lens and a coefficient, and the coefficient is determined according to the lateral magnification of the system in such a way that the maximum value of movement of the focal point of the lens due to moisture absorption is made smaller than or equal to a predetermined value.
    Type: Grant
    Filed: March 28, 2013
    Date of Patent: May 26, 2015
    Assignee: NALUX CO., LTD.
    Inventors: Tomohito Kuwagaito, Yosuke Sakohira, Daisuke Seki
  • Patent number: 9042689
    Abstract: An optical switch includes: a semiconductor substrate, including a first rotation part and a first torsion beam disposed at two ends of the first rotation part, where the first torsion beam is configured to drive the first rotation part to rotate; a microreflector, disposed on a surface of the first rotation part of the semiconductor substrate; a first latching structure, disposed on a surface of the first torsion beam, the first latching structure including a form self remolding (FSR) material layer and a thermal field source, where the thermal field source is configured to provide a thermal field for the FSR material layer and the FSR material layer is configured to undergo form remolding under the thermal field, so as to latch the first rotation part and the microreflector in a position after rotation.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: May 26, 2015
    Assignee: Huawei Technologies Co., Ltd.
    Inventors: Qinghua Chen, Haixia Zhang, Wengang Wu, Jun Zhao, Yunsheng Wen
  • Patent number: 9030403
    Abstract: A pixel circuit includes a first control electrode and a second control electrode between which a mechanical shutter is put, and a first control voltage application circuit for inputting a first control voltage to the first control electrode according to an image signal. The first control voltage application circuit includes an input transistor, a retaining capacitor and a first transistor. One of current terminals of the input transistor is connected to a signal line. A gate of the input transistor is connected to a scanning line. One terminal of the retaining capacitor is input with a capacitor control signal and the other terminal is connected to the input transistor. The first transistor has a gate connected to the retaining capacitor and two current terminals, one of which is connected to a first control electrode and the other of which is input with a first control signal.
    Type: Grant
    Filed: October 12, 2012
    Date of Patent: May 12, 2015
    Assignee: Pixtronix, Inc.
    Inventors: Hajime Akimoto, Toshio Miyazawa
  • Patent number: 8994811
    Abstract: Disclosed is a diffraction microscopy capable of reducing influence of an increase in the incident angle range of a beam. Specifically disclosed is a diffraction microscopy in which a beam is incident on a sample, in which the intensity of a diffraction pattern from the sample is measured, and in which an image of an object is rebuilt using Fourier interactive phase retrieval on the basis of the measured intensity of the diffraction pattern. In this method, Fourier interactive phase retrieval is performed using deconvolution on the diffraction pattern subjected to convolution by the increase in the incident angle range of the beam.
    Type: Grant
    Filed: January 21, 2011
    Date of Patent: March 31, 2015
    Assignee: National University Corporation Hokkaido University
    Inventors: Kazutoshi Gohara, Kota Kawahara
  • Patent number: 8992028
    Abstract: A projection system (900) includes a scanner (802) and light source (801). The scanner (802) is configured to crate a scan cone (994) for forming images (995). A principal beam (992) defines a traveling direction of the scan cone (994). An optical device (880) having decentered, free-form major faces is disposed at an output of the projection system (900) such that the scan cone (994) passes through the optical device (880). The optical device (880) is configured to redirect the principal beam (992), and accordingly the traveling direction of the scan cone (994), by a predetermined amount and to correct both anamorphic distortion and vertical smile distortion initially present in the image.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: March 31, 2015
    Assignee: Microvision, Inc.
    Inventor: Joshua M. Hudman
  • Patent number: 8913313
    Abstract: A scanning optical apparatus includes: a light source; a light deflector configured to deflect the light beam from the light source in a main scanning direction; an incident optical system disposed between the light source and the light deflector and configured to render the light beam from the light source nearly parallel in the main scanning direction and to converge the light beam in a sub-scanning direction to bring the light beam to a focus in proximity to the light deflector; and a scanning lens configured to focus the light beam deflected by the light deflector onto a target surface to form spot-like images. The incident optical system includes one or more lenses which provide at least one refracting surface and at least one diffraction surface, and ?nS/?ds<0 is satisfied, where ?nS is a refractive power in the sub-scanning direction and ?dS is a diffraction power in the sub-scanning direction.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: December 16, 2014
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Yoshifumi Nakamura, Hitoshi Fujino, Hidetaka Hoshino
  • Patent number: 8879132
    Abstract: An aspect of the present invention provides a mirror driving apparatus, including: a mirror section having a reflecting surface which reflects light; a pair of piezoelectric actuator sections arranged on either side of the mirror section; coupling sections which respectively connect one end of each of the piezoelectric actuator sections to an end portion of the mirror section which is distant from an axis of rotation of the mirror section in a direction along the reflecting surface and perpendicular to the axis of rotation; a fixing section which supports another end of each of the piezoelectric actuator sections; and a perpendicular movement suppressing structure which suppresses translational motion of the axis of rotation of the mirror section in a direction perpendicular to the reflecting surface, one end of the perpendicular movement suppressing structure being connected to the fixing section and another end thereof being connected to the mirror section.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: November 4, 2014
    Assignee: FUJIFILM Corporation
    Inventor: Takayuki Naono
  • Publication number: 20140267201
    Abstract: A system and method for producing an image having high dynamic range is described. The system comprises: a light source for providing light along an optical path; a digital micromirror device for directing portions of the light to off-state and on-state light paths, thereby producing an image; and a deformable optical element disposed in the optical path between the light source and the digital micromirror device for steering at least some of the light from the off-state light path to the on-state light path to increase dynamic range of the image produced by the digital micromirror device. The deformable optical element can comprise at least one steerable segment and at least one static element.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: CHRISTIE DIGITAL SYSTEMS CANADA INC.
    Inventor: Christie Digital Systems Canada Inc.
  • Patent number: 8837026
    Abstract: The present invention relates to adaptive 3D scanning wherein a scan sequence for obtaining full geometrical coverage of a physical object are created automatically and specifically for the physical object, by using a method and a system for producing a 3D computer model of a physical object, wherein the method comprises the following steps providing a scanner system, said scanner system comprising a scanner, and a computer connectable to and/or integrated in said scanner, said computer comprising a virtual model of said scanner, entering shape information of the physical object into the computer, creating in said computer a visibility function based on said virtual model and the shape information, said visibility function being capable of evaluating the coverage of areas of interest of the physical object by at least one predetermined scan sequence, establishing at least one scan sequence based on the evaluation of the visibility function, performing a scan of the physical object using said at least one scan
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: September 16, 2014
    Assignee: 3Shape A/S
    Inventors: Rune Fisker, Tais Clausen, Nikolaj Deichmann, Henrik Ojelund
  • Patent number: 8829478
    Abstract: An EUV light source is disclosed herein which may comprise a droplet generator producing a stream of target material droplets, a first optical gain medium amplifying light on a first beam path without a seed laser providing a seed laser output to the first beam path, a second optical gain medium amplifying light on a second beam path without a seed laser providing a seed laser output to the second beam path, and a beam combiner combining light from the first beam path and the second beam path for interaction with a target material droplet to produce EUV light emitting plasma.
    Type: Grant
    Filed: November 22, 2013
    Date of Patent: September 9, 2014
    Assignee: ASML Netherlands B.V.
    Inventor: Alexander I. Ershov
  • Patent number: 8824034
    Abstract: A method and a device for operating a laser in an optical component are provided, wherein the laser is a local oscillator of the optical component; and wherein a linewidth of the laser is broadened. Furthermore, an optical communication system is suggested comprising said optical component.
    Type: Grant
    Filed: September 11, 2009
    Date of Patent: September 2, 2014
    Assignee: Xieon Networks S.a.r.l.
    Inventors: Harald Rohde, Thomas Treyer, Sylvia Smolorz, Erich Gottwald
  • Patent number: 8804224
    Abstract: There are provided a lens, a method of fabricating the lens, and a light scanning unit. The lens includes a lens portion having an effective optical surface, and a gate-side flange portion between the lens portion and a gate-side end of the lens. If the lens is disposed between two polarizers configured to polarize light linearly in perpendicular directions and is illuminated in an optical axis direction, interference fringes are generated on the lens, and peripheral interference fringes of the interference fringes extend continuously from the gate-side end and are longer than the gate-side flange portion.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: August 12, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Won-young Cho
  • Patent number: 8797622
    Abstract: In a scanning optical apparatus, an illumination optical system has a diffractive power ?dM in a main scanning direction, a diffractive power ?dS in a sub-scanning direction, a refractive power ?nM in the main scanning direction, and a refractive power ?nS in the sub-scanning direction. A ratio ?nM/?dM in the main scanning direction for a focal length fi in a range of 10-30 mm satisfies: g2(fi)??nM/?dM?g1(fi), where A(Z)=(3.532×107)Z2+3023Z+0.7010, B(Z)=(5.719×107)Z2+4169Z+0.7678, C(Z)=(1.727×107)Z2+3244Z+0.4217, D(Z)=(1.373×108)Z2+3232Z+1.224, g1(fi)=fi{D(Z)?B(Z)}/20?0.5D(Z)+1.5B(Z), g2(fi)=fi{C(Z)?D(Z)}/20?0.5C(Z)+1.5A(Z), and a ratio ?nS/?dS in the sub-scanning direction satisfies: ?nS/?dS<1.3.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: August 5, 2014
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Hidetaka Hoshino, Yoshifumi Nakamura, Hitoshi Fujino
  • Patent number: 8780427
    Abstract: An optical scanner is configured such that an anamorphic condensing lens in an incident optical system has a diffractive lens structure at least in one lens surface thereof, and a length of an optical path increased by the diffractive lens structure ? [rad] is defined by an equation below by a function of height h from an optical axis: ?(h)=M(P2·h2+P4·h4+ . . . ), where Pn is a coefficient of an nth-order term of the height h (n is an even number), and M is a diffraction order, that the lens satisfies the following relations: ?216?P2??49, 1100?P4·(hm max)4/(fm·NAm4)?3800, and 10?fm?35, where hmmax [mm] is an effective diameter in the main scanning direction, fm [mm] is a focal length in the main scanning direction, and NAm is a numerical aperture in the main scanning direction, and that a wavefront aberration WFE1 [?rms] in a first wavelength ?1 [nm] satisfies the following relation: WFE1?0.01.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: July 15, 2014
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Hitoshi Fujino, Yoshifumi Nakamura
  • Patent number: 8773613
    Abstract: Disclosed is a liquid-crystal display with coherent illumination. The display has a multilayered matrix structure comprising a matrix of micromirrors, lightguide panel with a matrix of holographic elements, a liquid-crystal matrix containing a plurality of liquid-crystal cells and a polarization analyzer. The micromirrors perform reciprocating linear or tilting movements. Therefore, in each current moment, the speckle pattern of the image shifts relative to the preceding pattern so that in each current moment the viewer sees an image in different micropositions, which are perceptible by the human eye as a quasistationary pattern. As a result, the speckle pattern seen by the viewer is smoothened.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: July 8, 2014
    Assignee: Ergophos, LLC
    Inventors: Vladimir Yankov, Alexander Goltsov, Igor Ivonin, Konstantin Kravtsov, Leonid Velikov
  • Patent number: 8746898
    Abstract: A projection apparatus includes a shutter mechanism to prevent light from reaching an image plane during calibration of light sources. The shutter mechanism may include liquid crystal material that exhibits an effective index of refraction that varies with applied voltage. During calibration, a light beam is shuttered, light sources are driven by calibration data, and optical power is measured.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: June 10, 2014
    Assignee: Microvision, Inc.
    Inventors: Joshua O. Miller, Scott Woltman
  • Patent number: 8724198
    Abstract: The present invention is generally related to the field of optical systems and/or lens attachments, and more specific to an optical system and/or lens attachment providing a switchable Optical Power Switch (OPS) controllably switchable between different states. A soft transparent material (12), for example silicone-gel is disposed onto a surface of a glass plate (10). The glass plate (10) can be moved with actuators towards a surface of a lens body (10). When the soft material element (12) is in contact with the surface of the lens body (12), this surface changes its optical feature.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: May 13, 2014
    Assignee: Polight AS
    Inventors: Thomas Spatscheck, Vladimir Kartashov, Jon Herman Ulvensoen, Lars Henriksen
  • Patent number: 8717640
    Abstract: An optical scanner includes a light source for projecting a light beam, a deflector for deflecting the light beam, a reflective member for reflecting the light beam toward a target, a contact member, and a pressing member. The reflective member includes a reflective plane and a rear plane opposite the reflective plane. The contact member contacts one of the rear plane of the reflective member and a first lateral plane perpendicular to the reflective plane to position the reflective member in place. The pressing member presses the reflective member against the contact member and includes a first pressing portion to press the reflective plane of the reflective member and a second pressing portion to press a ridge of the reflective member at which the reflective plane and a second lateral plane opposite the first lateral plane and perpendicular to the reflective plane of the reflective member meet.
    Type: Grant
    Filed: November 7, 2012
    Date of Patent: May 6, 2014
    Assignee: Ricoh Company, Ltd.
    Inventor: Susumu Mikajiri
  • Patent number: 8710471
    Abstract: A projection illumination installation for EUV microlithography includes an EUV synchrotron light source for producing EUV used light. An object field is illuminated with the used light using illumination optics. The object field is mapped into an image field using projection optics. A scanning device is used to illuminate the object field by deflecting the used light in sync with a projection illumination period. The result is a projection illumination installation in which the output power from an EUV synchrotron light source can be used as efficiently as possible for EUV projection illumination.
    Type: Grant
    Filed: September 21, 2010
    Date of Patent: April 29, 2014
    Assignee: Carl Zeiss SMT GmbH
    Inventors: Udo Dinger, Markus Hauf
  • Patent number: 8702248
    Abstract: A display system able to reduce interpixel intensity gaps caused by the use of pulsed laser sources having relatively short optimum pulse duration. The interpixel intensity gaps are reduced by temporally offsetting multiple laser pulses for a display pixel during a corresponding pixel-scan period. The temporally offset pulses for the display pixel are then scanned to different locations on a viewing surface such that the display pixel has an improved intensity distribution. Additional reduction in the interpixel gaps may be accomplished by de-focusing the temporally offset pulses in a scan direction, increasing the duty cycle of the source lasers, and shifting the location of alternating frames on the viewing surface.
    Type: Grant
    Filed: June 11, 2009
    Date of Patent: April 22, 2014
    Assignee: Evans & Sutherland Computer Corporation
    Inventors: Robert R. Christensen, Dennis F. Elkins
  • Patent number: 8675269
    Abstract: A method for optical lift includes receiving illumination in a first direction on at least one of two different surface profiles of one or more cambered refractive objects. The one or more cambered refractive objects are rotated to a position of stable rotational equilibrium in response to the received illumination. The one or more cambered refractive objects are moved in a second direction non-parallel direction from the first direction.
    Type: Grant
    Filed: December 2, 2011
    Date of Patent: March 18, 2014
    Assignee: Rochester Institute of Technology
    Inventor: Grover Arthur Swartzlander, Jr.
  • Patent number: 8665496
    Abstract: A control device includes a shape information storage storing shape information to be plotted, a stroke generation unit generating first and second stroke data having transmission start and end coordinates of first and second strokes, a scanning start time computation unit determining scanning start time of the second stroke by adjusting, when selecting first and second points having a shortest distance, a waiting time to scan the second stroke, a traveling rate from the transmission end coordinates of the first stroke to the transmission start coordinates of the second stroke, and scanning rates of scanning the first and second strokes to have a desired time interval between the selected points, a plotting instruction generation unit generating plotting instructions including the scanning start time of the second stroke and the transmission start and end coordinates of the first and second strokes, a plotting instruction storage storing the plotting instructions, and a plotting instruction execution unit exe
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: March 4, 2014
    Assignee: Ricoh Company, Ltd.
    Inventors: Fumihiro Hasegawa, Tomomi Ishimi
  • Patent number: 8610030
    Abstract: A laser beam processing machine comprising a laser beam application means for applying a laser beam to a workpiece held on a chuck table, a processing-feed means, an indexing-feed means, a processing-feed amount detection means for detecting the amount of feed, an indexing-feed amount detection means, and a control means, wherein the condenser constituting the laser beam application means comprises an elliptic spot forming means for forming a focal spot into an elliptic shape and a focal spot turning means for turning the elliptic focal spot on an optical axis at the center thereof; and the control means comprises a storage means for storing the X, Y coordinate values of a processing line formed on the workpiece, obtains the X, Y coordinate values of the current position of a laser beam application position based on detection signals from the processing-feed amount detection means and the indexing-feed amount detection means, and controls the focal spot turning means to ensure that the long axis of the focal
    Type: Grant
    Filed: April 6, 2007
    Date of Patent: December 17, 2013
    Assignee: Disco Corporation
    Inventors: Ryugo Oba, Hiroshi Morikazu
  • Patent number: 8579443
    Abstract: Briefly, in accordance with one or more embodiments, a scanned beam display, comprises a light source to generate a beam to be scanned and a scanning platform to scan the beam into an exit cone. The scanning platform receives the beam at a selected feed angle, and the scanning platform has a surface structure to redirect the exit cone at an exit angle that is less than the feed angle.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: November 12, 2013
    Assignee: Microvision, Inc.
    Inventors: Joshua M. Hudman, Wyatt O. Davis, Mark O. Freeman, Mark P. Helsel, David Roy Bowman, Kelly D. Linden
  • Patent number: 8564868
    Abstract: A light scanning apparatus includes: a light source configured to emit a light beam; a deflector configured to deflect and scan the light beam from the light source in a main scanning direction; a control substrate that is configured to control driving of the light source and includes a first connection part to which the light source is connected and a second connection part for connecting an external terminal; and a housing that supports the control substrate. The first connection part is arranged within the housing and the second connection part is exposed and arranged at the outside of the housing.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: October 22, 2013
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventors: Shinya Kusuda, Shogo Mori
  • Patent number: 8558891
    Abstract: A method for detecting an object in a scene situated in a sector and capable of comprising one or more artifacts, includes_a step of scanning the sector at an angular velocity ??, a step of acquiring digital images of the scene at a rate f by means of a matrix detector, these images comprising pixels and covering an instantaneous field of angular width “a”.
    Type: Grant
    Filed: June 5, 2009
    Date of Patent: October 15, 2013
    Assignee: Thales
    Inventors: Jean-Yves Dufour, Michel Prenat, Nadège Lemperiere
  • Patent number: 8553311
    Abstract: A method of accomplishing high-speed intensity variation of a polarized output laser beam includes securing an angle of light incidence sensitive optical element to a galvanometer system that provides high-speed transitioning of the angle of light incidence sensitive optical element between different angular positions. The high-speed transitioning provided by the galvanometer system varies an angle of incidence between an input laser beam and the angle of light incidence sensitive optical element to thereby provide high-speed variation of an intensity of a polarized output laser beam produced by the angle of light incidence sensitive optical element.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: October 8, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventor: Jan Kleinert
  • Patent number: 8547412
    Abstract: An image forming apparatus includes: a light source; a photosensitive member; a brushless motor including a stator and a rotor; a rotary polygon mirror rotated by the brushless motor; an energization switching unit that turns on/off energizations of the coils; a voltage detecting unit that outputs a detection signal based on induced voltages generated in coils of the stator by rotation of the rotor; and a motor controlling unit that controls the turning on/off of the energizations by the energization switching unit based on the detection signal. In a non-image forming period after one image forming operation, the motor controlling unit performs a low-speed process where the motor controlling unit maintains a rotation speed of the brushless motor at a speed, which is lower than a speed in the image forming operation, and at which the induced voltages are detectable by the voltage detecting unit.
    Type: Grant
    Filed: March 9, 2011
    Date of Patent: October 1, 2013
    Assignee: Brother Kogyo Kabushiki Kaisha
    Inventor: Tomoya Ito
  • Patent number: 8529068
    Abstract: A beam light source of an image display device which displays an image on a screen by scanning an optical beam in a two-dimensional direction in which the beam light source includes a light source that emits a diffuse light modulated according to an image signal, and an optical element that shapes the light emitted from the light source to the optical beam. The optical beam has an elliptically shaped beam spot on the screen in which a major axis of the beam spot is substantially perpendicular to a scanning direction. A horizontal spot size of the optical beam on an exit surface of the optical element is at least or equal to a horizontal spot size of the optical beam on the screen, and the horizontal spot size of the optical beam on the screen is no greater than a horizontal pixel pitch displayed on the screen.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: September 10, 2013
    Assignee: Hitachi Consumer Electronics Co., Ltd.
    Inventors: Tomoki Kobori, Yoshiho Seo, Tadayoshi Kosaka, Mayumi Nagayoshi, Satoshi Ouchi
  • Patent number: 8520269
    Abstract: An image reading apparatus includes: a pair of pulleys between which a belt is stretched, and a pin that rotatably supports a driving pulley, of the pair of pulleys; a mount for fixing the pin; a housing; at least two first fastening parts, respectively including first bosses that extend vertically from a bottom portion of the housing and first fastening members that are inserted into the first bosses via the mount to fix the mount to the housing; and a second fastening part disposed on an opposite side to, the first fastening parts with respect to the pin in the scanning direction, including a second boss that extends vertically from the bottom portion of the housing and has a different height from the first bosses and a second fastening member that is inserted into the second boss via the mount to fix the mount to the housing.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: August 27, 2013
    Assignee: Kyocera Document Solutions Inc.
    Inventor: Naoki Shibata
  • Patent number: 8497450
    Abstract: A laser-based workpiece processing system includes sensors connected to a sensor controller that converts sensor signals into focused spot motion commands for actuating a beam steering device, such as a two-axis steering mirror. The sensors may include a beam position sensor for correcting errors detected in the optical path, such as thermally-induced beam wandering in response to laser or acousto-optic modulator pointing stability, or optical mount dynamics.
    Type: Grant
    Filed: October 26, 2007
    Date of Patent: July 30, 2013
    Assignee: Electro Scientific Industries, Inc.
    Inventors: Kelly Bruland, Mark Unrath, Stephen Swaringen, Ho Wai Lo, Clint Vandergiessen, Keith Grant
  • Patent number: 8459804
    Abstract: A projection display device is discussed, which includes an optical system having an improved arrangement, thereby being capable of reducing the size of the projection display device.
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: June 11, 2013
    Assignee: LG Electronics Inc.
    Inventor: Chan Young Yoon
  • Patent number: 8462010
    Abstract: The present application discloses methods and systems for augmenting a field of view of a user. In one embodiment, a device may include a detector, a processor, and an array of visual indicators. According to an embodiment of the method, the detector may image an environment. The processor may identify within the environment imaged by the detector an object of interest. The processor may also determine a relative spatial location of the identified object of interest. Further, the array of visual indicators may be used to indicate the determined relative spatial location of the identified object of interest. In particular, a set of one or more visual indicators may be selected that has a relative spatial location in the array of visual indicators that is indicative of the relative spatial location of the identified object of interest.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: June 11, 2013
    Assignee: Google Inc.
    Inventors: Liang-Yu (Tom) Chi, Robert Allen Ryskamp, Luis Ricardo Prada Gomez
  • Patent number: 8441710
    Abstract: An optical filter is provided, including a first plurality and second plurality of alternating first and second material layers, where the first plurality of layers is at a first angle to incident light and has a cut-on edge, and the second plurality of layers is at a second angle to the incident light and a cut-off edge; where polarization splitting of the first plurality of layers at the cut-on edge and polarization splitting of the second plurality of layers at the cut-off edge do not exceed approximately 1 percent for any first and second angle between approximately 0 and 40 degrees; and the s-stopband wavelength of the second plurality of layers is approximately less than or equal to the cut-on edge wavelength, which is less than the cut-off edge wavelength, which is approximately less than or equal to the s-stopband wavelength of the first plurality of layers.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: May 14, 2013
    Assignee: Semrock, Inc.
    Inventors: Ligang Wang, Turan Erdogan
  • Publication number: 20130104981
    Abstract: Systems and methods for optical tracking are disclosed. One optical tracking system includes a first optical element configured to focus a light beam and a second optical element configured to redirect the focused light beam from the first optical element. The second optical element is configured to move in order to continuously receive the focused light beam during movement of the focused light beam. Another optical tracking system includes an optical element configured to redirect a light beam and a photosensitive material configured to change its optical properties when it receives the redirected light beam, in order to continuously redirect the light beam during movement of the light beam. The optical tracking methods employ the above-described optical tracking systems.
    Type: Application
    Filed: October 26, 2012
    Publication date: May 2, 2013
    Applicant: University of Delaware
    Inventor: University of Delaware
  • Publication number: 20130100515
    Abstract: Provided is technique for a semiconductor device including a substrate and a tilting plate which is tiltable relatively to the substrate, the technique being capable of effectively suppressing warpage of the tilting plate. The semiconductor device of the present specification includes a substrate and a tilting plate which is tiltable relatively to the substrate. In the semiconductor device, a rib formed of wavelike portions where a plate thickness is substantially uniform is formed on the tilting plate.
    Type: Application
    Filed: September 25, 2012
    Publication date: April 25, 2013
    Applicant: KABUSHIKI KAISHA TOYOTA CHUO KENKYUSHO
    Inventor: Kabushiki Kaisha Toyota Chuo Kenkyusho