Reflection Grating (e.g., Retrodirective) Patents (Class 359/572)
  • Patent number: 10365489
    Abstract: A semi-transmissive reflection sheet is provided, including a first optical shape layer including unit optical shapes, and a second optical shape layer laminated on the first optical shape layer from a side of a surface formed by the unit optical shapes. The unit optical shape has a first surface that is inclined with respect to a light emergent side surface of the second optical shape layer. The light emergent side surface is opposed to the first optical shape layer. The unit optical shape also has a second surface that is not parallel to the light emergent side surface. A reflection layer that reflects at least a part of image light traveling in the semi-transmissive reflection sheet is provided on the first surface.
    Type: Grant
    Filed: April 3, 2015
    Date of Patent: July 30, 2019
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Hiroshi Sekiguchi, Masahiro Goto, Kazunobu Ogawa
  • Patent number: 10162181
    Abstract: Introduced here is a display device that comprises a light emitter and a diffractive optical element (DOE) that is optically coupled to receive light from the light emitter and to convey the light along an optical path. The DOE may have an input surface and an output surface parallel to the input surface, where the input surface and the output surface each have a central region and a peripheral region. The DOE further may have optical characteristics such that light exiting the DOE in the peripheral region of the output surface has greater brightness than light exiting the DOE in the central region of the output surface.
    Type: Grant
    Filed: December 3, 2015
    Date of Patent: December 25, 2018
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: James Randolph Webster, Jeb Wu, Steven John Robbins, Tuomas Heikki Sakari Vallius, Yarn Chee Poon
  • Patent number: 10007233
    Abstract: A decorative element (2), in particular in the form of a transfer film, a laminating film or a security thread, as well as a security document with a decorative element and a method for producing same is described. The decorative element (2) has a microstructure (4) which generates an optical effect in incident light and/or with light passing through. In a first area (32), the microstructure (4) has a base surface (40) and several base elements (41) which have in each case an element surface raised or lowered compared with the base surface (40) and a flank arranged between the element surface and the base surface (40). The base surface (40) of the microstructure defines a base plane spanned by coordinate axes x and y. The element surfaces of the base elements (41) in each case run substantially parallel to the base plane.
    Type: Grant
    Filed: June 25, 2013
    Date of Patent: June 26, 2018
    Assignee: OVD Kinegram AG
    Inventors: Andreas Schilling, Sebastian Mader, Rene Staub, Wayne Robert Tompkin, Harald Walter
  • Patent number: 9958300
    Abstract: Methods and apparatus for fast sweeping a spectral bandwidth in order to distinguish among signals received from effectively wavelength division multiplexed (WDMed) and time division multiplexed (TDMed) optical components on a single fiber. For some embodiments, a method for interrogating optical elements having characteristic wavelengths spanning a sweep range is provided. The method generally includes introducing a pulse of light, by an optical source, into an optical waveguide to interrogate at least a first set of optical elements having different characteristic wavelengths by performing a sweep of wavelengths over a period of the pulse, wherein the period is less than a round-trip time for light reflected from an optical element closest to the optical source to reach a receiver and processing the reflected light to determine a parameter based on the times at which signals are received.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: May 1, 2018
    Assignee: Weatherford Technology Holdings, LLC
    Inventor: Domino Taverner
  • Patent number: 9953851
    Abstract: Embodiments described herein relate to apparatus and methods of thermal processing. More specifically, apparatus and methods described herein relate to laser thermal treatment of semiconductor substrates by increasing the uniformity of energy distribution in an image at a surface of a substrate.
    Type: Grant
    Filed: July 11, 2016
    Date of Patent: April 24, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Jiping Li, Aaron Muir Hunter, Bruce E. Adams, Kim Vellore, Samuel C. Howells, Stephen Moffatt
  • Patent number: 9733402
    Abstract: A sub-pixel unit for a reflective display includes a color filter including a tunable high contrast grating. The tunable high contrast grating reflects light within a first range of wavelengths, and the sub-pixel unit can exist in a first state and a second state, the first state reflecting at least one of (i) light within a different range of wavelengths, and (ii) light of a different intensity level, than the second state.
    Type: Grant
    Filed: March 6, 2015
    Date of Patent: August 15, 2017
    Assignee: University of Southern California
    Inventors: He Liu, Yuhan Yao, Wei Wu
  • Patent number: 9698281
    Abstract: A method of manufacturing a semiconductor device includes forming at least one sacrificial layer on a substrate during a complementary metal-oxide-semiconductor (CMOS) process. An absorber layer is deposited on top of the at least one sacrificial layer. A portion of the at least one sacrificial layer beneath the absorber layer is removed to form a gap over which a portion of the absorber layer is suspended. The sacrificial layer can be an oxide of the CMOS process with the oxide being removed to form the gap using a selective hydrofluoric acid vapor dry etch release process. The sacrificial layer can also be a polymer layer with the polymer layer being removed to form the gap using an O2 plasma etching process.
    Type: Grant
    Filed: August 19, 2013
    Date of Patent: July 4, 2017
    Assignee: Robert Bosch GmbH
    Inventors: Gary Yama, Ando Feyh, Ashwin Samarao, Fabian Purkl, Gary O'Brien
  • Patent number: 9684148
    Abstract: A primary mirror mount assembly includes a body including a mirror surface and a mount surface, with the mount surface having at least one feature formed therein. The mount assembly further includes a hub configured to be secured to the body. The hub includes at least one corresponding mating feature configured to receive the at least one feature of the mount surface of the body therein. The at least one feature and the at least one corresponding mating feature are configured to be welded together. A method of assembling a primary mirror mount assembly is further disclosed.
    Type: Grant
    Filed: May 29, 2014
    Date of Patent: June 20, 2017
    Assignee: RAYTHEON COMPANY
    Inventors: Lyale F. Marr, Randy W. White, Richard L. Scott, James L. Dean
  • Patent number: 9134468
    Abstract: An optical authentication component visible in reflection having a structure imprinted on a substrate of index n0, a thin layer, made of a dielectric material having a refractive index n1, deposited on the structure, and a layer made of a material having an index n2 similar to n0, encapsulating the structure coated with the thin layer, is disclosed. The structure has a first pattern modulated by a second pattern, the first pattern is a bas-relief with an array of facets, having shapes which are defined to simulate an image in relief of an object in relief, and the second pattern is a periodic grating that modulates the first pattern which produces, after the thin layer has been deposited and the structure has been encapsulated, a first color at a first viewing angle and a different second color at a second viewing angle, obtained by azimuthal rotation of the component.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: September 15, 2015
    Assignee: Hologram.Industries
    Inventors: Alexandre Noizet, Valery Petiton
  • Patent number: 9087698
    Abstract: A treatment system comprises an energy source that generates a energy beam that is emitted along an energy beam pathway. A beam section shaper is positioned along the energy beam pathway that receives an incident energy beam and modifies a section shape thereof to output a shape-modified energy beam. A beam intensity shaper is positioned along the energy beam pathway that receives an incident energy beam having a first intensity profile and outputs an intensity-modified energy beam having a second intensity profile, wherein the first intensity profile has a relative maximum average intensity at a center region thereof and wherein the second intensity profile has a relative minimum average intensity at a center region thereof.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: July 21, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sanghyun Kim, Chalykh Roman, Jongju Park, Donggun Lee, Seongsue Kim
  • Patent number: 9030742
    Abstract: Optical components and systems comprising combined optical filters and diffraction gratings are generally described. In certain embodiments, an optical filter is in contact with a diffraction grating. In certain embodiments, the optical filter and the diffraction grating can be used to diffract and direct a first portion of electromagnetic radiation incident upon the grating and filter toward a receiver while filtering a second portion of the electromagnetic radiation incident upon the grating and filter.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: May 12, 2015
    Assignee: Optometrics Corporation
    Inventors: David E. Ventola, Zbynek Ryzi
  • Publication number: 20150124323
    Abstract: A higher forgery prevention effect is realized. A display includes a first interface section provided with a relief-type diffraction grating constituted by a plurality of grooves, and a second interface section provided with a plurality of recesses or projections arranged two-dimensionally at a center-to-center distance smaller than the minimum center-to-center distance of the plural grooves, and each having a forward tapered shape.
    Type: Application
    Filed: January 13, 2015
    Publication date: May 7, 2015
    Applicant: TOPPAN PRINTING CO., LTD.
    Inventors: Toshiki TODA, Akira NAGANO, Shingo MARUYAMA
  • Publication number: 20150109672
    Abstract: A reflective diffraction grating includes a substrate and a reflection-enhancing interference layer system. The reflection-enhancing interference layer system has alternating low refractive index dielectric layers having a refractive index n1 and high refractive index dielectric layers having a refractive index n2>n1. The reflective diffraction grating also includes a grating containing a grating structure, which is formed in the topmost low refractive index layer on a side of the interference layer system facing away from the substrate, and a cover layer, which conformally covers the grating structure. The cover layer has a refractive index n3>n1.
    Type: Application
    Filed: April 16, 2013
    Publication date: April 23, 2015
    Inventors: Frank Fuchs, Uwe D. Zeitner
  • Patent number: 9013794
    Abstract: A dispersive optical device with a three-dimensional photonic crystal. The object is to obtain a device having a high damage threshold on the whole and the making of which is facilitated and guaranteeing optimum optical properties. This object is achieved by using a device in silica including a three-dimensional photonic crystal and a diffraction grating. This device may notably be used in a compressor system for a short pulse.
    Type: Grant
    Filed: September 23, 2008
    Date of Patent: April 21, 2015
    Assignees: Commissariat a l'Energie Atomique, Centre National de la Recherche Scientifique
    Inventors: Jerome Neauport, Nicolas Bonod
  • Publication number: 20150103405
    Abstract: It is described a method for the production of a fully or partially reflective stretchable and deformable optical element, comprising the implantation in at least one surface of an elastomeric support, by a technique of “Cluster Beam Implantation”, of neutral nanoclusters of a material selected among one or more metals, their alloys, their oxides or mixtures thereof, thus obtaining in said support a nanocomposite layer, possibly emerging at the surface of said element, and said implantation taking place by: uniformly implanting said nanoclusters in a surface of said elastomeric support, wherein said surface has a molded profile essentially corresponding to the profile of the optical element to be produced; or selectively implanting said nanoclusters in a flat surface of said elastomeric support; or uniformly implanting a first layer of said nanoclusters in a surface of said elastomeric support, and then selectively implanting a second layer of said nanoclusters onto the first nanoclusters layer thus obtain
    Type: Application
    Filed: December 5, 2012
    Publication date: April 16, 2015
    Inventors: Gabriele Corbelli, Cristian Ghisleri, Luca Ravagnan, Paolo Milani
  • Patent number: 8970956
    Abstract: Methods of forming microelectronic structures are described. Embodiments of those methods may include forming a photomask on a (110) silicon wafer substrate, wherein the photomask comprises a periodic array of parallelogram openings, and then performing a timed wet etch on the (110) silicon wafer substrate to form a diffraction grating structure that is etched into the (110) silicon wafer substrate.
    Type: Grant
    Filed: March 30, 2011
    Date of Patent: March 3, 2015
    Assignee: Intel Corporation
    Inventors: Yun-Chung Na, John Heck, Haisheng Rong
  • Patent number: 8965152
    Abstract: A projection display 210 arranged to display an image to an observer 212 use waveguide techniques to generate a display defining a large exit pupil at the point of the observer 212 and a large field of view, while using a small image-providing light source device. The projection display 210 uses two parallel waveguides 214, 216 made from a light transmissive material. One waveguide 214 stretches the horizontal pupil of the final display and the other waveguide 216 stretches the vertical pupil of the final display and acts as a combiner through which the observer 212 views an outside world scene 220 and the image overlaid on the scene 220. In a color display, each primary color is transmitted within a separate channel R, G, B.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: February 24, 2015
    Assignee: Bae Systems PLC
    Inventor: Michael David Simmonds
  • Publication number: 20150029588
    Abstract: Techniques to control light wavefronts are described herein. A plurality of sub-wavelength grating (SWG) layers includes a SWG layer. The SWG layer is arranged to control a light wavefront.
    Type: Application
    Filed: December 9, 2011
    Publication date: January 29, 2015
    Inventors: Marco Fiorentino, David A. Fattal, Raymond G. Beausoleil
  • Publication number: 20150029589
    Abstract: The present invention relates to an optical device for reflective diffraction with high diffraction efficiency and high laser flux resistance. The device includes a protective structure having at least one mixture layer produced by a uniform mixture of a first material and of a second material, where both of these are dielectric, and wherein said first material has an optical index lower than that of the said second material.
    Type: Application
    Filed: February 20, 2013
    Publication date: January 29, 2015
    Applicant: Commissariat à I'énergie atomique et aux énergies alternatives
    Inventors: Jérôme Neauport, Eric Lavastre, Laurent Gallais, Nicolas Bonod
  • Publication number: 20150022893
    Abstract: A diffraction grating includes a grating area having, in a direction running parallel to a substrate, a periodic arrangement of first areas with a first grating material and second areas with a second grating material. The first grating material and the second grating material are solid materials with different indices of refraction. A reflection-reducing or reflection-increasing layer system having at least two layers with different indices refraction. The reflection-reducing or reflection-increasing layer system is arranged on one side of the grating area facing away from the substrate, and an additional layer system having at least two layers with different indices of refraction is arranged between the substrate and the grating area. A method for producing the diffraction grating is also specified.
    Type: Application
    Filed: February 25, 2013
    Publication date: January 22, 2015
    Inventors: Frank Fuchs, Uwe D. Zeitner, Ernst-Bernhard Kley
  • Patent number: 8934171
    Abstract: A planar optical system for wide field-of-view polychromatic imaging includes a planar waveguide including two plane parallel faces, an entry coupler including a first diffraction grating, and an exit coupler including a second diffraction grating. The diffraction gratings are low line density diffraction gratings that have a pitch greater than the wavelength of use such that the grating is adapted to couple an entry beam having a mean angle of incidence i0 ranging between 30 to 60 degrees into the waveguide by positive first order (+1) diffraction, the coupled beam defining an internal angle of incidence greater than the angle of total internal reflection and less than ?=80 degrees, and the second grating is adapted to receive the coupled beam and to diffract it out of the waveguide by negative first order (?1) diffraction at a mean exit angle i1 ranging between 30 to 60 degrees.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: January 13, 2015
    Assignee: Horiba Jobin Yvon SAS
    Inventor: Frédéric Desserouer
  • Publication number: 20140334003
    Abstract: Optical components and systems comprising combined optical filters and diffraction gratings are generally described. In certain embodiments, an optical filter is in contact with a diffraction grating. In certain embodiments, the optical filter and the diffraction grating can be used to diffract and direct a first portion of electromagnetic radiation incident upon the grating and filter toward a receiver while filtering a second portion of the electromagnetic radiation incident upon the grating and filter.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Applicant: Optometrics Corporation
    Inventors: David E. Ventola, Zbynek Ryzi
  • Publication number: 20140334004
    Abstract: Optical components and systems comprising combined optical filters and diffraction gratings are generally described. In certain embodiments, an optical filter is in contact with a diffraction grating. In certain embodiments, the optical filter and the diffraction grating can be used to diffract and direct a first portion of electromagnetic radiation incident upon the grating and filter toward a receiver while filtering a second portion of the electromagnetic radiation incident upon the grating and filter.
    Type: Application
    Filed: May 9, 2014
    Publication date: November 13, 2014
    Applicant: Optometrics Corporation
    Inventors: David E. Ventola, Zbynek Ryzi
  • Patent number: 8870383
    Abstract: An optical member includes: a total reflection mirror including a reflection surface for reflecting a laser beam; a filter including a partially transmissive surface for passing therethrough a part of the laser beam and reflecting the remaining part of the laser beam, the partially transmissive surface being located so as to be opposed to the reflection surface ; and a diffraction grating into which the laser beam enters, for diffracting the incident laser beam to enter the total reflection mirror or the partially transmissive filter.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: October 28, 2014
    Assignee: Panasonic Corporation
    Inventor: Tsuguhiro Korenaga
  • Patent number: 8861086
    Abstract: Embodiments of the invention provide a device called a “G-Fresnel” device that performs the functions of both a linear grating and a Fresnel lens. We have fabricated the G-Fresnel device by using PDMS based soft lithography. Three-dimensional surface profilometry has been performed to examine the device quality. We have also conducted optical characterizations to confirm its dual focusing and dispersing properties. The G-Fresnel device can be useful for the development of miniature optical spectrometers as well as emerging optofluidic applications. Embodiments of compact spectrometers using diffractive optical elements are also provided. Theoretical simulation shows that a spectral resolution of approximately 1 nm can be potentially achieved with a millimeter-sized G-Fresnel. A proof-of-concept G-Fresnel-based spectrometer with subnanometer spectral resolution is experimentally demonstrated.
    Type: Grant
    Filed: August 12, 2011
    Date of Patent: October 14, 2014
    Assignee: The Penn State Research Foundation
    Inventors: Zhiwen Liu, Chuan Yang, Kebin Shi, Perry Edwards
  • Patent number: 8861067
    Abstract: A method for modulating light using a micro-electro-mechanical structure includes providing a plurality of deformable mirror elements (30) having an L-shaped cross section. Each of the deformable mirror elements is comprised of a pedestal (32) and an elongated ribbon (33). Each of the ribbons has a reflective surface (35). A beam of light is directed on the deformable mirror elements. The deformable mirror elements is flexed about an axis parallel to a long dimension of the ribbons to vary a curvature of at least one of the reflective ribbons.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: October 14, 2014
    Assignee: Eastman Kodak Company
    Inventor: Nissim Pilossof
  • Publication number: 20140300968
    Abstract: A method and apparatus for increasing duality modulation of electromagnetic radiation beyond levels achievable by individual duality modulation generators where duality modulation imparts to radiation a disproportion of irradiance and wave intensity. Various techniques are disclosed for configuring a multiplicity of individual duality modulation generators in a cascade such that initially input radiation acquires cumulative increments of duality modulation upon traversing the cascade of individual generators.
    Type: Application
    Filed: March 17, 2014
    Publication date: October 9, 2014
    Inventors: Stuart Gary Mirell, Daniel Joseph Mirell
  • Patent number: 8854720
    Abstract: The present invention relates to a tri wavelength diffraction modulator (TWDM) and a method of tri wavelength diffraction modulation. The tri wavelength diffraction modulator includes: a stationary substrate with a bottom electrode plate formed on top of the stationary substrate; a first electrode plate comprising a first suspended beam suspended in parallel above the stationary substrate and a first connection anchored onto the stationary substrate; and a second electrode plate comprising a second suspended beam suspended in parallel above the first electrode plate and a second connection anchored onto the stationary substrate. The diffraction modulator and the method for diffraction modulation are suitable to projection system.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: October 7, 2014
    Assignee: Shanghai Lexvu Opto Microelectronics Technology Co., Ltd.
    Inventor: Herb He Huang
  • Patent number: 8854732
    Abstract: Provided is a light-guiding substrate that can propagate light, which has been emitted by means of a light emitting device, in a confined state with an efficiency as high as possible. An optical system provided with the light-guiding substrate is also provided.
    Type: Grant
    Filed: June 16, 2010
    Date of Patent: October 7, 2014
    Assignee: Enplas Corporation
    Inventor: Takayoshi Suganuma
  • Patent number: 8848278
    Abstract: A system for modulating light using a micro-electro-mechanical structure includes a plurality of deformable mirror elements (30) having an L-shaped cross section. Each of the deformable mirror elements is comprised of a pedestal (32) and an elongated ribbon (33). Each of the ribbons has a reflective surface (35). A beam of light is directed on the deformable mirror elements. The deformable mirror elements is flexed about an axis parallel to a long dimension of the ribbons to vary a curvature of at least one of the reflective ribbons.
    Type: Grant
    Filed: January 10, 2013
    Date of Patent: September 30, 2014
    Assignee: Eastman Kodak Company
    Inventor: Nissim Pilossof
  • Publication number: 20140285892
    Abstract: According to one aspect, the invention relates to an optical security component (10) intended to be observed in a spectral band between 380 and 780 nm and in direct reflection mode, comprising: a layer of dielectric material (101), transparent in said observation spectral band, a continuous metallic layer (102) forming, with said layer of dielectric material, a metal-dielectric interface, having a sufficient thickness (t) to allow the reflection of the incident light on said interface in the observation spectral band with a maximum residual transmission as a function of the wavelength of 2%, and structured at said interface to form, in a first coupling area, two sets of undulations extending in two directions and forming a first grating with two dimensions, of subwavelength periods (?1, ?2) in each of the directions.
    Type: Application
    Filed: October 26, 2012
    Publication date: September 25, 2014
    Inventors: Jean Sauvage-Vincent, Valéry Petiton
  • Publication number: 20140270638
    Abstract: In one aspect, optical devices and components are described herein. In some embodiments, a device comprises a substrate and a grating layer disposed on the substrate, wherein the grating layer comprises a periodic grating structure and a sublayer beneath the grating structure and adjacent the substrate. In some cases, the sublayer has a small thickness compared to the wavelength of light incident on and/or coupled into the device. For example, the sublayer of a device described herein can have a thickness of less than about 200 nm. Moreover, devices and components described herein can exhibit both guided-mode resonance (GMR) effects and a Rayleigh anomaly and can be used to provide various optical components such as optical couplers, substrate wave couplers, and flat-top angular reflectors or flat-top angular filters.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Applicant: Board of Regents, The University of Texas System
    Inventor: Robert Magnusson
  • Publication number: 20140233891
    Abstract: A concave diffraction grating for integrated optics is constructed by replacing the reflective metallic part by either multiple thin elements of metal or multiple elements of dielectric material, each partially reflecting the light, and arranged on elliptical fashion in order to distribute the diffraction/reflection of light and provide aberration-free focusing, by combining diffraction condition and Bragg condition of these curved reflectors.
    Type: Application
    Filed: October 5, 2012
    Publication date: August 21, 2014
    Inventors: Pierre Pottier, Muthukumaran Packirisamy
  • Publication number: 20140209795
    Abstract: High resolution fast tunable optical filters are described such that each filter includes a tunable single-peak narrow-bandwidth (SPNB) filter and a tunable etalon in tandem with the tunable SPNB filter, where the bandwidth of the tunable SPNB filter is less than the free spectral range (FSR) of the tunable etalon.
    Type: Application
    Filed: April 1, 2014
    Publication date: July 31, 2014
    Applicant: Optoplex Corporation
    Inventor: Yung-Chieh Hsieh
  • Patent number: 8767300
    Abstract: Objects are to obtain a highly accurate diffraction element that may prevent an intensity decrease of a light beam entering a light receiving unit without a decrease in diffraction efficiency and without a problem of flare or the like, a manufacturing method for the diffraction element, and a spectrometer using the same. A diffraction element (2) includes a diffraction grating formed on a substrate having a curved surface. In the diffraction element (2), the curved surface (3) has an anamorphic shape formed by pivoting a curved line (I) in a plane about a straight line (II) in the same plane serving as a rotation axis, and gratings (10a) of the diffraction grating (10) exist in cross sections orthogonal to the rotation axis.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: July 1, 2014
    Assignee: Canon Kabushiki Kaisha
    Inventor: Yoshihiro Ishibe
  • Publication number: 20140177057
    Abstract: The invention relates to a film (1) and a process for its production. The film (1) comprises a light-permeable replication lacquer layer (2) with a diffractive relief structure (3) formed in a first side (21) of the replication lacquer layer (2), a light-permeable colour lacquer layer (4), formed only in areas, arranged on the relief structure (3), and a reflective layer (5), formed at least in areas, arranged on the first side (21) of the replication lacquer layer (2). In areas (63) of the film (1) where the colour lacquer layer (4) and the reflective layer (5) overlap, the colour lacquer layer (4) is arranged between the replication lacquer layer (2) and the reflective layer (5).
    Type: Application
    Filed: May 24, 2012
    Publication date: June 26, 2014
    Applicant: Leonhard Kurz Stiftung & Co. KG
    Inventors: Ludwig Brehm, Hans Peter Bezold, Dieter Geim
  • Patent number: 8755118
    Abstract: Planar lenses and reflectors are described comprising subwavelength high-contrast gratings (HCG) having high index of refraction grating elements spaced apart from one another in straight and/or curved segments and surrounded by low index material. The high-contrast grating is configured to receive an incident wave which excites multiple modes within the high-contrast grating and is focused for reflection and/or transmission by said high contrast grating. The width of the high contrast grating bars vary along a distribution direction of the grating bars which is perpendicular to the length of the grating bars and/or varies along the length of one or more grating bars to focus said reflection and/or transmission. The HCG is configured to provide double focusing, whose use is exemplified within a vertical cavity surface emitting laser (VCSEL) structure using focusing HCG structures for both the top and bottom mirrors.
    Type: Grant
    Filed: August 23, 2012
    Date of Patent: June 17, 2014
    Assignee: The Regents of the University of California
    Inventors: Connie Chang-Hasnain, Christopher Chase, Fanglu Lu, Forrest G. Sedgwick, Igor Karagodsky
  • Publication number: 20140131586
    Abstract: Spectral Purity Filters, or SPFs, are disclosed. Such SPFs are designed to block out the 1030 nm drive laser and other undesired out of band light in a EUV mask inspection system. Different phase grating configurations for near normal incidence and grazing incidence are provided in the present disclosure and are configured specifically for EUV mask inspection.
    Type: Application
    Filed: March 5, 2013
    Publication date: May 15, 2014
    Applicant: KLA-TENCOR CORPORATION
    Inventors: Daimian Wang, Oleg Khodykin, Daniel Wack, Li Wang, Yanwei Liu
  • Publication number: 20140126061
    Abstract: An optical element includes a structured carrier layer having a macrostructure at a main surface and a layer of cured material. The layer of cured material includes an optically smooth surface facing away from the main surface, a macrostructure surface of the surface being dependent on the macrostructure of the carrier layer and on a layer thickness profile of the layer.
    Type: Application
    Filed: October 25, 2013
    Publication date: May 8, 2014
    Inventors: Ulrike WALLRABE, Jens BRUNNE, Michael PAULS, Ruediger GRUNWALD
  • Publication number: 20140118830
    Abstract: An apparatus and method pertaining to an optical grating are disclosed herein. In one embodiment, in response to a light incident on the optical grating, a first component of the light at a first wavelength is selectively reflected while a second component of the light at a second wavelength is selectively rejected. A reflectance efficiency corresponding to the selective reflection of the first component of the light being a function of a surface roughness of an intermediate layer included in the optical grating. And outputting the selective reflection of the first component of the light at the first wavelength to an optical component included in an extreme ultra violet (EUV) lithography system. The first wavelength being an EUV wavelength and the reflectance efficiency maximized at the first wavelength.
    Type: Application
    Filed: October 25, 2012
    Publication date: May 1, 2014
    Applicant: L-3 Integrated Optical Systems Tinsley
    Inventors: Ulrich Mueller, Jay Daniel
  • Patent number: 8699137
    Abstract: A device that provides light beam switching, agile steering of the light beam over a range of angles, and generation of arbitrary wavefront shapes with high spatial and temporal resolution. The agile device can include a volume diffractive structure comprising Bragg planes having one refractive index and the Bragg planes separated by regions containing an active optical medium. Electrodes (which may be the Bragg planes themselves, or may be arrayed adjacent to the active optical medium) are used to control the electric field intensity and direction across the structure, and thereby control the diffraction efficiency of the structure and the local phase delay imposed on a diffracted wavefront. Means are provided for addressing the many thousands of electrodes required for precise and rapid wavefront control. Applications include free-space atmospheric optical communications, near-eye displays, direct-view 3D displays, optical switching, and a host of other applications.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: April 15, 2014
    Assignee: Vuzix Corporation
    Inventor: Stephen Paul McGrew
  • Patent number: 8687277
    Abstract: A “Stacked-Grating Light Modulator” (“SGLM”) comprises two diffraction grating elements, a reflection grating and a transmission grating, in close parallel proximity. An incident beam transmits through the transmission grating and is reflected by the reflection grating back through the transmission grating. The relative lateral position of the two gratings is varied to modulate the beam's zero-order reflectance.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: April 1, 2014
    Inventor: Kenneth C. Johnson
  • Patent number: 8681422
    Abstract: An optical arrangement includes an actuatable optical element and a compensating optical element. The actuatable optical element is provided to receive an optical beam having a plurality of spatially separated wavelength components and diffract the plurality of wavelength components in a wavelength dependent manner. The compensating optical element directs the optical beam to the actuatable optical element. The compensating optical element compensates for the wavelength dependent manner in which the wavelength components are diffracted by the actuatable optical element.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: March 25, 2014
    Assignee: Nistica, Inc.
    Inventors: Mitchell E. Haller, Jefferson L. Wagener
  • Publication number: 20140056566
    Abstract: The disclosed embodiments generally relate to extruding multiple layers of micro- to nano-polymer layers in a tubular shape. In particular, the aspects of the disclosed embodiments are directed to a method for producing a Bragg reflector comprising co-extrusion of micro- to nano-polymer layers in a tubular shape.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 27, 2014
    Applicant: Guill Tool & Engineering Co., Inc.
    Inventors: Richard R. Guillemette, Robert G. Peters, Christopher Hummel
  • Publication number: 20130321900
    Abstract: A device including a combination of a waveguide and a grating arranged to provide a spectral reflectance. The grating has a plurality of diffractive features in a first region and in a second region such that in the first region, a local average of a length of a period of the diffractive features substantially increases with increasing distance from an origin, and in the second region, the local average of the length of the period of the diffractive features substantially decreases with increasing distance from an origin. The origin is located at an end of the device.
    Type: Application
    Filed: December 1, 2011
    Publication date: December 5, 2013
    Applicant: EpiCrystals Oy
    Inventors: Tuomas Vallius, Janne Konttinen, Pietari Tuormisto
  • Patent number: 8599484
    Abstract: To provide a diffractive optical element and a measuring device capable of generating light spots of dispersive type. The problem is resolved by providing a diffractive optical element having concaves and convexes and diffracting incident light in two dimensions so as to generate diffracted light, wherein when the number of a part of light spots formed by the diffracted light is denoted by n, an average distance W to the nearest neighbor in the light spots normalized by an area of a region onto which the light spots are projected falls within a range of 1/(2×n1/2)<W<1/(n1/2).
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: December 3, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Koji Miyasaka, Takuji Nomura
  • Publication number: 20130293962
    Abstract: An irradiation module for a measuring apparatus is provided. The irradiation module is light-conductive, is configured as a cohesive body and comprises a beam-splitting surface arranged within the irradiation module for splitting an incoming measuring beam into two partial beams. Furthermore, the irradiation module comprises an optical diffraction grating for interaction with a first of the two partial beams and a reflection surface for reflecting the second partial beam.
    Type: Application
    Filed: April 29, 2013
    Publication date: November 7, 2013
    Applicant: Carl Zeiss SMS GmbH
    Inventor: Dietmar Schnier
  • Publication number: 20130279004
    Abstract: Highly-compliant polymer-based resonant diffraction gratings, and methods of use thereof, are provided. In one illustrative embodiment, an amount of pressure applied to a grating surface may be determined by straining a grating, adapted to move into a plurality of pitches, to an applied pitch in the plurality of pitches in response to an application of strain onto a surface adjacent the grating. Electromagnetic radiation comprising a plurality of wavelengths may be applied to the grating, and a resonance wavelength, in the plurality of wavelengths, may be identified while the strain is applied to the grating. The amount of strain applied to the grating surface may then be determined based on the resonant wavelength.
    Type: Application
    Filed: October 19, 2012
    Publication date: October 24, 2013
    Applicant: Board of Regents, The University of Texas System
    Inventors: Steven John Foland, Jeong Bong Lee
  • Publication number: 20130271838
    Abstract: Optical devices using double-groove diffraction gratings having periodic sets of TiO2 elements on one or more surfaces of an SiO2 substrate are disclosed. First order components of incident polarized light coupled into the substrate are reflected so as to propagate through the substrate to terminus points where they either change direction for further propagation or exit the substrate. A windshield display system using the principles of the invention is disclosed.
    Type: Application
    Filed: June 5, 2013
    Publication date: October 17, 2013
    Applicants: THE TRUSTEES OF THE UNIVERSITY OF PENNSYLVANIA, TOYOTA MOTOR ENGINEERING & MANUFACTURING NORTH AMERICA, INC.
    Inventors: HIDEO IIZUKA, NADER ENGHETA
  • Patent number: 8559108
    Abstract: A grating for EUV-radiation includes a plurality of reflecting lines. Each reflecting line includes a plurality of first reflecting dots, and a plurality of second reflecting dots arranged between each other. The first reflecting dots and the second reflecting dots are configured to reflect EUV-radiation with a mutual phase difference of 180±10 degrees mod 360 degrees.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: October 15, 2013
    Assignee: ASML Netherlands B.V.
    Inventors: Borgert Kruizinga, Martijn Gerard Dominique Wehrens, Michiel David Nijkerk, Kornelis Frits Feenstra