With Significant Electrode Or Terminal Feature Patents (Class 361/278)
  • Patent number: 8749947
    Abstract: The present invention can easily adjust capacitance of a vacuum capacitor while maintaining a vacuum state in a vacuum chamber of the vacuum capacitor. A fixed electrode 4 is formed by arranging a plurality of flat electrode members 5 in layers at a certain distance in an axial direction of a vacuum chamber 1b. A movable electrode 7 is formed by arranging a plurality of flat electrode members 8 in layers at a certain distance in the axial direction of the vacuum chamber 1b and fixing the electrode members 8 to a movable electrode shaft 9. By rotation of the movable electrode shaft 9, each electrode member 8 is inserted into and extracted from a gap between the electrode members 5 of the fixed electrode 4 in noncontact with the electrode members 5 of the fixed electrode 4. A magnetic flux receiving portion 106b is fixed to a seal member 102 side of a disk member 106a that is provided at the movable electrode shaft 9.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: June 10, 2014
    Assignee: Meidensha Corporation
    Inventors: Eiichi Takahashi, Toshimasa Fukai, Toshinori Tatsumi, Yuichi Nishikiori, Kaoru Kitakizaki
  • Publication number: 20140125431
    Abstract: A MEMS device includes a substrate, one or more anchors formed on a first surface of the substrate, and a piezoelectric layer suspended over the first surface of the substrate by the one or more anchors. Notably, the piezoelectric layer is a bimorph including a first bimorph layer and a second bimorph layer. A first electrode may be provided on a first surface of the piezoelectric layer facing the first surface of the substrate, such that the first electrode is in contact with the first bimorph layer of the piezoelectric layer. A second electrode may be provided on a second surface of the piezoelectric layer opposite the substrate, such that the second electrode is in contact with the second bimorph layer of the piezoelectric layer. The second electrode may include a first conducting section and a second conducting section, which are inter-digitally dispersed on the second surface.
    Type: Application
    Filed: November 4, 2013
    Publication date: May 8, 2014
    Applicant: RF Micro Devices, Inc.
    Inventor: Kushal Bhattacharjee
  • Patent number: 8693163
    Abstract: A device includes a substrate having a front surface and a back surface opposite the front surface. A capacitor is formed in the substrate and includes a first capacitor plate; a first insulation layer encircling the first capacitor plate; and a second capacitor plate encircling the first insulation layer. Each of the first capacitor plate, the first insulation layer, and the second capacitor plate extends from the front surface to the back surface of the substrate.
    Type: Grant
    Filed: September 1, 2010
    Date of Patent: April 8, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: An-Jhih Su, Chi-Chun Hsieh, Tzu-Yu Wang, Wei-Cheng Wu, Hsien-Pin Hu, Shang-Yun Hou, Wen-Chih Chiou, Shin-Puu Jeng
  • Publication number: 20140078640
    Abstract: In a thin film device including a thin film electrode which has a main electrode layer formed of tungsten, a thin film electrode having a low resistivity is realized. There is provided a thin film device including a thin film electrode that has an underlayer and a main electrode layer formed on the underlayer. The underlayer is formed of a titanium-tungsten alloy having a crystalline structure with a wavy-like surface morphology, and the main electrode layer is formed of tungsten having a crystalline structure with a wavy-like surface morphology.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventor: Keiichi UMEDA
  • Patent number: 8675343
    Abstract: There are provided a conductive paste for an external electrode, a multilayered ceramic electronic component using the same, and a fabrication method thereof. The conductive paste for external electrode includes: a conductive metal; and a conductive amorphous metal including a (Cu, Ni)-bZr-c(Al, Sn) that satisfies conditions of a+b+c=100, 20?a?60, 20?b?60, and 2?c?25. A degradation of connectivity between external electrodes and internal electrodes and defective plating due to a glass detachment may be solved.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: March 18, 2014
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Myung Jun Park, Sung Bum Sohn, Hyun Hee Gu, Chang Hoon Kim, Sang Hoon Kwon
  • Patent number: 8665579
    Abstract: There is proved a variable capacitor that includes a substrate, a signal line disposed on a surface of the substrate for feeding a signal, a ground electrode disposed on the surface, and a movable electrode opposed the signal line and the ground electrode, the movable electrode operable to move toward and away from the signal line and the ground electrode. The movable electrode can be displaced by an electrostatic attraction between the movable electrode and the signal line and between the movable electrode and the signal line. An amount of displacement of the movable electrode varies according to an amount of the voltage which generates the electrostatic attraction.
    Type: Grant
    Filed: February 5, 2009
    Date of Patent: March 4, 2014
    Assignee: Fujitsu Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Xiaoyu Mi, Satoshi Ueda
  • Patent number: 8659868
    Abstract: Disclosed herein is a variable capacitor and its driving method, the variable capacitor including, a movable first electrode; and a second electrode formed with an insulating film, fixed in place, and its insulating film contacting the first electrode that is moved.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 25, 2014
    Assignee: LG Innotek Co., Ltd.
    Inventors: Chang Wook Kim, Dong Chan Park, Ju Young Song, Sang Hun Lee, Sung Bae Cho, Hyun Ho Yang, Jun Bo Yoon, Dong Hun Choi, Chang Hun Han
  • Patent number: 8638541
    Abstract: An input device includes a movable electrode and a capacitance detection electrode provided on the upper and lower sides of the resin film substrate, respectively. The movable electrode includes a moving section, and an immobile section. The moving section includes a protrusion. The end of the protrusion comes in contact with the upper side of the resin film substrate in an initial state, or is bonded to the upper side of the resin film substrate. The protrusion has a curved shape so that the side surface of the protrusion is depressed relative to a straight line that connects the end and the base of the protrusion having an approximately trapezoidal cross-sectional shape, or at least one step is formed on the side surface of the protrusion, and the width of the protrusion increases stepwise from the end to the base of the protrusion.
    Type: Grant
    Filed: March 2, 2012
    Date of Patent: January 28, 2014
    Assignee: Oga, Inc.
    Inventor: Masanori Mizushima
  • Patent number: 8627566
    Abstract: A ceramic header configured to form a portion of an electronic device package includes a mounting portion configured to provide a mounting surface for an electronic device. In addition, the ceramic header includes one or more conductive input-output connectors operable to provide electrical connections from a first surface of the ceramic header to a second surface of the ceramic header. The ceramic header also includes one or more thermally polished surfaces.
    Type: Grant
    Filed: April 1, 2010
    Date of Patent: January 14, 2014
    Assignee: Texas Instruments Incorporated
    Inventors: Moody K. Forgey, Mark A. Kressley
  • Patent number: 8619409
    Abstract: An electrochemical device, e.g., an electric double layer capacitor, is applicable to high-temperature reflow soldering wherein a lead-free solder is used, and is provided with an electric storage element, a package having the electric storage element sealed therein, and a positive electrode terminal and a negative electrode terminal, each of which is led out from the electric storage element and is provided with a part sealed in the package with the electric storage element and other part led out to the outside the package. On a part of the positive electrode terminal and on a part of the negative electrode terminal, increased thermal resistance sections for suppressing heat transfer to the electric storage element via the terminals from other parts of the positive electrode terminal and other parts of the negative electrode terminal are arranged, respectively.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: December 31, 2013
    Assignee: Taiyo Yuden Co., Ltd.
    Inventors: Kazushi Yawata, Naoto Hagiwara, Katsuei Ishida
  • Publication number: 20130329335
    Abstract: A capacitor is provided, which allows a user to readily change or adjust its capacitance value. The capacitor includes a dielectric film, which includes first and second conductor layers disposed on opposite surfaces thereof, and which is wound into a rod shape. First and second electrodes are led out from the first and second conductor layers, respectively. At least one of the first and second conductor layers includes an area-changeable conductor pattern, which is disposed (e.g., exposed) on an outer circumference side of the capacitor wound into the rod shape to receive physical treatment (e.g., cutting, connecting) from outside to thereby change the size of a conductor area of the at least one of the first and second conductor layers. Thus, the physical treatment changes the conductor area of the conductor layers, to thereby selectively set or adjust the capacitance value of the capacitor.
    Type: Application
    Filed: April 15, 2013
    Publication date: December 12, 2013
    Applicant: Wacom Co., Ltd.
    Inventor: Masayuki Obata
  • Publication number: 20130328735
    Abstract: A variable capacitance capacitor element according to an embodiment of the present invention comprises: a supporting substrate; a first electrode layer provided on the supporting substrate; a second electrode layer provided opposite to the first electrode layer; and a dielectric layer positioned between the first electrode layer and the second electrode layer. In accordance with an aspect, a main component of the dielectric layer is represented by a composition formula Ba1-xSrxTiO3 (0.5?x?0.8), and the first thin film dielectric layer has a thickness of 200 nm or smaller.
    Type: Application
    Filed: June 11, 2013
    Publication date: December 12, 2013
    Applicant: Taiyo Yuden Co., Ltd.
    Inventors: Daiki Ishii, Tomokazu Ikenaga, Kentaro Nakamura
  • Patent number: 8549917
    Abstract: An integrated microelectromechanical structure is provided with a driving mass, anchored to a substrate via elastic anchorage elements and designed to be actuated in a plane with a driving movement; and a first sensing mass and a second sensing mass, suspended within, and coupled to, the driving mass via respective elastic supporting elements so as to be fixed with respect thereto in said driving movement and to perform a respective detection movement in response to an angular velocity. In particular, the first and the second sensing masses are connected together via elastic coupling elements, configured to couple their modes of vibration.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: October 8, 2013
    Assignee: STMicroelectronics S.r.l.
    Inventors: Gabriele Cazzaniga, Luca Coronato, Giacomo Calcaterra
  • Publication number: 20130241665
    Abstract: Disclosed is an impedance matching device. Variable devices of the impedance matching device installed in a mobile terminal, such as a portable terminal, are configured to have a MEMS structure. The MEMS structure and other components are integrated as one package, so the manufacturing cost is reduced and the manufacturing efficiency is improved.
    Type: Application
    Filed: November 7, 2011
    Publication date: September 19, 2013
    Applicant: LG INNOTEK CO., LTD.
    Inventor: Chang Wook Kim
  • Publication number: 20130201599
    Abstract: A variable capacitance device that achieves a desired capacitance even when factors causing varied capacitances are generated is configured such that a capacitance detection pulse signal is applied from a capacitance detection signal generation unit to a driving capacitor and a reference capacitor of a MEMS mechanical unit. The device voltage of the driving capacitor based on the capacitance detection signal and a driving voltage is applied to the inverting input terminal of a comparator. The device voltage of the reference capacitor based on the capacitance detection signal and the driving voltage is applied to the non-inverting input terminal of the comparator. The comparator generates a comparison output signal including “Hi” and “Low” values from the difference between these device voltages, and applies the output signal to a driving voltage generation unit. The driving voltage generation unit increases or decreases the driving voltage based on the comparison output signal.
    Type: Application
    Filed: August 7, 2012
    Publication date: August 8, 2013
    Applicant: MURATA MANUFACTURING CO., LTD.
    Inventors: Akira KUMADA, Teruhisa SHIBAHARA, Kenji TANAKA
  • Publication number: 20130194713
    Abstract: A rotary capacitor which changes electrostatic capacity by changing a mutually opposite area of a pair of electrodes which opposes each other, includes a rotary shaft which can rotate around a central axis, wherein the pair of electrodes includes a first electrode plate which protrudes from a circumferential surface of the rotary shaft, and a second electrode plate which may be separated in a direction along the central axis with respect to the first electrode plate and may be disposed so as to oppose the first electrode plate, and a notch which penetrates in a plate thickness direction may be formed on an edge portion of the first electrode plate.
    Type: Application
    Filed: January 30, 2013
    Publication date: August 1, 2013
    Applicant: SUMITOMO HEAVY INDUSTRIES, LTD.
    Inventor: Sumitomo Heavy Industries, Ltd.
  • Publication number: 20130194649
    Abstract: A cantilever type of electrostatic vertical combdrive actuators may generate larger actuator displacement (typically over 70 um) with a relatively small and simple structure. The actuation voltage is lower while the actuation movement is robust without any typical sideway finger snapping phenomena due to a cantilever type of structure. Because of its small form factor, it can form a high fill factor array in applications such as lower power consumption display devices, sensitive electromagnetic radiation detector/detector arrays, etc. The MEMS (Micro-Electro-Mechanical Systems) electrostatic rotational actuators may have wide applications such as in optical shutter, optical chopper, optical switches, optical attenuators, optical tunable filter, RF shunt switch, RF ohmic contact switch, RF MEMS variable capacitors, MEMS display and sensitive electromagnetic radiation detector etc.
    Type: Application
    Filed: January 25, 2013
    Publication date: August 1, 2013
    Inventor: Tiansheng Zhou
  • Patent number: 8498094
    Abstract: A novel semiconductor variable capacitor is presented. The semiconductor structure is simple and is based on a semiconductor variable MOS capacitor structure suitable for integrated circuits, which has at least three terminals, one of which is used to modulate the equivalent capacitor area of the MOS structure by increasing or decreasing its DC voltage with respect to another terminal of the device, in order to change the capacitance over a wide ranges of values. Furthermore, the present invention decouples the AC signal and the DC control voltage avoiding distortion and increasing the performance of the device, such as its control characteristic. The present invention is simple and only slightly dependent on the variations due to the fabrication process. It exhibits a high value of capacitance density and, if opportunely implemented, shows a linear dependence of the capacitance value with respect to the voltage of its control terminal.
    Type: Grant
    Filed: May 5, 2011
    Date of Patent: July 30, 2013
    Assignee: ETA Semiconductor Inc.
    Inventors: Fabio Alessio Marino, Paolo Menegoli
  • Publication number: 20130135785
    Abstract: Disclosed is a MEMS variable capacitor, the capacitor including a first electrode, a second electrode that is floated on an upper surface of the first electrode, and a third electrode capable of variably-adjusting a capacitance value by adjusting a gap between the first electrode and the second electrode.
    Type: Application
    Filed: June 1, 2011
    Publication date: May 30, 2013
    Applicants: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, LG INNOTEK CO., LTD.
    Inventors: Chang Wook Kim, Dong Chan Park, Ju Young Song, Sang Hun Lee, Sung Bae Cho, Hyun Ho Yang, Jun Bo Yoon, Dong Hun Choi, Chang Hun Han
  • Patent number: 8434211
    Abstract: A method for manufacturing a measuring apparatus for capacitive determining and/or monitoring of at least the fill level of a medium. The measuring apparatus has a probe unit and an electronics unit. During a measurement, the electronics unit supplies the probe unit with an exciter signal and receives from the probe unit a received signal, from which the electronics unit ascertains a capacitance value. The probe unit is coated with an insulation layer, the coated probe unit is connected with the electronics unit and inserted into a container containing a calibration medium, the coated probe unit is covered completely by the calibration medium and an associated received signal is gained, and, with the associated received signal, at least one adjustable component of the electronics unit is set.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: May 7, 2013
    Assignee: Endress + Hauser GmbH + Co. KG
    Inventors: Volker Dreyer, Armin Wernet
  • Patent number: 8429809
    Abstract: A method for manufacturing a mirror device is presented. The method includes forming a mirror from a first substrate and forming a hinge/support structure from a second substrate. The hinge/support structure is formed with a recessed region and a torsional hinge region. The mirror is attached to the hinge/support structure at the recessed region. Further, a driver system is employed to cause the mirror to pivot about the torsional hinge region.
    Type: Grant
    Filed: January 10, 2012
    Date of Patent: April 30, 2013
    Assignee: Texas Instruments Incorporated
    Inventor: John W. Orcutt
  • Patent number: 8400752
    Abstract: An embodiment of a tunable capacitor can include a plurality of capacitors connected in series where at least two capacitors of the plurality of capacitors share a common electrode where the at least two capacitors are in lateral proximity and a bias that is capable of being applied to the at least two capacitors whereby the at least two capacitors vibrate in opposite phase to each other when the bias and an RF signal is applied to the at least two capacitors.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: March 19, 2013
    Assignee: Research In Motion RF, Inc.
    Inventors: James Oakes, James Martin
  • Patent number: 8385045
    Abstract: A variable capacitor and a control method thereof capable of responding to applications of electronic apparatuses including various electronic devices and communication mobile devices. The variable capacitor includes a pair of electrodes formed so as to sandwich a ferroelectric material layer, in which polarization processing higher than a coercive field in hysteresis characteristics of polarization has been performed to the ferroelectric material layer, and the capacitance can be varied in accordance with a control voltage applied to the electrodes.
    Type: Grant
    Filed: February 12, 2009
    Date of Patent: February 26, 2013
    Assignee: Sony Corporation
    Inventors: Kazutaka Habu, Masayoshi Kanno, Toshiaki Yokota, Makoto Watanabe
  • Patent number: 8379364
    Abstract: A construction system for a capacitive sensor comprises a source electrode (210), a screening element (220) with partition (221) which forms a first and a second screened chamber (220.a, 220.b), a field sensor (230), a circuit (250), a spacing member (260) with a through-duct, and a screw (270). The partition (221) is provided with a hole (224) and said spacing member (260) is positioned inside the first chamber (220.a) with the axis (260.y) of the duct arranged coaxial with the axis (224-y) of said hole (224). The same spacing member (260) is positioned between the proximal face (223) of the partition (221) and the distal face (232) of the field sensor (230) and said field sensor (230) is provided with a threaded hole (233). The head (271) of the screw (270) is arranged inside the second chamber (220.
    Type: Grant
    Filed: October 1, 2009
    Date of Patent: February 19, 2013
    Assignee: Green Seas Ventures, Ldt.
    Inventor: Lorenzo Peretto
  • Patent number: 8363381
    Abstract: A variable capacitive element includes a first fixed electrode and a second fixed electrode that are insulated from each other, a movable electrode arranged to face the first fixed electrode and the second fixed electrode, a dielectric layer provided between the movable electrode and the first fixed electrode as well as the second fixed electrode, a first wiring part for applying a first driving voltage to the first fixed electrode with reference to a potential of the movable electrode, and a second wiring part for applying a second driving voltage to the second fixed electrode with reference to the potential of the movable electrode, the second driving voltage having a polarity different from a polarity of the first driving voltage.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: January 29, 2013
    Assignee: Fujitsu Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Takashi Katsuki, Satoshi Ueda
  • Patent number: 8363379
    Abstract: Embodiments of a method include forming a metal-insulator-metal (MIM) capacitor including a first electrode and a second electrode and an insulator layer between the first and second electrodes, the MIM capacitor also including a reactive layer; and altering the reactive layer to change a capacitive value of the MIM capacitor.
    Type: Grant
    Filed: August 18, 2010
    Date of Patent: January 29, 2013
    Assignee: International Business Machines Corporation
    Inventors: Daniel C. Edelstein, Anthony K. Stamper
  • Patent number: 8358496
    Abstract: A high reliable electric double layer capacitor is provided by increasing a sealing ability and strength of given portions of collecting terminals. In an electric double layer capacitor including a capacitor proper 1a produced by a plurality of stacked cells and an aluminum laminate film covering the exterior of the capacitor proper, a pair of collecting terminals 12 and 13 are provided at opposed portions of the capacitor proper 1a. Each collecting terminal 12 or 13 includes a first bent portion 12b or 13b that is bent to extend along a side surface 1b of the capacitor proper 1a and a second bent portion 12c or 13c that is bent to extend outward from a vertically middle position of the side surface 1b of the capacitor proper 1a.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: January 22, 2013
    Assignee: Meidensha Corporation
    Inventors: Hiroyuki Watanabe, Ron Horikoshi
  • Patent number: 8354851
    Abstract: An apparatus and production method for a watertight capacitive sensor unit is provided. Accordingly, a carrier, approximately U-shaped in cross section, is made from a water-impermeable material. At least one electrode strip is placed in an interior space of the carrier along the longitudinal extension of the carrier. The interior space is filled with a hardening filler material in such a way that the electrode strip is sealed outwardly watertight.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: January 15, 2013
    Assignee: Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Hallstadt
    Inventors: Martin Schlechtriemen, Holger Wuerstlein, Thomas Weingaertner, Rolf Sitzler
  • Patent number: 8325460
    Abstract: Disclosed are a humidity sensor and a fabricating method thereof. The humidity sensor includes a substrate, an anodic aluminum oxide layer formed on the substrate and having a plurality of holes, and electrodes formed on the anodic aluminum oxide layer, in order to improve sensitivity and accuracy of the humidity sensor. Further, the fabricating method of a humidity sensor includes preparing an aluminum substrate, forming an anodic aluminum oxide layer by oxidizing the aluminum substrate, and forming electrodes on the anodic aluminum oxide layer.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: December 4, 2012
    Assignee: Postech Academy-Industry Foundation
    Inventors: Hyun-Chul Park, Hye-Jin Kim, Woon-Bong Hwang, Young-Deuk Kim, Kun-Hong Lee
  • Patent number: 8320100
    Abstract: A varactor element, includes: a dielectric layer; a pair of signal electrodes, each disposed on one face of the dielectric layer and facing each other; and a pair of control electrodes, each disposed on another face of the dielectric layer and facing each other parallel to a direction intersecting a direction of the pair of signal electrodes facing each other.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: November 27, 2012
    Assignee: Sony Corporation
    Inventors: Masayoshi Kanno, Kazutaka Habu, Noritaka Sato
  • Patent number: 8315030
    Abstract: A MEMS device of an aspect of the present invention including a MEMS element includes a first lower electrode provided on a substrate, a first insulator which is provided on the upper surface of the first lower electrode, and has a first thickness, and a movable first upper electrode supported by an anchor in midair above the first lower electrode, and a capacitance element includes a second lower electrode provided on the substrate, a second insulator which is provided on the upper surface of the second lower electrode, and has a second thickness, and a second upper electrode provided on the second insulator, wherein the second thickness is less than the first thickness.
    Type: Grant
    Filed: March 16, 2010
    Date of Patent: November 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hiroaki Yamazaki
  • Patent number: 8300384
    Abstract: The invention relates to an air variable capacitor including a mobile comb and a fixed comb. Each of the combs include a body and teeth each having an end fixed to the body and free end. The teeth of the mobile and fixed combs being interdigital and an the air-gap of the capacitor is adjustable by the transverse movement of the teeth of the mobile comb. The teeth of the mobile comb have geometric differences between one another, in order to attenuate the transverse resonance modes of the mobile comb.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: October 30, 2012
    Assignee: MEMSCAP
    Inventor: Béatrice Wenk
  • Patent number: 8254146
    Abstract: A capacitor seat and two conductors are utilized to install a capacitor seat on a PCB by soldering the two conductors on electrical contacts of the PCB. The capacitor is installed on the capacitor seat in a fastening way such as by pressing downward, rotating the capacitor or in other feasible fastening ways to be electrically connected with the electrical contacts on the PCB. If the detachable capacitor device has errors or is damaged in use, or a user wants to replace it with a different type of the capacitors to test or adjust the characteristic of the circuit, it is easy to replace the capacitor.
    Type: Grant
    Filed: January 11, 2010
    Date of Patent: August 28, 2012
    Assignee: ASUSTeK Computer Inc.
    Inventors: Chung-Wei Kuo, Chien-Jung Wu, Ming-Chuan Lee
  • Patent number: 8248751
    Abstract: A mechanical drive system for a vacuum capacitor is provided and includes a drive screw and a nut, wherein the nut is arranged in a housing of the vacuum capacitor, wherein the drive screw is screwed through the nut, wherein a first electrode is arranged on one side of the drive screw, wherein, by a rotation of the drive screw, the first electrode is movable relative to a second electrode, and wherein the nut is at least partially manufactured out of a plastic material.
    Type: Grant
    Filed: September 4, 2007
    Date of Patent: August 21, 2012
    Assignee: Comet AG
    Inventors: Manuel Jaggi, Walter Bigler
  • Patent number: 8243417
    Abstract: Disclosed is a variable capacitor that includes signal electrodes configured to sandwich a dielectric layer so as to generate a signal electric field, and control electrodes configured to sandwich the dielectric layer so as to generate a control electric field in a direction intersecting with the signal electric field generated between the signal electrodes.
    Type: Grant
    Filed: April 21, 2009
    Date of Patent: August 14, 2012
    Assignee: Sony Corporation
    Inventors: Masayoshi Kanno, Kazutaka Habu, Toshiaki Yokota, Makoto Watanabe
  • Patent number: 8238073
    Abstract: In a method for forming an in-molded capacitive sensing device a plastic film is provided, the plastic film comprising a first side and a second side. A capacitive sensor pattern is disposed on at least a portion of the second side, the capacitive sensor pattern including a region for facilitating electrical contact. A resin layer is printed over a portion of the capacitive sensor pattern such that access to the region for facilitating electrical contact is maintained. A plastic layer is injection molded onto a portion of the resin layer such that the capacitive sensor pattern becomes in-molded between the plastic film and the plastic layer while access to the region for facilitating electrical contact is maintained.
    Type: Grant
    Filed: July 18, 2008
    Date of Patent: August 7, 2012
    Assignee: Synaptics, Inc.
    Inventors: Tony Tong, David Dwight Kellogg
  • Patent number: 8218285
    Abstract: A variable capacitance element provided with a substrate, a signal line provided on the substrate, a fixed electrode provided on the substrate, and a movable electrode. The movable electrode includes a movable portion that spans the signal line and extends to above the fixed electrode, and is movable with respect to the fixed electrode, and a fixed portion that is fixed to the fixed electrode across a dielectric layer.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: July 10, 2012
    Assignee: Fujitsu Limited
    Inventors: Takeaki Shimanouchi, Masahiko Imai, Satoshi Ueda
  • Patent number: 8194386
    Abstract: A tuneable capacitor arrangement for RF use has two series coupled MEMS variable capacitors (C1,C2;C4,C5,C6,C7), varied according to a control signal. The series coupling enables the capacitor to withstand a higher voltage since this is shared by the individual capacitors in a series coupled arrangement. An increase in size of electrodes for each capacitor is compensated by a reduction in size of the springs supporting movable electrodes. These springs can have a larger stiffness value since the capacitance is larger. This means shorter springs, which can also result in a reduction in problems of stiction, resistance, and slow switching. The capacitances have a fixed and a movable electrode, with the RF signal coupled to the fixed electrode to avoid the springs needing to carry an RF signal. This can reduce the problems of inductance and resistance in the springs.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: June 5, 2012
    Assignee: EPCOS AG
    Inventors: Peter G. Steeneken, Kevin R. Boyle, Antonius J. M. De Graauw, Theodoor G. S. M. Rijks, Jozef T. M. Van Beek
  • Publication number: 20120112855
    Abstract: To provide a capacitative device capable of accurately securing a capacitance value, a variable capacitative device capable of sufficiently securing a capacity variability rate, and a resonance circuit that uses the capacitative devices. A capacitative device according to the present invention includes a capacitative device body constituted of a dielectric layer and at least a pair of capacitative device electrodes that sandwich the dielectric layer and cause a desired electric field in the dielectric layer; and stress adjustment portions to adjust a stress caused in the dielectric layer of the capacitative device body.
    Type: Application
    Filed: July 27, 2010
    Publication date: May 10, 2012
    Applicant: SONY CORPORATION
    Inventors: Noritaka Sato, Masayoshi Kanno, Masakazu Yajima
  • Publication number: 20120074962
    Abstract: A variable capacitor is provided for use with an electronic circuit board including a first terminal portion and a second terminal portion, to be built in a position indicator. The variable capacitor includes a dielectric having a first surface portion and a second surface portion opposite to the first surface portion, and a conductive elastic member having a board coupling portion and a dielectric contacting portion. The first terminal portion is coupled to the first surface portion, the second terminal portion is coupled to the board coupling portion, and the dielectric contacting portion is disposed separately from the second surface portion so as to face the second surface portion and is configured to be deformed to come in contact with the second surface portion of the dielectric.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 29, 2012
    Applicant: WACOM CO., LTD.
    Inventors: Yasuyuki Fukushima, Hiroyuki Fujitsuka
  • Patent number: 8144449
    Abstract: An electronic component includes an electronic component main body including opposed first and second main surfaces, opposed first and second side surfaces, and opposed first and second end surfaces and also includes first and second external terminal electrodes disposed on the first main surface. The first and second external terminal electrodes are spaced apart by a gap region. When a dimension in a longitudinal direction being a direction linking the first and second end surfaces of the electronic component main body is L, a dimension in a width direction being a direction linking the first and second side surfaces is W, and a dimension of the gap region along the longitudinal direction is g, W<L?g<2W and L?g+W?{2(L?g)W}1/2>(L?g)/2 are satisfied.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: March 27, 2012
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Kosuke Onishi, Yukio Sanada
  • Patent number: 8138655
    Abstract: An electrostatic actuator includes first and second lower electrodes formed apart from each other above a substrate, an electrode portion formed above the first and second lower electrodes and first and second upper electrodes, a distance between the first upper electrode and the first lower electrode at a first portion being greater than that at a second portion, a distance between the second upper electrode and the second lower electrode at a third portion being greater than that at a fourth portion, a first boundary portion between the first and third upper electrodes having a convex shape, a second boundary portion between the second and third upper electrodes having a convex shape, and the electrode portion driving the third upper electrode, and first and second layers formed in the first and second boundary portions.
    Type: Grant
    Filed: April 24, 2008
    Date of Patent: March 20, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Tamio Ikehashi, Hiroaki Yamazaki
  • Patent number: 8136213
    Abstract: The method comprises fabricating a layer stack on a substrate, the layer stack comprising at least two electrically conducting layers and at least one electrically insulating layer arranged between the two electrically conducting layers, and displacing a first portion of the layer stack away from its original position, the first portion comprising an edge portion of the layer stack, and bending the first portion back towards a second portion of the layer stack. The bending may comprise a rolling-up of the first portion of the layer stack.
    Type: Grant
    Filed: August 6, 2008
    Date of Patent: March 20, 2012
    Assignee: Max-Planck-Gesellschaft zur Forderung der Wissenschaften e.V.
    Inventor: Oliver G. Schmidt
  • Publication number: 20120044611
    Abstract: Embodiments of a method include forming a metal-insulator-metal (MIM) capacitor including a first electrode and a second electrode and an insulator layer between the first and second electrodes, the MIM capacitor also including a reactive layer; and altering the reactive layer to change a capacitive value of the MIM capacitor.
    Type: Application
    Filed: August 18, 2010
    Publication date: February 23, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Daniel C. Edelstein, Anthony K. Stamper
  • Patent number: 8102638
    Abstract: A capacitive switch for microelectromechanical systems (MEMS) comprises a topmost metal plate which extends across a bridge structure formed by a polymer layer. The polymer layer comprises poly-monochoro-para-xylene (parylene-C). The space below the polymer layer contains the second plate on a substrate. Using parylene as the primary bridge material makes the bridge of the MEMS device very flexible and requires a relatively low actuation voltage to pull the bridge down and lower power is required to control the MEMS device.
    Type: Grant
    Filed: June 13, 2008
    Date of Patent: January 24, 2012
    Assignee: The University Court of the University of Edinburgh
    Inventors: Tughrul Arslan, Anthony J. Walton, Nakul R. Haridas
  • Patent number: 8098476
    Abstract: One embodiment of the present invention relates to a variable capacitor that operates without moving mechanical parts. In this capacitor electrically conductive electrodes are separated by an enclosed chamber filled with an electrically conductive material. The electrically conductive material can freely vary its position within the chamber. The capacitance of the device will vary as position of the conductive material changes due to external mechanical motion (ex: rotation, vibration, etc.) of the device. Other embodiments of this device are also disclosed.
    Type: Grant
    Filed: September 14, 2010
    Date of Patent: January 17, 2012
    Assignee: Infineon Technologies AG
    Inventors: Markus Loehndorf, Terje Kvisteroey, Horst Theuss, Bjoern Blixhaven
  • Patent number: 8077443
    Abstract: A capacitor structure is provided. In the capacitor structure, a signal electrode plate and an extension ground electrode plate are disposed on the same plane to form a co-plane capacitor structure. Due to slow wave characteristic, the resonance frequency of the capacitor structure is effectively raised and the capacitor structure may be applied in high frequency.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: December 13, 2011
    Assignee: Industrial Technology Research Institute
    Inventors: Wei-Ting Chen, Chang-Sheng Chen, Chin-Sun Shyu, Chang-Lin Wei, Cheng-Hua Tsai, Kuo-Chiang Chin
  • Patent number: 8072081
    Abstract: A microelectromechanical system package includes a chip carrier, a first microelectromechanical system chip, a silicon cover, a layer of metal, a plurality of first bonding wires and a sealant. The first microelectromechanical system chip is positioned on the chip carrier and has an active surface, and an active area on the active surface. The layer of metal is formed on the upper surface of the cover. The first bonding wires electrically connect the active surface of the first microelectromechanical system chip to the chip carrier. The sealant is formed on the chip carrier to encapsulate the first microelectromechanical system chip and the first bonding wires.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: December 6, 2011
    Assignee: Advanced Semiconductor Engineering Inc.
    Inventor: Meng Jen Wang
  • Patent number: 8064186
    Abstract: A method of manufacturing capacitive elements for a capacitive device which comprises one or more layers is provided. At least one layer is etched from a first surface to a second surface thereof to form two sections of the layer, such that the sections are movable relative to one another, and such that a wall extending from the first surface to the second surface is formed on each of the two sections, the walls defining a gap therebetween. An etching step forms multiple recesses in each wall such that multiple capacitive elements are defined between adjacent recesses, the capacitive elements of one wall being offset from those of the other wall when the sections are stationary with respect to one another. A corresponding capacitive device is also provided.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: November 22, 2011
    Assignee: Infineon Technologies AG
    Inventors: Terje Skog, Svein Moller Nilsen
  • Patent number: 8045318
    Abstract: A tunable capacitor using an electrowetting phenomenon includes a first electrode; a second electrode which is spaced apart from the first electrode and faces the first electrode; a fluidic channel which is disposed between the first electrode and the second electrode; a first insulating layer which is disposed between the first electrode and the fluidic channel; and a conductive fluid which is disposed in the fluidic channel and moves along the fluidic channel when a direct current (DC) potential difference occurs between the first and second electrodes. Accordingly, it is possible to fabricate the tunable capacitor with the simplified fabrication process, good reliability and durability, and no restriction on the tuning range.
    Type: Grant
    Filed: January 6, 2010
    Date of Patent: October 25, 2011
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-tae Choi, Ji-hyuk Lim, Woon-bae Kim, Eun-seok Park, Jeong-yub Lee